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Abstract

Bayesian statistical methods are being successfully applied in speech
recognition and language parsing, computer vision (i.e. image analysis
and object recognition) and in medical expert systems. All of these are
instances of Grenander’s general conception of “Pattern Theory”, the sta-
tistical analysis of patterned but noisy and distorted signals produced by
the world. To apply these ideas to a class of signals, we need to con-
struct probability models for the observed random variables and for the
unobserved world variables which caused the signal, and we also need al-
gorithms for inferring high probability values of the unobserved variables.
This talk will introduce a series of such models for visual signals which
incorporate successively deeper layers of unobserved variables. Model 0
involves only the observed signal and is the basic scale-invariant Gaussian
process model. Model 1 introduces local feature variables such as line pro-
cesses and it belongs to the class of Markov random field models. Model
2 introduces variables describing surfaces, subsets of the domain of the
image and leads to the use of stochastic grammar formalisms. This class
of models is the natural stage at which the three-dimensional structure
of the world producing the signal is made explicit. Finally model 3 in-
troduces templates for learned classes of objects, which must be matched
to the observed signal by pointers, random variables whose values are ad-
dresses. These are examples of what I call “mixed Markov models” which
I propose as the basic tool in object recognition.

0 Introduction

The study of visual signals, commonly referred to as images, and of the pro-
cess of extracting meaning from them has traditionally been studied by two
quite different groups. The first group consists of the psychophysicists and
neurobiologists, going back to the great German psychophysicist von Helmholtz
whose monumental work [HvH] started the whole field. This group asks how
animals and man in particular can ‘see’, how they can use the pattern of light
striking the retina to acquire and construct a mental representation of the
world in front of them. The second group consists of the engineers who sought
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computer algorithms for such tasks as the grasping of objects seen through a
video camera by a robot, the automatic navigation of vehicles without human
drivers and the automatic reading medical scans and X-rays. David Marr was
one of the most influential voices in bringing these groups together. In his
book [Ma], he described what he called the theory of the computation, a level
at which there was one problem of vision for animals and computers. It might
be solved by different algorithms and certainly by using different implementa-
tions in these different classes of agents, but one could analyze the components
of the problem and its computational complexity in a unified way.

As a mathematician, the issue remains however — what sort of a theory is it?
For example, the Al (artificial intelligence) school has proposed studying the
problem of vision, as one of many cognitive problems, using logic-like languages.
They would transcribe into formal logic or into prolog databases the facts of the
physics of light, the shapes of the objects of the world and of how these interact
to produce observed images. They propose further to develop heuristics for
efficiently searching the combinatorially explosive tree of combinations of these
facts to arrive at a high-level scene description compatible with the observed
image.

Ulf Grenander [Grel], [Gre2] however pioneered a second approach based on
statistics. From his perspective, the problem is to learn from extensive ex-
perience the statistics of images and of the objects represented in them and
to find fast algorithms for the statistical estimation of the random variables
not directly observed (such as the distance to and the identity of the objects
being viewed), given those which are observed (the raw retinal or video sig-
nal). In this estimation problem, the Bayesian approach — of combining learned
priors on the unobserved variables with an imaging model — has been the dom-
inant approach. This statistical approach to vision has been gaining adherents
though it is by no means universally accepted. Let me note briefly how similar
trends have grown in related fields:

e In speech recognition, the Bayesian statistical theory of hidden Markov
models and the asociated FM algorithm for learning the model parameters
have totally dominated the field,

e In control theory, the Bayesian statistical tool of the Kalman filter is the
central technique for dealing with noise and uncertainty,

e In Al itself, statistical theories have grown in importance in medical ex-
pert systems (see work of Pearl, Lauritzen and Spiegelhalter, e.g. [Pe])
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and in the so-called PAC learning models (‘probably approximately cor-
rect’) of Valiant, e.g. [K-V].

This article will present one way to codify the statistical approach to vision by
describing a series of classes of probability models in which successively deeper
layers of unobserved variables are incorporated. The inspiration for describing
the various stages in the vision computation in this way came from trying to
understand the analogies between vision and speech /language.

To make clearer what we mean by a series of probability models which succes-
sively approximate a class of real signals, I want to end this introduction by
giving samples from seven successively more refined models of English, devel-
oped in Shannon’s early work on information theory [Sh]. While still ‘low-level’,
i.e. there is no syntax nor semantics in these models, they make the point that
statistics alone does capture a great deal of the structure of language. First,
here is a random sequence of English letters (plus space) — the linguistic analog
of white noise signal:

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD
Second, we sample from a model in which the individual letter frequencies are
those of English:

OCRO HLI RGWR NMIELWIS EU LL NBBESEBYA TH EEI ALHENHTTPA 00 BTTV
Third, we sample from a model in which the letter pairs have their correct
frequency — i.e. you compile a table of probabilities of the 27% events x;z; in
representative samples of English speech and prose and make a string by choos-
ing each new letter using the conditional probability of its occurence following
the previously chosen letter:

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE
TUCOOWE FUSO TIZIN ANDY TOBE SEACE CTISBE

In the same way, here are strings chosen randomly with the correct letter triple
frequencies:

IN NO IST LAY WHEY CRATICT FROURE BERS GROCID PONDENOME OF DE-
MONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE

and 4-tuple frequencies:

THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE ABO-
VERY UPONDULTS WELL THE CODERST IN THESTICAL IT TO HOCK BOTHE
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Modeling English further, we incorporate the lexicon and make strings using
only valid English words with their correct frequency:

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT
NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME
Finally, here is a string with correct word pair frequencies:

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE
These models give a sense of steady convergence to the true probabilities in
English speech or prose. What are the analogs of these random strings in
vision? As we explore this, we will refer back to these and other descriptions
of speech/language for comparison with each class of visual models.

1 Model 0: The Scale-invariant Gaussian Process

We begin by fixing notation. By an image, in the simplest case, we shall mean
a rectangular array {/(¢,7)]1 < i < N,1 < j < M} of positive real numbers.
These refer to the light intensity recorded at a rectangular grid of receptors in
either a TV camera or the retina. The sample points (¢, j) are called the pizels
of the image. Of course, this may be generalized in many ways: the pixels may
not be spaced on a rectangular grid (in fact, the retina uses an approximately
hexagonal array in the fovea) nor even on a regular grid at all; the incident
light may be sampled by frequency leading to a vector of color values {f(z,])}
rather than a scalar brightness; or one may pass to a continuum limit /(z, y) of
pixels or even I(z,y, A), A being wavelength. Sticking with the simplest case,

however, the main object of study is a probability distribution:
i

on N M-dimensional space. This should not be taken too literally: p is meant
to capture the statistics of what an average agent in the world ‘sees’ as it moves
around in the world. Of course this varies from agent to agent — the visual
world of a mouse living in the forest is quite different from that of a Professor
working in a city — but one seeks a class of such probability models with many
parameters which allow an agent to learn its environment and to capture its
regularities. One can also ask for models using infra-red or radar images which
will differ even more radically.

The simplest probability distributions in high dimensional spaces are the Gaus-
sian ones and this is what model 0 is. The general form of such a model would
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be: )
) = — e 2o aigmd(G0) (kD)
p(l) =~
Here and in the rest of this paper, Z stands for whatever normalizing constant
is needed to make the various functions p into probabilities.

Now if we consider the image I to be a function on the torus Z/NZ x Z/MZ
rather than the rectangular grid, then we can ask that an image I and a
translate I'(4, j) = I(i+1ig, j+ jo) of I by some (ip, jo) should be equally likely,
i.e. that p is translation-independent. If we let f(f, n) be the discrete Fourier
transform of I(4, j), the quadratic form a appearing in a translation-invariant
Gaussian distribution is diagonalized in the new variables f(f, 1), so that

p([) = %6_ Z C€,n|j(fv77)|2

where cg}7 represents the expected power of I in the spatial frequency band
(& m).

However visual signals have a fundamental property not shared by other types
of sensory signals. They have no distinguished scale. This means that, if we
now model images as functions [ (z, y) of continuous variables so as to allow all
scales, then an image I(z,y) and a rescaled image I(oz, oy) are equally likely.
The reason for this is that when an observer moves closer or further from some
scene, then the image is rescaled: when the observer is closer, the image is
enlarged by some factor ¢, and when further away, the image is reduced by
some factor . Since the distance of the observer is not fixed by anything,
neither is the scale. This is not true of touch, because the the finger must
actually contact the sensed object, so the object’s size on the tactile array of
sensors is always the same. And in audition, constants like the frequency of the
vocal cords set a fixed scale on the time axis relative to which all other sound
durations can be calibrated. If we go further and assume rotation invariance
of the probability distribution p, this leads to model 0, a Gaussian model for
images I, unique up to one parameter 3:

poll) = %6—5ff(f2+772)|j(f777)|2d5d77‘

This expression poses several questions: a) is it well-defined and b) why is this
distribution scale-invariant? Accepting that it is well defined in some sense,
the simplest way to argue formally that it is scale-invariant is to note that it
makes |IA(€7 n)| into independent normally distributed variables with variances
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1/28(&% + n?), hence if A(rq,r3) is the annulus in the (£, 7)-plane with inner

radius r; and outer radius ro, then
. dédn
B, n)[?)ded / /
J],,.. B e
= T2
og(rl)

8

Thus the expected amount of power in a spatial frequency band depends only

on the ratio of the high and low frequencies, not on the frequencies themselves.
On the other hand, letting the high frequency cutoff go to infinity, we find
an infinite amount of power, hence the typical samples from this probability
distribution cannot be continuous, or even locally L2

The stochastic process formally defined by the above probability distribution is
well known to physicists but it is a process which is not supported on any space
of measurable functions: rather its sample paths must be taken as distributions
[R-C-L]. For instance, its samples on a torus are readily constructed as random
fourier series

2mi(zé+yn)

where a¢, are an independent normal sequence with variance 1, mean 0 and
ag¢, = G_¢ _y. Such series ‘barely’ miss being measurable functions. On the
other hand, a little reflection shows that we wouldn’t expect sample scale-
invariant images to be functions! Imagine you had the X-ray vision of superman
and could see all the warts on everyone’s face and all the mites crawling on
a leaf, etc. By the laws of reflectance, these would cause black and white
fluctuations in the image of the same size at arbitrarily small scale. Even on
a macroscopic scale, it is well known to photographers that the visual world is
cluttered with objects of every size so that good photographs must be carefully
composed to emphasize the composition on one scale. This clutter is a basic
problem for all computer vision algorithms too and will come up again in this
article.

The Fourier series in the last formula enables one to construct readily by com-
puter random samples from model 0. One of these is shown in figure 1. Note
that it is quite reminiscent of many fractal everyday objects such as clouds,
that one can ‘see’ in it various shapes by the use of imagination because it
has lots of structure. By contrast, white noise is quite boring and featureless.
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Figure 1: A sample from Model 0: an image with power ~ 1/ 2.

Nonetheless, it is certainly not a typical image of the world. In the linguis-
tic analogy, model 0 is like the model of English strings in which the letter
frequencies are correct.

Before leaving this model, however, it is helpful to use the inverse Fourier
transform and express model 0 in terms of the original image I. By the rules
for the Fourier transform of the derivative, we see the beautiful fact that:

1
(1) = 8 [P,

Note from this that the dimension of $ is 1/intensity?, (which also followed
from the expression of expected power in an annulus) and does not involve
distance (confirming the scale-invariance of the model). A discrete form of this
probability is obtained by replacing the gradient by sums over adjacent pairs
of pixels:

poll) = 182, UG)-1())

Z

2 Model 1: Local Features using Markov Random
Fields

The natural way to improve model 0 of images is to model the co-occurence of
gray levels at adjacent pixels: i.e. if p,q are adjacent pixels, then one should
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attempt to model the so-called co-occurence statistics for the pair of intensity
values (I(p), I(q). The most obvious thing that happens in images is that there
are edges. These are sharp discontinuities of image intensity primarily caused
by pixel p being part of the surface of one object and pixel ¢ being part of
another, e.g. one on the foreground, the other on the background. There are
also edges caused by surface markings, by abrupt changes in the surface normal
(folds) and by other illumination effects such as shadows and highlights. It is
clear that figure 1 lacks sharp edges.

A simple way to increase the probability of sudden intensity changes is to
replace the squared term (I(p)—1(q))? by a robust variant v (I(p)—1(q)), where
() is a function which approximately 22 for 2 small, but which approaches an
upper bound for || large. Examples would be 22/(1422), tanh?(z), (1—e™").
Using such a v, we define model 1 via:

pi(l) = %e—ﬁ S g aa HIB)=1(0))

There is a second very natural way in which model 1 arises, with a particular
1. This is by introducing an auxiliary set of random variables, the line process.
We imagine the rectangular grid of pixels as being the vertices of a graph with
edges linking each pixel to its 4 horizontally and vertically adjacent neighbors.
A line process is a function £ on the edges of this graph whose values are 0 or
1:

¢ : {prs of adj pixels p,q} — {0,1}.

The assertion {(p, ¢) = 0 means the bond between pixels p and ¢ is intact, so
that I(p) and I(q) try to be equal, while the assertion ¢(p,q) = 1 means the
bond is broken and I(p) and I(g) are totally independent of each other. This
may be expressed by the formula:

PIL0) = %e— > g ey PUE)=1(2)*(1~L(0:0))+14(p,0)]

What is quite remarkable is that model 1 with a suitable choice of 1) is just the
marginal probability distribution on I from this p| (I, () [G-Y]! More precisely:

L s L w(p)-1(q))
/ P q
E pi(l,0) = —e P,q adj. .
all possible ¢

where

() =log(e™™ 4 &)L,
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Figure 2: A sample from Model 1: a local part of an image with line processes.

It is not simple to sample from model 1, but we have used simulated annealing
— hopefully with long enough time — and show in figure 2 the kind of sample
we find. Unlike model 0, model 1 has a scale parameter, and the figure should
be considered as a close-up of some scene in which two objects are visible.

Having broken the scale-invariance of model 0, this means that images sampled
from model 1 should be regarded not as real world images but as simplifications
of real images in which clutter on smaller scales has been rejected. The observed
image should be regarded as a sample from model 1 plus fine detail. The
simplest way to do this is to make the artifical assumption that this fine detail
is white noise. This leads to the full version of model 1 in which there are
three random processes: the actually observed image I, the simplified version
without clutter which we now call the cartoon J and the line process £. The
full probability distribution is now:

pl(I,J,0) = %6_ >, Up)=T(p))? /207 =37 adj,[5(J(p)—J(q))2(1—f(p,q))+u€(p,q)]‘

This model was introduced independently by S. and D. Geman [G-G] and by
A. Blake and A. Zisserman [B-Z]. This model has been used together with
Bayes’s theorem to find segmentations of an image. One assumes [ is given
and uses the conditional distribution induced by p{ on the remaining variables
J and € in order to find probable segmentations of the image. One should not
expect that such an elementary model, which still does not incorporate very
much knowledge of the world, is going to find the correct segmentation of the
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Figure 3: Image segmentation by Model 1. Left: an image I of an eye; center:
the cartoon J; right: the line process £.

image into multiple objects, but one does expect that the correct segmentation
has relatively high probability. Figure 3 shows a typical application of this
model in this way. The figure shows a real image of an eye, an estimate for the
most probable cartoon .J and the line process ¢ from this model. (Because this
figure was generated by an algorithm approximating the most probable J, £,
the result is probably not optimal.)

A striking aspect of this approach is that, while the prior model on cartoons
{J, l} is very crude and while the imaging model I = J 4 (white noise) is also
crude, the results are rather reasonable. It seems as though the deficiencies in
the prior model and the imaging model are of different sorts and the strengths
of the each model help make up for the weaknesses of the other. Looking again
at language analogies, the same phenomenon was found by Jelinek’s group at
IBM doing machine translation via similarly crude statistical models. They
used word triple (called trigram) statistics to model English language strings;
and using a corpus of 2.2 million French/English sentence pairs supplied by
the Canadian parliament, they built a statistical English to French dictionary
(example: answer becomes 44% of the time the noun réponse, 23% of the time
the infinitive verb repondre, 7% of the time is omitted in the corresponding
French sentence, etc.). For each French sentence I, they computed the English
string £ maximizing the product p(F) - p(F|F). In spite of the obvious defi-
ciencies of both probability models and the total absence of any grammar rules,
their translations were 45%-60% correct! Again, it seems that the strengths of
each model compensate for the weaknesses of the other.

Going back to our table in the Introduction, model 1 is the most natural vision
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analog of the English string model which incorporates letter pair frequencies.
It can only deal with homogeneous regions in an image with smoothly varying
intensity and sudden jumps in intensity between such regions. But the real
world is made up of many textured surfaces in which the local image is not
homogeneous but have particular types of local statistics. Modeling these is
analogous to looking for higher order letter frequency statistics. We need to
model higher order co-occurence statistics for intensities at local clusters of
pixels. There is no space to elaborate the various theories in this direction,
especially because texture has not proved easy to describe mathematically.
Instead I want to describe the basic mathematical formalism for the class of
models of this type. The basic idea is to introduce local feature descriptors
which respond when a certain pattern or texture is present and to try to group
sets of pixels, or regions, where the same local feature descriptors are active.

The appropriate formalism for this is a Markov random field. In the generality
which we need, we assume that the random variables in our model — the ob-
served image and all the auxiliary local feature variables — form the vertices of
a graph. We write these variables as {X,},cv, where V is the set of vertices.
The edges of the graph are supposed to represent variables which have a direct
influence on each other. A Markov Random Field is a probability space with
these random variables with the following Markov property: when some subset
of them { X }wev, are fixed, and when vy, vy are two vertices which cannot be
joined by any path not containing a vertex in Vp, then X, and X,, are condi-
tionally independent. By the Hammersley-Clifford theorem, this is equivalent
to the probabilities being given by a Gibbs formula:

p({X'u}) = %6_ chiques CEC({XU}vGC‘

Here a clique is a subset of the vertices of a graph all of whose vertices are
joined by edges, and there is one term F¢ in the exponential for each such
clique.

The graph of the Markov random field used in model 1 is shown in figure 4.
Many Markov random field models have been used to model textured images:
they include further auxiliary vertices and edges linking nearby pixels over
larger local neighborhoods. Figure 5 shows the output of an algorithm from
the work of Zhu, Yuille and Lee [Z-L-Y]. Simple local statistics are used together
with a ‘region-growing’ algorithm to find a high probability segmentation of
the scene.
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Figure 4: The graph for the Markov random field for segmenting an image [/
via a line process £ and a cartoon .J.

Figure 5: Segmenting a scene on the plains of Africa by local texture statistics
modeled by a Markov random field.

3 Model 2: Surface Descriptors using Stochastic
Grammars

While local patterns and structures arising from a Markov random field can
create images with the local ‘look and feel’ of a real world image, there is much
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Figure 6: Left: the observed image; right: its representation as a set of three
layers of increasing depth.

more to be captured. The next stage is to make explicit the larger structures
which arise from the three-dimensional geometry of the world, especially ob-
jects in the world and the parts of their surface visible in the image. This is
analogous to identifying in speech or language the larger groups of letters, first
words, then grammatical phrases and clauses.

I would like to make this clear from the simplest example, which is what
Nitzberg and | have called the 2.1D sketch [N-M]. Note that model 1, with its
line process implicitly defines a decomposition of the set of pixels into regions.
Namely, consider the set of pixels to be joined only by those edges where
{(p, q) = 0, those edges which are intact after the line process breaks the rest.
Let {R;},1 < i < n be the connected components of this graph. These are
the connected regions resulting from cutting apart the image domain along the
edges £. In some cases, these may be the objects present in the scene but it may
also happen that an object appears in several places, being partly occluded by
a nearer object. Moreover, each edge has a ‘belongingness’ as Nakayama calls
it: it is the edge of one of its two sides, that of the nearer object and lies in an
accidental position on the farther one. There is a strong local cue for this three-
dimensional structure. When one edge vanishes behind another edge, the set
of edges forms a so-called T-junction, and the two objects seen on the stem of
the ‘T’ must be further than the object above the top of the ‘T’. An example
is shown in figure 6: the observed image consists in a potato in front of an



14 David Mumford

orange and a beer bottle at an intermediate distance all against a background
consisting of a cardboard box with faint letters on it. Mentally, you represent
this scene something like the diagram showing the three layers separately. Note
the T-junctions where the beer bottle and the orange disappear behind the
potato. Mathematically, we define a 2.1D sketch to be an ordered sequence
{Ri}1<i<n, of subsets of the image domain which can overlap in any ways. We
assume the R;’s are objects projected onto the image domain and that R; is
nearer than R; whenever ¢« < j. In particlar, Iz, is the background, which we
assume to be the whole domain. Thus R = R; — U;;(R; N R;) will be the
visible part of object ¢. In the figure, a 2.1D sketch with 3 regions Ry, Ry and
Rs has been computed as the most probable values of the 2.1D variables {R;}
in a precise probablity model which relies heavily on the T-junctions.

Before giving details of the model, I want to note that such layered represen-
tations also arise from the analysis of binocular stereoscopic image pairs and
from temporal image sequences. In figure 7, we show an example from the work
of Wang and Adelson [W-A]: on the right, you see three frames from a movie
with thirty images; on the left you see the decomposition of the scene into three
layers, the foreground tree, the intermediate flower bed and the background
house and trees. In fact, human infants are born able to segment visual signals
into layers on the basis of relative motion, (using, presumably, to the brainstem
structure called the superior colliculus). They develop the ability to segment
into layers using stereoscopic vision later and the ability to perceive layers in
single images last.

I claim that underlying the 2.1D sketch is an extremely simple stochastic gram-
mar. Recall that a stochastic grammar is described by giving a set of symbols,
called non-terminals and another set, the terminals, and a set of production
rules of the form A — By By --- By. For example, a simple class of sentences
may be generated by the simple rules:

s - NP VP, Prob. = 1
NP — Adj NP, Prob. = p
NP — N, Prob.=1-1p
VP — verb v Prob. = p(v)
Adj — adj. a Prob. = p(a)
N — nounn Prob. = p(n).

where S, NP, VP, Adj, N are the non-terminals, p/(1 — p) is the expected
number of adjectives in a random noun phrase, v,a,n stand for a large number
of possible terminals in a lexicon, and the probabilities p(v), p(a) and p(n) are
the frequencies of occurrence of the various verbs, adjectives and nouns.



The Statistical Description of Visual Signals 15

Figure 7: Top: two frames from a movie sequence of thirty images; bottom:
their representation as a set of three layers of increasing depth (courtesy of

Wang & Adelson).

In exactly this way, the 2.1D sketch is generated by the stochastic grammar:

Im — Bkg Frg, Prob. =1
Frg — Obj Frg, Prob. = p
Frg — Obj, Prob.=1-1p
Bkg — D Prob. =1
Obj — R Prob. = py(R)

where Im, Frg, Bkg, Obj are the non-terminals, 1/(1 — p) is the expected
number of foreground objects in a random image, D, R are the non-terminals,
where D is the whole domain of the image and R can be any subset of the image
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Figure 8: In center: 3D percept of three bars in front of cube; right: 3D
percept persists without bars; left: figure separates into 2D shapes when only
the occluding part of the bars are present (after Kanizsa).

domain and finally we define the probabilities pa(R) as:
1
p2(R) = Ze_ Jor #(r)ds

where 0R is the boundary of R, k is the curvature of this boundary, ds is
arc length on this boundary and ¢(z) is some function like @ + ba?. This
prior on regions R encourages regions to have short smooth boundaries and,
in particular, it will try to reconstruct the hidden edges of partially occluded
objects by curves which minimize this functional (a class of curves invented by
Euler and called by him elastica).

Tied together with a simple imaging model, such as:

s (I|{RZ}) _ %6_ Zl VarianceRg (I)-Area(R!)

we get model 2, the simplest grammatical model for generating global structure
in an image. Just like an ordinary linguistic grammar, the purpose is to pick
out large subsets of the signal that must be interpreted together and which
may be interrupted by other structures. Thus foreground objects occluding
part of the surface of a more distant object are like relative clauses embedded
in a larger clause.

This idea of a grammar of images was invented by the Gestalt school of psychol-
ogy in the early part of this century. They discovered many laws of grouping
which they typically ‘proved’ by testing human responses to elegantly con-
structed images. An example is shown in figure 8, which is due to Kanisza
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Figure 9: a) Generating by a grammar the part description of the dog using
non-terminals symbols; b) the subsets of the image domain given by the cor-
responding terminal variables; c¢) the final dog silhouette and its medial axis.

[Ka]. Here you see in the middle a wire frame cube occluded by a set of par-
allel diagonal bars. Note that this percept still persists on the right where the
edges of the wire frames end abruptly (a kind of T-junction with invisible top
stroke); but this percept is absent on the left where the edges of the wire frame
are joined, making each fragment into a self-contained two-dimensional shape.

More complex grammars are called for to deal with other aspects of images. In
particular, there is a set of grammatical rules for the decomposition of complex
articulated objects into ribbons and blobs with protrusions. These ideas go
back to the work of Blum [BI] and Fu [Fu]. Again, there is a set of abstract
non-terminals and an infinite number of realizations of these as terminals which
are subsets of the image domain D. The ribbons produce worm-like shapes
described by their axis and their width, the protrusions produce fin-like shapes
described by an angular sector of a circle whose radius is a function of the
angle. In figure 9, we give an example of this type of decomposition from the
work of Zhu and Yuille [Z-Y].

A general characteristic of these grammatical models is that they incorporate a
new class of variable. These are variables whose value is a subset R of the image
domain. It is hard to force these into the Markov random field framework:
not only are these global entities, but there has to be an unlimited supply
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of them — a shelf, as it were, of region variables waiting to be called upon.
While perfectly satisfactory from a mathematical point of view, this raises a
big problem when you try to imagine how the brain manipulates such entities.
The brain, looked at neuro-anatomically, is a hard-wired graph of neurons very
reminiscent of the kind of graph in a Markov random field. The model which 1
favor tries to reconcile these two using an adaptive pyramid architecture of the
sort introduced by Hong and Rosenfeld [H-R]. In their construction, a series of
successively coarser pixel grids are made into the levels of a pyramid with the
original high resolution image at the bottom. They are linked, each level to the
next lower level and the next higher level, by a many-to-many correspondence
(in the original proposal, each pixel had 4 possible ‘parents’ and 16 possible
‘children’), making the whole pyramid into a three-dimensional graph. Now
you add a vertical line process which can cut or leave intact vertical links, or
perhaps give them some weight in between: using these, pixels at higher levels
can be adaptively linked to very general subsets R of the original, lowest level,
thus creating subset variables.

4 Model 3: Object Templates using Mixed Markov
Models

The final class of models I want to discuss are those incorporating the seman-
tics of visual signals. Semantics deals with the construction of a database of
individual things the agent has encountered and of categories of these things.
In language you learn the names of objects and the meanings of words so as to
use language correctly. In vision you learn the shape and appearance of objects
and the clustering of objects into categories so as to recognize the object or in-
stances of the category anew (and, in robotic applications, use this knowledge
for navigation, grasping, etc.).

I want to start with an extremely simple example: in figure 10, from the work
of Yuille, Hallinan and Cohen [Y-H-C], you see an image of a face on which
an outline eye — consisting of two parabolas for the edges of the eyelids and a
circle for the pupil — has been drawn by computer (more or less correctly). The
theory, which goes back to early work of Fischler and Elschlager [F-E], is that
to identify objects belonging to a category of known but variable shape in a
given observed image, you must find the pixels in the image where some set of
feature points in a model of the object are located. This approach goes under
the name of flexible templates. In speech recognition, time warping plays a



The Statistical Description of Visual Signals 19

Figure 10: A flexible template of an eye, fit to a face image (from [Y-H-C]).

similar role in matching the expected temporal-frequency pattern of a specific
phoneme with the observed sound. In general, we imagine that to recognize
objects, you must learn a model for the object, called a template, which may
be a typical image of the object or it may be cartoon-like with abstract points
and edges or some combination of the two. You must also learn the typical
amount of geometric variability of this template and of how the intensity values
of the image should match the model. Then to recognize an instance of the
object, this model must be fit to the present image.

A very extensively studied example of this approach is known as model-based
matching. Here a precise geometric description of some object, like a machine
part in a factory assembly line, is available. The assumption is that this object
will be seen from an unknown point of view with unknown lighting conditions.
The matching strategy employed is to identify the edges of the object in the
image and also various special points, such as its corners. (A highly successful
trick has been to look for bitangent lines, straight lines in the image domain
tangent at two points to the edge of the object.) You must then solve for the
viewpoint from which the outlines of the model would match up reasonably
closely with the edges detected in the image, often under conditions of partial
occlusion, so that the entire outline of the model cannot be seen in the image.
People are remarkably good at this jigsaw puzzle like ability.

The difficulty of recognizing objects is highly dependent on the type of object.
An unoccluded alphanumeric character from a known font or a flat machine
part such as a gasket in good lighting conditions lie at the easiest end of the
spectrum. Other ‘objects’, like a bunch of grapes, possess seemingly unlimited
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Figure 11: Left: the input face; next: the input matched by a warping of the
template; next: the template with the warping indicated by arrows; right: the
template itself. Note how the template is stretched in the mouth area because
the mouth in the input is open.

variability. The case which has received the most recent attention because of its
many applications, is face recognition. This is of intermediate difficulty: while
faces are very stereotyped, their gray-level appearance is especially dependent
on lighting conditions and they have only a small number of sharp internal
edges. There has been extensive work in modeling the variability caused by a)
viewpoint, b) lighting, ¢) expression, d) gross individual differences like glasses,
facial hair and e) subtle individual characteristics like inter-ocular distance,
shape of nose, etc. which identify each person.

To develop these ideas, 1 will describe one recent model for face recognition,
which comes from the PhD thesis of Peter Hallinan [Hal], [Ha2]. A quite
similar model has been developed by Cootes, Lanitis and Taylor [L-T-C]. Since
the face as a whole has few edges, Hallinan’s model involves a dense set of
feature points, i.e. the template face will be matched to the observed image
via a diffeomorphism @ : Dy — D of the domain of the template Dy into
the domain of the image D. On the other hand, to model arbitrary lighting
conditions, let J(p, ¢, ) be the gray-level image resulting from illuminating the
template face with a spot light from the angle (¢, ). Sampling the face with
N pixels, J gives us a set of points f((b, f) € IRYN. We then take the principle
components of this cluster in IRY and use the first 5 of them, {J (P) h1<k<s, to
approximate arbitrarily illuminated faces as a linear combination 37_; ¢ Jx.
The final probability model is:

(1,60, 0) = ie—cl ffDO(I(CD(x,y))—Zk cr T (z,9))2 dady—Ca ffDO [|[D®toD®—02| 2 drdy

where D® is the Jacobian matrix of the diffeomorphism &, & is the vector
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Figure 12: Ten eigenfaces: the principle components of the set of images ob-
tained by all possible illuminations of the same face.

of lighting components and ¢ is a scale parameter. The prior here is quite
crude as the distortions typical of rotating the head, changing expression and
changing facial proportions should all be modeled explicitly. We give this
example, however, to show that, in principle, probability models involving
flexible templates and variable illumination can be built. In figure 11, we give
an example of the warping ® and in figure 12 we show the largest principle
components J; (also known as ‘eigenfaces’) for one individual.

What is new in this type of model? Fitting any template, whether it has
a small number of feature points like the eye in figure 10 or a dense set as
in figure 11, involves computing the pixels where template points are found
in the observed image: these pixels are not intensities or weights or Boolean
values, but are the addresses of other variables, namely the image values I(p).
Thus we have address-valued random variables or pointers as they are called
in programming language theory. A natural way to incorporate such variables
into the framework of Markov random fields is to imagine that all the edges
of the model are not hard-wired, but some may be chosen ‘at run time’. More
formally, imagine a graph G' = (V, /) whose vertices V' are divided into two
groups V' = V;UV,. We suppose a random variable X, is given for each vertex
v, that the value of each variable X,,v € V, is a real number while the value
of each variable X,,v € V,, is a vertex w € A(v) for some restricted subset
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Figure 13: Mixed Markov models for face recognition: on left, the clique for
|D®" o D® — 5%||?; on right, the clique for (I o ® — " ¢ Ji)2.

A(v) C V given as part of the definition. The effect of assigning values to the
variables { X}y, is to augment the graph ¢ by a new set of dynamic edges.
This creates a new graph G™. We call this set up a mized Markov model. There
seem to be several ways to define Gibbs distributions associated to such mixed
Markov models. One of these is the following ‘pull-back’ definition:

PAX0 X)) = e Letiaes ¢ in 6 PoUXECHXulu=T. vECNV;))
1 Z *

where X, is the value of the variable X,. This definition involves ‘pulling back’
the random variables referred to dynamically by members of a clique in GG. This
model includes the probability model p3, as we show diagramatically in figure
13. It would be quite interesting to find a generalization of the Hammersley-
Clifford theorem to mixed Markov models.
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