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Abstract

We present a model for scale invariance of natu-
ral images based on the ideas of images as collages of
statistically independent objects. The model takes oc-
clusions into account, and produces images that show
translational invartance, and approrimate scale in-
variance under block averaging and median filtering.
We compare the statistics of the simulated images with
data from natural scenes, and find good agreement for
short-range and middle-range statistics. Furthermore,
we discuss the implications of the model on a 3D de-
scription of the world.

1 Introduction

One of the most remarkable properties of natural
images is an invariance to scale. Scale invariance is in-
teresting because it distinguishes natural scenes from
random noise and many man-made images. Scale in-
variance is also a very robust property of natural im-
ages; it depends little on calibration [6], and has been
observed in images from very different environments,
e.g. scenes from the woods [5], or scenes of mountains,
cities, and landscapes [1]. A good model for images
which captures the invariance properties of real scenes
could be useful for both image compression purposes
and for the study of sensory processing in biology.

The most well-known evidence for scale invariance
of natural images is perhaps the ensemble power spec-
trum [2, 5]; it behaves as 1/k?~" where k is the modu-
lus of the spatial frequency and 7 is a small constant.
The power-law form indicates that the second-order
statistics scale, but recently, there has also been evi-
dence of higher-order scaling in natural images. Rud-
erman [5] and Zhu [8], for example, have shown that
the average response histograms of many local filters
are the same before and after block averaging images.
Such “histogram scaling” indicates that full scale in-
variance I(x) ~ I(ox) might exist approximately in
natural images.

It 1s not fully understood, however, why natural
scenes scale. Most likely it is caused by a combination
of (a) objects in the world having different sizes, and
(b) objects occurring at arbitrary distances from the

viewer. Natural scenes are extremely rich in detail,
and it is reasonable to assume that properties (a) and
(b) give rise to “projected” objects that span many
angular scales.

The standard Gaussian model can produce fully
scale invariant images, but the images all look like
clouds with no clear objects and borders. There are,
however, models for scale invariance which are closer
to real images and based on the above notion of im-
ages as collages of (independent) “objects”. In [4],
Mumford proposes a representation of images as sums
of elementary objectlets, e.g. wavelets; the objects
include independent patches, shadows, textons, etc.
This model, however, ignores occlusions. Other mod-
els take occlusions into account, for example Chi’s
“ground plane model” of the 3D world which produces
approximately scale invariant images under perspec-
tive projections with occlusions [1], or Ruderman’s 2D
model which shows translational invariance and scal-
ing in the second-order statistics [6].

In this paper, we present a stochastic model for
scale invariance based on Ruderman’s ideas of ran-
domly placing independent objects in 2D. The model
takes occlusions into account, and generate images
which show both translational invariance as in [6], and
are approximately scale invariant as in [1].

The organization is as follows: In the first part of
the paper we lay down the theoretical framework for
the model. In the second part of the paper, we gen-
erate synthetic images according to the model, and
compare the statistics of the simulated images with
data from natural images [10]. Finally, in the last sec-
tion, we discuss the implications of the model on a 3D
description of the world.

2 Theoretical Predictions
2.1 Poisson Model with Full Scale Invari-
ance. The 1/7° Law of Sizes.

Our goal 1s to build a model for scale invariance of
natural images. As in [6] and [1], we base the model
on the notion that images can be broken down into
correlated regions called “objects”, with different “ob-
jects” being statistically independent. We also assume



translational and rotational invariance. “Objects” can
basically occur anywhere in an image, and with any
orientation.

The main argument in this section is that the con-
dition of full scale tnvariance

P{l(z,y)} = P{I(oz,0y)} , (D)

sets a constraint on the distribution of object sizes.
Below we prove this for the general case where opaque
objects occlude each other. It is, however, trivial to
apply the same reasoning to transparent objects.

For simplicity, we choose circular, uniformly colored
objects. Each object is assigned a radius r according
to some size distribution f(r) (rmin < 7 < rmax) and a
random grey level a from some intensity distribution
p(a). Now imagine the situation where the colored
discs are randomly “raining down” on a plane. The
discs reach the plane in a specific order, and “creates”
images with occlusions when viewed from above. We
define ¢ as the time a disc hits the plane ' and let
(z,y) denote the position. Note that, if we wait long
enough, randomly sampled images belong to a station-
ary probability distribution P[I(x)].

Mathematically, the above construction (of placing
colored objects on a plane) defines a Poisson process

I ={(z,y,rt a)} (2)

in 5-dimensional space R? X (rmin, Pmax) X (0,00) x
(@min, @max ). The statistics of TI, and thus the statis-
tics of the generated images I(x), are fully determined
by the measure

dp = Mz, y,r t,a) dedydrdtda (3)
on this space. In our case 2, Eq. 3 reduces to
dp = f(r)p(a) dedydrdtda . (4)

Now if I(x,y) is a sample from TI, then the rescaled
image I(ox, oy) is a sample from a Poisson process

I, = {(xaya r,t,a)} (5)

in R? X (Pmin /0, Pmax/0) X (0,00) X (@min, @max) With
measure

dpty = o® f(ar) p(a) de dydr dt da . (6)

1 Alternatively, we can tag the objects with a discrete order
parameter £k = 1,2,3,..., since the time between two events
[object reaching the ground] makes no difference in 2D.

2 assume translational invariance and separability of the vari-
ables =, y, r, t and a

Let us for the time being ignore the short- and long-
distance cutoffs on the object sizes. Assume, for ex-
ample, that rpin — 0 and rpax — oo. Full scale in-
variance P{I(z,y)} = P{I(cxz,oy)} then occurs, if
and only 1f
dp = dpo (7)
le.
f(r) =0’ for) = f(r) occi? . (8)
The 1/73 “law of sizes” has previously been derived
for scale-invariant images without occlusions, see for
example [1]. Above, we show that the condition for full
scale invariance also applies to images with occlusions
as long as the order of the opaque objects does not
depend on the variables x, y, and r.
We would also like to point out that the density
parameter C' in the density function

C.de-dy-dr-dt

3

Az, y,rt) = ; (9)
has no real meaning in 2D; the value of C' does not
affect the image statistics. We can absorb the param-
eter into ¢, because the images are created by a process
which looks at all ¢ < 0 (assume that ¢ = 0 represents
the time the image is sampled). Note that placing the
objects front to back until the background is filled will
give an exact sample from the model (cf. construction
of synthetic images in Sec. 3.1).

2.2 Statistics and Scaling for Occlusion

Model with 7, and 7. finite

Divergences and the Need for Cut-Offs.

All scale invariant probability distributions have di-
vergences for both short wavelength (UV) and long
wavelength (IR) fluctuations 3. This may be best illus-
trated by looking at the expected power of stationary,
scale-; and rotationally invariant images. These types
of images have a covariance of the form —log|x — y|
and a power spectrum of the form 1/(¢2+n?) %. Hence,
if A(r1,72) is an annulus in the (£, n)-plane with inner
radius r; and the outer radius ry, then

[ e nFe =g (%)

3The solution according to Mumford [4] is to consider im-
ages I(z,y) not as functions but distributions modulo constants.
Loosely speaking, we assume that for all test functions ¢ with
mean zero, the averages

//1(907y)¢(1’7y) dz dy (10)
are well-defined.

4For the standard 2D Gaussian model, which is uniquely
determined by its mean and covariance, the above form of the
covariance or power spectrum is not only a necessary, but also
a sufficient, condition for full scale invariance




where ( is a constant. The amount of power in the
band depends only on the ratio (rz/r1) of the high
and low frequencies, not on the frequencies themselves.
This indicates that there is no definite angular scale in
the images. The problem, however, 1s that the power
blows up at both ends, when r5 — oo and r; — 0. We
call these blow-ups the ultraviolet (UV) and infrared
(TR) divergences, respectively.

In the occlusion model described in Sec. 2.1, the IR,
and UV divergences occur when the object size limits
Pmin — 0 and rpax — oo, As rpin — 0, the image
is totally covered by microscopic objects. In fact, for
each rg, the proportion of area covered by objects of
size < g goes to 1. On the other hand, as ry,x — oo,
the probability of an image containing only one object
tends to 1. Almost all image samples will then have
uniform intensities.

Obviously, we need to impose finite bounds rpyiy
and rmax on the object sizes. A natural consequence
of finite bounds, however, is that the the population
of objects changes under scaling. For example, if we
scale an image down by a factor 2, we may introduce
new small objects with sizes 7 € [rmin/2, "min]. Large
objects with sizes 7 € [Pmax/2, "max] Will also be miss-
ing.

Below, we investigate the properties of the occlu-
sion model described in Sec.2.1, for the case when
both rmin and rpa.y are finite. We focus on the fol-
lowing questions:

e What is the two-point correlation function for the
images, and how does it depend on the cutoffs
Pmin and rpax?

e How well do the images scale?

Covariance Statistics. Predictions.

We start by deriving an expression for the correlation
or covariance between two points x; and x,. For a
translational and rotational invariant distribution, it
can be written as a function of the separation distance
& = |x1 — X2|. Schematically, we write

C(z) =< I(0)I(z) > (12)

where the brackets imply an average over angles, a
shift over positions, and an ensemble average over dif-
ferent images I(x).

In our model, the images are composed of indepen-
dent, uniformly colored objects. This means that (a)
C(z) = 0 for points belonging to different objects, and
(b) C(x) is constant, and equal to the variance of the
intensity distribution, for points belonging to the same

object. From (a) and (b), we obtain a direct relation
between the correlation function C'(z) and the proba-
bility Psame(#) of two points being in the same object.
We have

C(z) = Coy Psame(®) , (13)

where (Y is the constant correlation within objects.
The key step 1s to connect the probability function

Piame() above to the density function of the Poisson

model. Ruderman has shown [5] that (assume station-

arity)

__»l) (14)

p1(x) + pa(z)

where pa(z) is the probability that the last added ob-

ject, which is not occluded by any other objects, con-

Psame(x) =

tains both points x; and xs, and ps(z) is the proba-
bility that the object contains exactly one of the two
points. Furthermore, Ruderman has derived an ex-
pression for the conditional probability

g(x,r) = Prixz € Al x1 € 4; |[[x1—xaf| = 2}, (15)

for a circle A with radius r. In the dimensionless quan-
tity £ = #/r, the function has the form [5]

2
§(0 <& <2)=— |arccos
T

(16)
(§(&) =0, for £ > 2)
In our model, the objects sizes are distributed ac-
cording to 1/r3 where rmin < 7 < Fmax °. We then
have

2 [ 0= oo oty dr

Tmin

pi(z)

Tmax

prle) = / o(e, ) p(r) dr (17)

min
where

p(r)dr =

dr
—— (18)
rIn (““A)

Tmin
is the probability that a given point in the image
belongs to an object with a radius in the interval
[r, 7+ dr].
By inserting the above equations into Eq. 13, we
get
C(l‘) _ Co B(l‘)

- 2 1n (Tm‘f‘ ) — B(#)

Tmin

, (19)

5Ruderman’s model allows infinite-sized objects, and is only
well behaved for power-law size distributions 1/7% with o >
3. These distributions, however, do not lead to higher-order
scaling.



where

N
B(z) = gl—1—". 2
= [ (1) (20)
and §(&) is given by Eq. 16.
To simplify the integral above, we approximate the

function §(£) in Eq. 16 with a third-order polynomial.
The best fit gives (0 <& < 2)

G(E) ~ Gpoiy(€) = az € + as & + a1 E+ag  (21)

with coefficients ag ~ 1.0, a3 = —0.61, as &~ —0.051,
and az =~ 0.052. In Fig. 1 we see that the “poly-
nomial approximation” gpoly(§) (solid line) fits the
“full expression” §(£) (diamonds) very well. Inserting

Full Expression §(¢) vs. Polynomial Approximation g1y (€)

diamonds full expression  solid line polynomial approximation
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Figure 1: The conditional probability that a point is within
a circle with radius r, given that another point a distance
away is within the circle: The diamonds represent values from
the “full expression” g(¢) in Eq. 16 as a function of ¢ = z/r.
The overlapping solid line represents the “polynomial approxi-
mation” Fpoly (€) (Eq. 21).

Eq. 21 into Eq. 20 leads to an estimation of B(z),
and thus a numerical expression for the two-point
correlation function C(x) according to Eq. 19. For
2rmin S r < 2rmax 6a

Blx) = a?3(8_u3)+‘%2(4_u2)+a1(2—u)+aoln (%(23),

xr

where u = —
Predictions. A Numerical Example.

From Eq. 19 and Eq. 23, we can now predict how
the covariance statistics behaves for different values of
Pmin and rmax. Fig. 2 shows C'(#) as a function of »
for Cp = 1 (i.e. C(2) = Psame(x)) and two different

choices of cutoffs:

SFor & > 2rmax, B = 0. For @ < 27min,

Blo) = 2~ ')+ 27 — ) +arls —u) +aoln (22

(22)

where s = —%— and v = —%—.
Tmin Tmax

In Fig. 2 (left), the solid line represents the correla-
tion function C(z) when rpiy = 1/2 and rpayx = 2048.
For comparison, we have also fitted C'(x) (in the re-
gion 2 < x < 64) to a power-law function of the form
f(x) = —=A+ B-27"; In the Fourier domain, this type
of function corresponds to a power spectrum of the
form 1/k%=7. The best fit with least-square error is
obtained for fi(z) & —0.29 + 1.0 - 27917 (see dotted
line). The two curves overlap, except for very small
and very large values of x.

In Fig. 2 (right), we have ryin = 107°% and rpay =
10°. The solid line represents the predicted correla-
tion function C'(#), and the overlapping dotted line
shows the power-law fit fa(2) &~ —0.59+0.91 - 2=9933,
Note that the exponent 7 in the power-law fit is much
smaller here, where ryi, 1s very small and rpax very
large, than in the previous case.

Covariance Statistics
Tmin = 1/2, Tmax = 2048 Tmin = 1078, rmax = 108
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Figure 2: Left: The solid line shows the two-point correlation
function C(z) (insert Eq. 23 into Eq. 19) as a function of x for
Tmin = 1/2, Tmax = 2048, and Cy = 1. For comparison, we
have fitted a power-law function fi(z) & —0.29 + 1.0 - =017
(dotted line) to C'(x). The two curves overlap except for very
small values of x where the power-law function diverges. Right:
The solid line shows C(z) for rmin = 1078, rmax = 10%, and
Co = 1. The overlapping dotted line shows the power-law fit
fa(z) = —0.59 + 0.91 . 0033,

For a fully scale invariant system, we expect a
power spectrum of the form 1/k?, i.e. n = 0 above,
and a covariance with log-behavior. From Eq. 19 and
Eq. 23, we see that if rypin € @ € ropax, then

C(x) ~ . 1n_(€zax) In (rj) . (24)

Tmin

In this region, the correlation function 1s approxi-
mately scale invariant up to an additive constant

Co
2 In (52 )

Fig. 3 illustrates the correlation function C(7)(z) =
C(oz) for six different scales: ¢ = 1,2,4,8,16,32.

CW(z) — C9(x) In(e) . (25)




Since the correlation function can only be expected
to be scale-invariant modulo constants [4], we have
shifted the curves with an additive constant so that
C)(x) = C(x) at @ = 1. In the left graph, ryp, = 1/2
and rpax = 2048, and in the graph to the right,
Pmin = 107% and rma, = 10°. As expected, the dif-
ferences in the shifted C(U)(aj)—curves are smaller in
the latter case.

Scaling of Covariance Statistics
Tmin = 1/27 Tmax = 2048
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Figure 3: Left: The correlation function C(U)(x) as a function
of x for rmin = 1/2 and rmax = 2048. Right: C(U)(x) for
rmin = 107% and rmax = 10°. In both figures, six different
scales are represented: o = 1 (solid line), o = 2 (dashed line),
o = 4 (dashed line), o = 8 (dashed line), ¢ = 16 (dashed
line), and o = 32 (dotted line). The curves are shifted with an
additive constant so that C(U)(x) =C(z) at z = 1.

Before we proceed, we would also like to compare
Fig. 3 to the case where the size of the smallest ob-
ject is determined by the screen resolution. We as-
sume that when an image is down-scaled, all objects
with radii less than some short-distance cutoff ro dis-
appear. Then if the original images have objects with
sizes r € [ro,"masr], the corresponding (with a fac-
tor o) down-scaled images will have objects with sizes
7 € [ro, "maz /o). Fig. 3 illustrates the correlation func-
tion C(?)(x) = C(ox) for six different scales: o =
1,2,4,8,16,32. As before, the curves are shifted with
an additive constant so that C(?)(z) = C(x) at « = 1.
In the left graph, 7o = 1/2 and rpax = 2048, and in
the graph to the right, ro = 1076 and rmax = 10°.

Later in Sec. 3.3, we will see that rescaling digitized
images by block averaging is similar to the procedure
in Fig. 3, and that rescaling by taking the median of
2 x 2 blocks is similar to the procedure in Fig. 4.

3 Numerical Simulations
3.1 Construction of Synthetic Images

We generate 1000 images with 256 x 256 pixels, by
successively adding approximately circular objects to
a plane. The disc radii r are distributed according
to 1/r3, where r is between rm;, = 1/2 pixels and
Pmax = 8 - 2b6 = 2048 pixels. The construction is as
follows:

Scaling for Images with “Short-Distance Cutoff”
70 = 1/2, rmax = 2048 ro = 1078, rpax = 108
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Figure 4: Left: The correlation function C(U)(x) as a function
of x for rmax = 2048 and the short-distance cutoff ro = 1/2.
Right: C(U)(x) for rmax = 10° and the short-distance cutoff
ro = 10~%. In both figures, six different scales are represented:
o = 1 (solid line), ¢ = 2 (dashed line), ¢ = 4 (dashed line),
o = 8 (dashed line), 0 = 16 (dashed line), and ¢ = 32 (dotted
line%. The curves are shifted with an additive constant so that

clo (z) =C(z) at z = 1.

First, we make an image which is four times as
large, i.e. with a size of 1024 x 1024 pixels. Assume
that the “image screen” is defined by |z| < 512 and
ly| < 512. In each iteration, we pick a random po-
sition for the object center, in an “extended screen”
with |2| < 51244 rpax and |y| < 51244 - ryax. The
object is assigned a radius r from a 1/73 size distribu-
tion with 47y, < 7 < 4rpi,, and a random grey level
a according to a double exponential distribution with
zero mean and unit variance *. We make sure that the
generated images are samples from a stationary prob-
ability distribution by first placing the closest object
on the “screen”, and then successively adding objects
which are farther away until the whole “screen” is cov-
ered. Many of the later added objects are only partly
visible in this occlusion-style construction.

In the next step, we scale down the generated im-
ages by a factor 4 8. This gives image samples that
are 256 x 256 pixels with a subpixel resolution of 1/4
pixel unit. The disc radii are distributed according
to 1/73 for rmin < 7 < Pmax, Where rpin = 1/2 and
Tmax = 8 - 206 = 2048.

Fig. 5 shows four samples from the final image en-
semble.

3.2 Statistics of Generated Images.
Comparison to Natural Images.

Below we compare the statistics of 1000 256 x 256
synthetic images constructed according to Sec. 3.1,
with the statistics of about 4000 1024 x 1536 natu-
ral tmages taken by a digital camera [10, 9].

"Let f(a) = %exp(—/\|a|)7 where A = /2
8Here we have taken the median of 2 x 2 blocks twice. Block
averaging, however, gives similar results.



Figure 5: Example of synthetic images from the occlusion
model. The images have 256 x 256 pixels, and are constructed
from opaque discs with size distribution f(r) ~ 1/72, where
1/2 < r < 8-256 = 2048 pixels.

Single Pixel Statistics
Fig. 6 (left) shows the log-histogram of the “log-

contrast” for natural images. The “log-contrast” I
is defined as

Ili, j1 = In(lap [, j])— < In(lap. [i,7]) >, (26)

where 4, [i, j] are the intensity values provided by the
image data base [9]. The average < - > is taken over
each image separately. Note that the histogram has
a highly non-Gaussian shape with almost linear tails.
The mean of the distribution is 0, and the variance is
0.79.

Fig. 6 (right) shows the log-histogram of the sin-
gle pixel intensities I[7,j] in the synthetic images.
Both tails are straight, since we in the Poisson model
chose the grey levels for the objects from a double-
exponential distribution. The sample mean is 0, and
the sample variance is 0.83.

Derivative Statistics
We now look at the marginal distribution of horizontal
derivatives defined by

In [10], Huang shows, for natural images, that a two-
parameter generalized Laplacian distribution

HOET G (28)
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Figure 6: Left: Logarithms of normalized histograms of I
(“log-contrast”) for natural images. The bin size is 0.02. [Cour-
tesy to J. Huang] Right: Logarithms of normalized histograms
of intensities I for synthetic images from the occlusion model.
The bin size is 0.05. (Note: The scales on the vertical axes are
different in the two figures).

provides a good fit to the log-histogram of deriva-
tives VI. Fig. 7 (left) displays the log-histogram of
V.1 for natural images; it also shows a least-square
fit to a Laplacian model with &« = 0.55. Fig. 7
(right) plots the log-histogram of V, I for images gen-
erated with the occlusion model (see dotted line).
A double-exponential, i.e. a Laplacian distribution
with @ = 1, gives the best least-square fit (see solid
line). Note that the shape of the derivative histogram
(large peak at zero, straight tails) follows directly from
the assumption of independent, uniformly colored ob-
jects, with a color distribution according to a double-
exponential distribution.

Derivative Statistics
Natural Images (o = 0.55) Synthetic Images (o = 1.0)

Model 2 Derivative Statistics
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Figure 7: Left: Logarithms of normalized histograms of
A, I for natural images; best fit to a Laplacian distribution for
o = 0.55. The bin size is 0.025. [Courtesy to J. Huang] Right:
Logarithms of normalized histograms of VI for images gener-
ated according to the occlusion model (dotted line); a double
exponential, i.e. Laplacian distribution with o = 1, provides a
good fit (solid line). The bin size is 0.05. (Note: The scales on
the vertical axes are different in the two figures.)

It 1s, however, interesting to note that, if we filter
the images by taking the average of M x M blocks,
the tails become more concave. Fig. 8 shows the log-



histograms of derivatives for M = 2,4, 8,16. In all
four cases, the histograms fit a Laplacian distribution
according to Eq. 28 very well (see solid lines). For
M = 2 (top left), the best fit gives o = 0.83. For
M =4 (top right), o = 0.78. For M = 8 (bottom left),
a = 0.69, and finally, for M = 16 (bottom right), we
get o = 0.56.

The above results seem to indicate that the best
fit to natural data is obtained by block averaging [the
images generated by the Poisson process] a few times.
Alternatively, we can use the above model with suit-
able subpixel circles, and then make it into a lattice
field by taking means (16 x 16 blocks seems to be the
best choice here).

Derivative Statistics After Block Averaging Images from the
Occlusion Model. Fit to a Generalized Laplacian Distribution.

M=2, 0=0.83 M=4, 0=0.78
0 ; 0

-5

-10
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M=16, 0=0.56
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Figure 8: Logarithms of normalized histograms of VI after
block averaging (see dots). The averages are taken over M X
M blocks. To each histogram, we fit a generalized Laplacian
distribution with parameters {s,a} (see Eq. 28). Top left:
M=2. Best fit gives o = 0.83. Top right: M = 4, o = 0.78.
Bottom left: M = 8, o = 0.69. Bottom right: M = 16,
a = 0.56.

Long-Range Covariances
The most important long-range statistic is probably

the correlation between two pixels in an image. We
can get an estimate of the two-pixel statistics by cal-
culating the covariance

Clx,y) =< I(x,y) I(0,0) >, (29)

where < - > denotes an average over all images, or
alternatively, by calculating the pixel difference func-
tion

D(x,y) =< |I(z,y) = 1(0,0)]* > . (30)

The latter formulation is a good choice when images
are offset by an unknown constant. The two functions
are otherwise equivalent since

D(z,y)+2C(x,y) = constant . (31)

In [10], Huang shows that the difference function
for natural images is best modeled by

Dz)=A+B-27"+C -z (32)

The power-law term dominates the short-range behav-
ior, while the linear term dominates at long distances.
In our occlusion model, the linear term above is ab-
sent. The difference function for the synthetic images
is best modeled by

D(x)=A+B-27", (33)

which in the Fourier domain corresponds to a power
spectrum of the form 1/k%=7.

Fig. 9 (left) shows a horizontal cross section of
D(z,y) for natural images [10], and Fig. 9 (right)
shows a log-log plot (base 2) of the derivative of the
positive part of the cross section. Note that a power-
law behavior according to Eq. 33, would lead to a
straight line with slope (14 7) in a log-log plot. How-
ever, as pointed out in [10], the curve in Fig. 9 (right)
is only straight for 2 < log, # < 5, 1.e. for distances
between 4 and 32 pixels. In this region the slope is
-1.19 (corresponds to n = 0.19 in Eq. 33), but the
curve turns and becomes almost horizontal for large
distances.

Natural Images

Difference Function

horizontal cross section of D(x.y)

Log-Log Plot of Derivative
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Figure 9: Left: Horizontal cross section of the difference func-
tion D(w, y) for natural images. [Courtesy to J. Huang] Right:
Log-log plot with base 2 of the derivative of the cross section
(positive part).

The solid line in Fig. 10 (left) shows the (orienta-
tionally averaged) correlation function C'(z) for the
synthetic images. For comparison, we have also plot-
ted (dashed line) the theoretically predicted two-point
correlation function for rmin = 1/2, rmax = 2048 and



Cy = 1.06 (see Eq. 19 and Fig. 2). In Fig. 10 (lef?),
we plot log,[—2 - C'(2)] = log,[D'(#)] as a function of
log, . The curve is straight for all distances . The
slope of the line1s -1.17, which corresponds to n = 0.17
in Eq. 33.

Synthetic Images
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Figure 10: Left: The solid line represents the numerically
calculated two-pixel correlation function C(z) (averaged over all
orientations) for synthetic images. The dashed line represents
the theoretically predicted two-point correlation function for the
model with rmin = 1/2, rmax = 2048 and Cy = 1.06 (see Eq. 19
and Fig. 2). Right: Log-log plot with base 2 of the derivative

(=2-C'(z)).

3.3 Scaling of Synthetic Images

In this section, we study the scaling properties of
images sampled from the occlusion model. Many of
the 1deas here come from physics: In the theory of
critical phenomena, we say that a lattice field is scale
mwvariant, or a fived point of renormalization, if 1t re-
mains invariant under a transformation which involves
coarse graining and a change of scale. Block averag-
ing is one possible way of defining renormalization in
physics, but other procedures exist.

The idea above, that one can look for probability
models which are invariant under many different sorts
of transformations, has motivated us to study two dif-
ferent types of scaling procedures for the digitized im-
ages:

o Block averaging (mean filtering). This is a linear
transformation. We scale down an image by a
factor of ¢ by calculating the mean intensity of
disjoint o x ¢ blocks. If the original image is an
array {I[i, 7] | 0 < 14,7 < N—1}, then scaling down
by a factor o gives a rescaled image 7 with
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0n=0
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where 0 < ¢,j < (N/

).

e Median filtering. This is a non-linear transforma-
tion, and has to be done recursively in 2 x 2 blocks.

We scale down an image by a factor ¢ = 2% by
taking the median of disjoint 2 x 2 blocks £ times.
If three pixels in the 2 x 2 block are the same, say
(a,a,a,b), we declare the median equal to a, re-
gardless of the value of b. Isolated pixel changes
will then have no effect on the median.

Block averaging and median filtering are both coarse
graining procedures that take away fluctuations in the
system whose scale is smaller than the block size. The
two transformations, however, affect the image in dif-
ferent ways. Block averaging smears out the small
fluctuations. It is as if one looked at the image through
an out-of-focus lens. Median filtering, on the other
hand, is better described as a remowval of single pixel
fluctuations from a background of larger features.

Scaling of Derivative Statistics

Fig. 11 shows the log-histograms of V17 for six differ-
ent scales: ¢ = 1,2,4,8,16,32. As a rule, the variance
of the pixel intensities decreases after down-scaling,
and the normalized histogram of I? becomes narrower.
Here, we have divided out the standard deviation from
the pixel intensities. For block averaging (left), the
“renormalization factor” (1/standard deviation) is in
the range 1.09-1.10. For median filtering (left), the
“renormalization factor” is in the range 1.00-1.01. To

Scaling of Derivative Statistics
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Figure 11: Logarithms of marginal distributions of VI for
scales ¢ = 1,2,4,8,16,32. Left: Scaling by block averaging.
Right: Scaling by median filtering 2 x 2 blocks recursively.

measure the departure from scale-invariance, we look
at both the change of the shape of the histograms after
rescaling and the deviation of the “renormalization”
factor from 1  For both block averaging and median
filtering, the histograms remain far from Gaussian for
all six scales. However, the images can only be said

?Note that, according to this definition, white noise images
do not scale under block averaging. The standard deviation
of the pixel intensities for white noise decreases with a factor
of ¢ when ¢ X ¢ blocks are averaged; this corresponds to a
“renormalization factor” with value 2.



to be fully scale invariant under median filtering — the
normalized histograms for different scales have almost
identical shape, and the “renormalization factor” is
close to 1.

Scaling of Long-Range Covariances

To study how the long-range statistics of the images
scale, we calculate the two-pixel correlation or covari-
ance function C?(z) for different scales 0. We average
over angles, pixel pairs (where two pixels are a dis-
tance z apart), and images. The diamond marks in
Fig. 12 represent C'?(z) as a function of the distance
z between the pixels, for o = 1,2,4,8,16,32. As men-
tioned before the covariance can only be excepted to
be scale-invariant up to a constant. Note, however,
that we have not shifted the curves here as in Sec. 2.2.

In the left graph, we scale down by block averag-
ing. The solid lines represent the two-point correla-
tion functions C(cz), defined by Eq. 21 and Eq. 20,
for rmin = 1/2, rmax = 2048, and Cy = 1.06 (cf.
Fig. 3). In the right graph, we scale down by me-
dian filtering. The solid lines represent the two-point
correlation functions C'(ox) for rmayx = 2048, a short-
distance cutoff ro = 1/2 (see Sec. 2.2 for definitions),
and Cp = 1.06 (cf. Fig. 4).

We see that the numerical results from block av-
eraging agree well with the results from a rescaling
C(z) — C(2x) of the theoretically calculated two-
point correlation function. Median filtering, on the
other hand, seems similar to a rescaling C(z) —
C(22) where the short-distance cutoff is kept fized (Let

(o)

Ppin = 0 Tmin).

Scaling of Covariance Statistics
Median Filtering

Corelation Function for s=12,4,8,16,32 (‘MEDIAN")

Block Averaging
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Figure 12: The pixel covariance C?(z) as a function of x for
o =1,2,4,8,16,32. Left: Scaling by block averaging (see dia-
mond marks). For comparison (see solid line), we have plotted
the two-point correlation functions C'(cz), defined by Eq. 21
and Eq. 20, for rmin = 1/2, rmax = 2048, and Cy = 1.06
Right: Scaling by median filtering (see diamond marks). For
comparison (see solid line), we have plotted the two-point corre-
lation functions C (o), for a fized short-distance cutoff ro = 1/2
(rmax = 2048 and Cy = 1.06).

4 Distribution of Objects in 3D

So far we have only considered 2D models where
“objects” are directly placed on a plane. These “ob-
jects”, however, have no real physical meaning; They
only make sense when we regard images as perspec-
tive projections of the real world, which is three-
dimensional, onto a planar surface. The perceived ob-
ject sizes in the images are functions of both the real
sizes of the objects in 3D and the distances to the
objects.

In Sec. 2.1, we showed that full scale invariance for
images requires that the object sizes r in 2D obey a
cubic power-law distribution. The question is: What
does the 1/r3 “law of sizes” in the image imply about
the distribution of real sizes in the 3D world?

Let us model the world by randomly placing thin,
uniformly colored discs in 3D (parallel to the image
plane) according to a Poisson process with measure

dp = g(R)dX dY dZ dR (35)

on (X,Y, 7, R)-space. The coordinates (X,Y, 7) rep-
resent the position of the discs, and R represents the
radii of the objects.

We then transform from world coordinates
(X,Y, X, R) to screen coordinates (x,y,r,t), where
(z,y) represents the positions of the discs on the
screen, r the ”apparent” sizes of the objects, and ¢
the order or the time an object occurs on the screen
(see Sec. 2.1). Perspective viewing with occlusions ac-
cording to

X Y R
x Z ) y Z ) /r Z ) (36)
leads to the measure
dp* = g(tr) de dy dr dt (37)

on “image space”. We know from Sec. 2.1 that full
scale invariance requires that

1
3

t°g(tr) 5 (38)
which means that the real objects sizes R has to be
distributed according to

g(R) (39)

R3
in the 3D world.

The statement above, that the real sizes of the ob-
jects are distributed according to a cubic power-law,
is very restrictive, and maybe not so realistic. To get
a more plausible model of the world, we may have to



relax one of the basic assumptions in the 3D model,
such as translational invariance 1%, or statistical in-
dependence of objects. Note that in the real world,
objects often appear in clusters. Single objects also
break up into smaller parts. On the ground, for ex-
ample, we may see groups of trees, and on the trees
branches and leaves. A more realistic variant than
the Poisson model above may be to generate objects
in groups on or near the surface of a parent, as in a

random branching process.

5 Summary and Conclusions

We have studied a model for scale invariance of
natural images based on the idea that images can
be broken down into statistically independent objects.
The model takes occlusions into account, and 1s also
translationally invariant. Theoretically speaking, the
model is fully scale invariant (with occlusions), if the
“apparent” sizes of the objects obey a cubic power-law
1/73, and there are no boundaries on the object sizes.
In practice, however, we need to impose a lower and
upper limit on the allowed object sizes to prevent the
power from blowing up at the UV and IR limits. We
have derived an analytical expression for how the co-
variance statistics of the model depend on the limits
on the object sizes. The calculations indicate that the
presence of characteristic length scales in the system
introduces what in the theory of critical phenomena is
called an “anomalous dimension”: The covariance has
the form C(z) = —A 4+ B -2~ " and a power spectrum
of the form 1/k?~7, where 7, the “anomalous dimen-
sion”, is a small positive constant. It is interesting
to note that natural images also have a power spec-
trum of the form 1/k%=", where 7 is very small; it is
possible that the non-zero constant arises because of
a short-distance cut-off present in the images.

We have also systematically compared the statis-
tics of simulated images from our occlusion model with
data from natural images. We found that both the sin-
gle pixel statistics and the derivative statistics agree
well with natural data if we block average our images
a few times for a suitable subpixel resolution. As men-
tioned above, our model predicts a power-law form for
the correlation function, which agrees well with the
short-range and middle-range statistics of natural im-
ages. However, our model does not produce a linear
tail in the difference function for long distances; the
latter has been observed in natural images [10].

10Chi, for example, argues that objects should be modeled
as being distributed in a subregion of the 3D space [1]. In his
model for the origin of scaling, there is a constant H > 0, such
that objects are distributed by a homogeneous Poisson law in
the region between the earth and the height H.

Furthermore, we have developed a new approach
to “renormalization fixed points” closer to true im-
ages and based on the occlusion model. Scaling of
the derivative statistics and covariance statistics of the
synthetic images show that the images are closer to a
fixed point under (recursive) median filtering rather
than block averaging. Block averaging and median
filtering are both coarse graining procedures which
take away short-wavelength fluctuations in the system.
The two transformations, however, affect the image in
different ways. Block averaging smears out the small
fluctuations. Median filtering, on the other hand, is
better described as a removal of single pixel fluctua-
tions from a background of larger features; effectively
it acts as a short-distance cutoff in the images.

Finally, the condition that the “apparent” sizes r
of the objects are distributed according to 1/73 is re-
ally equivalent to a 3D picture of the world where the
real sizes R of the objects are distributed according to
1/R3. This indicates that we may need to relax one
of the basic assumptions in the model to make it more
plausible. We believe that a more realistic variant of
the occlusion model should include dependencies be-
tween objects. A next step may be to generate objects
in groups on or near the surface of a parent, as in a
random branching process.
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