What'’s so Baffling About Negative
Numbers? — a Cross-Cultural
Comparison

David Mumford

| was flabbergasted when I first read Augustus De Morgan’sngstabout negative
numbers. For example, in th@enny Cyclopediaf 1843, to which he contributed
many articles, he wrote in the artiddegative and Impossible Quantities

Itis not our intention to follow the earlier algebraists thugh their different uses
of negative numbers. These creations of algebra retainei #xistence, in the
face of the obvious deficiency of rational explanation whikhracterized every
attempt at their theory.

Infact, he spent much of hislife, first showing how equatiwith these meaningless
negative numbers could be reworked so as to assert honéstirfaclving only
positive numbers and, later, working slowly towards a dafiniof abstract rings
and fields, the ideas which he felt were the only way to buildlly fsatisfactory
theory of negative numbers.

On the other hand, every school child today is taught in foartd fifth grade
about negative numbers and how to do arithmetic with themme®mw, the aversion
to these ‘irrational creations’ has evaporated. Today #reyan indispensable part
of our education and technology. Is this an example of oulization advancing
since 1843, our standing today on the shoulders of giantsramodporating their
insights? Is it reasonable, for example, that calculus ve@sgodeveloped and the
foundations of physics being laid — before negative numbersame part of our
numerical language!?

The purpose of this article is not to criticize specific matlgicians but first
to examine from a cross cultural perspective whether thigesarder of discovery,
the late incorporation of negatives into the number systeas, followed in non-
Western cultures. Then secondly, | want to look at some ofihén figures in

Ipe Morgan’s attitudes are, of course, well known to histwsiaf Mathematics. But my iiee idea
as a research mathematician had beenghigastfrom the time of Newton and the Enlightenment an
essentially modern idea of real numbers was accepted by edin@smathematicians.
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Figure 1. Augustus De Morgan

Western mathematics from the late Middle Ages to the Entigitent and examine
to what extent they engaged with negative numbers. De Maxgamot an isolated
figure but represents only the last in a long line a great nmadiieians in the West
who, from a modern perspective, shunned negatives. Thirdignt to offer some
explanation of why such an air of mystery continued, at leasbme quarters, to
shroud negative numbers until the mid™M&entury. There are several surveys of
similar materiad but, other than describing well this evolution, these arstlseem
to accept it as inevitable. On the contrary, | would like torse that the late
acceptance of negative numbers in the West was a strangéacpa two facts
which were special to the Western context which | will daseiin the last section. |
am basically a Platonistin believing thatthere is a singladdof mathematical truths
that various cultures discover as time goes on. But ratlaer wiewing the History
of Mathematics as the unrolling of one God-given linear B@bmathematical
results, it seems to me this book of mathematics can be readriy orders. In the
long process of reading, accidents particular to diffeceiftures can result in gaps,
areas of math that remain unexplored until well past the titnen they would have

2Three references are (i) Jacques Sesidite, Appearance of Negative Solutions in Medieval
Mathematics Archive for History of the Exact Sciences, vol. 32, pp. 1; (ii) Helena Pycior,
Symbols, Impossible Numbers and Geometric Entanglen@atsbridge Univ. Press, 1997; (iii) Gert
SchubringConflicts between Generalization, Rigor and IntuitiSpyinger 2005.
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been first relevant. | would suggest that the story of negativmbers is a prime
example of this effect.

This paper started from work at a seminar at Brown Univelgityvas developed
extensively at the seminar on the History of Mathematickea@hennai Mathemat-
ical Institute whose papers appear in this volume. | wanh#mk Professors P. P.
Divakaran, K. Ramasubramanian, C. S. Seshadri, R. Sridlzar@ M. D. Srinivas
for valuable conversations and tireless efforts in putthig seminar together. On
the US side, | especially want to thank Professor Kim Plofkea great deal of
help in penetrating the Indian material, Professor Jayaah$or his help with both
translations and understanding of the Indian astronomyPaoféssor Barry Mazur
for discussions of Cardano and the discovery of complex rumb will begin
with a discussion of the different perspectives from whielgative numbers and
their arithmetic can be understood. Such an analysis istaki we are to look
critically at what early authors said about them and did witgm.

1. The Basis of Negative Numbers and Their Arithmetic

It is hard, after a contemporary education, to go back in tismgour childhood
and realize why negative numbers were a difficult concepgdon. This makes it
doubly hard to read historical documents and see why veslligrent people in the
past had such trouble dealing with negative numbers. Hersli®rt preview to try
to clarify some of the foundational issues.

Quantities in nature, things we can measure, come in twet@si those which,
by their nature, are always positive and those which can lwearanegative as well
as positive, which therefore come in two forms, one cangetie other. When one
reads in mathematical works of the past that the writer dilsca negative solution,
one should bear in mind that this may simply reflect that fertyipe of variable in
that specific problem, negatives make no sense and not atnttat that author
believed all negative numbers were meanindléBslow is a table. The first five are
ingredients of Euclidean mathematics and the sixth ocouEsiclid (the unsigned
case) and Ptolemy (the signed case, labeled as north ar) sespiectively.

What arithmetic operations can you perform on these questtif they are
unsigned, then, as in Euclid, we get the usual four opersition

1. a+bOK

2. a—bbutonlyifa > b (as De Morgan insisted so strenuously)

3| believe the discovery of Calculus and, especially, simplertonic motion, the differential equa-
tions of sine and cosine, in India and the West provide a skegample.

4For example, Bhaskara Il has a problem in which you must solvénnumber of monkeys in
some situation, and obviously this cannot be negative.
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Modern units

Naturally Positive
Quantities

Signed Quantities

positive integer

# of people/monkeys/
apples

positive real proportion of 2 lengths
(Euclid, Bk V)

meters length of movable rigid
bar/stick

meters area of movable rigid flat
object

meters volume of movable rigid

object or incompressiblg
fluid

degrees (of angle)

Measure of a plane angledistance N/S of equator

dollars

fortune/debt; profit/loss;
asset/liability

meters (a) distance on line/road, rel.
to fixed pt, the ‘number line’
(b) also, height above/below
the surface of earth.

seconds time before or after the

present or relative to a fixed
event

meters per second

velocity on a line, forwards o
backwards

degrees (of
temperature)

Kelvin temperature

Fahrenheit or Celsius
temperature

grams

Mass or weight of an
object

gram-meters/set.

your weight on a scale
= force of gravity on your
body (a vector)

3. a* b OK but units of the result are different from those of the anguats,
e.g. lengthx length= area, lengthx lengthx length= volume

4. a/b OK but again units are different,
e.g. length / length= pure number, area / lengthlength

If they are signed quantities, addition and subtractiorrelaively easy — but
modern notation obscures how tricky it is to define the aaipatation in all cases!
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TABLE Il
First Second
summand summand Sum Difference
a b usuala + b a—bhifa>Db
(neg)p—a)ifb> a
(negh (negh (neg)@ + b) b—aifb>a
(neg)a—b)ifa>Db
a (negp a—bifa>b a+b
(neg)p—a)ifb > a
(negp b b—aifb>a (neg)@ + b)
(neg)a—b)yifa>"b

We write the simple expressi@t— b, and consider it obviously the same as any of
these:

a+(-b)=a—-(+b)=a+(-1)-b

buteachis, infact, a different expression with a differagtining. Given an ordinary
positive numbea, —a is naturally defined as the result of subtractirfgom 0. For
a minute, to fix ideagjon’t write —a, but use the notation (negjor 0 — a. Then
note how complicated it is to defiree+ b for all signs ofa andb. Starting witha
andb positive, Table Il gives the sums and differences aind (nega with b and
(negh,

Understanding this table for the case of addition seems tihédodirst step in
understanding and formalizing negatives. The second stepeixtend subtraction
to negatives so as to get the last column. This is containggkirule:

a— (—b) = a+ b, forall positive numbers, b.

The basic reason for this is that we want the idergtityx + x = ato hold for allx,
positive or negative or, in other words, subtraction shaivdys cancel out addition.
If we takex equal to—b, then replacinga — (—b) by a + b makes this identity
hold. The argument one finds in some historical writings mayaraphrased as
“taking away a debt of size is the same as acquiring a new asset of siza fact
obvious to any merchant. In any case, understanding of ivegaitp to this point
seems to be a natural stage that one encounters in varidogdasdocuments. In
modern terminology, while acknowledging that our modermdsalistort historical
truth, one would paraphrase this stage by saying that irpoates the idea that
the integers, positive and negative are an abelian grougrwuttiition.

But multiplication of negatives is a subtler operation, thied and final step in
the arithmetic of negatives. Modern notation again obsctive subtlety. When you
write the simple identity-a = (—1) - a, you are making a big step. Perhaps thisis a
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contemporary mathematician splitting hairs becausetidstity this seems to have
been assumed as completely natural by nearly every matlogsmaince they knew
the rules for subtracting negative numbers (with the exoegterhaps of Cardano
and Harriot, see below). One difficulty in arguing for thiseris that there are not
many simple cases of quantities in the world where the ufiteedwo multiplicands
allow us to infer the multiplication rule using our physiaahition about the world.
Here are a number of ways of arguing that the identity)- (—1) = +1 must hold.

Method |:Use the basic, intuitively obvious, identity:
distance= velocity x time

and argue that if you substitute:
(a) velocity=movement of one metéackwardper second, a negative number,
(b) time= second in thepast also negative,
(c) then one second ago, you were 1 meter aheadlistance= +1 meter.

This ‘proves’ 1) - (-1) = +1.

Method I': | know of only one other real world situation where the rulmtsitively
obvious. This variant of the previous argument concernsay@md time. We use
the simple equation obvious to any merchant describingitteat growth of a
business’s assets:

assets at time £ (rate of change of asséts (elapsed time)t+ (assets at present

Now suppose a businesdasing$10,000 a year and is going bankrupt right now.
How much money did it have ayear ago? Substitute—1,rate= —10000 present
assets= 0 and the obvious fact thassets a year age: +10000 to conclude that
(—1)- (—10000)= +10000.

Method II: (as in Euclid’s geometric algebra)
In Euclid, multiplication occurs typically when the areaafectangle is the
product of the lengths of its two sides. Consider the diagratow:

A A
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The big rectangle has araab but the shaded rectangle has aa €) - (b —d).
Since the area of the shaded rectangle equals the area af tieetangle minus the
areas of the top rectangle and the left rectapis the area of the small top-left
rectangle (which has been subtracted twice), we get theiigen

(@a—c)x(b—d=ab—-bc—ad+cd, if a,b,c,d>0,a>c,b>d

Now we use the idea that identities should always be extetmleabre general
situations so long as no contradiction arises. If we exthisjarinciple to arbitrary
a, b, c, d, (which will bring in negative lengths and areas), we getfet b = 0:

(—0)(—d) = +cd

This approach is probably the most common way to derive tHephcation rule. It
can be phrased purely algebraically if you extend the thistisie law to all numbers
and argue like this (using also @ = 0 and 1. x = x):

1=14(-1)-0=14(-1)-(1+(-1)) = 14+ (-1)- 1+ (-1)- (1) = (-1)- (1)
Method Ill: Start with the multiplication
(positive integen) x (any quantitya) = (more of this quantitya)

(e.g. 4x (quart of milk)= a gallon of milk), then byubdividingguantities as well
as replicating them, you can define multiplication

(positive rational)x (quantitya)
and by continuity (as in Eudoxus), define
(positive real)x (quantitya)

What we are doing is interpreting multiplication of any qugnby a positive
dimensionless real number ssalingit, making bigger or smaller as the case may
be. Now if the quantity involved is signed you find it very natuto interpret
reversing its sign as scaling byl, i.e. to make the further definition:

(—1) x (quantitya) = (quantity— a)

Now you have multiplication by any real number, positive egative. In other
words, the negative version of scaling is taking quantitiebeir opposites.

The core of this argument is the algebraic fact thatehdomorphisms of an
abelian group form a ringind we are constructing multiplication out of addition as
composition of endomorphistriBhis makes the third approach arguably the most
natural to a contemporary mathematician trained in the Bakirstyle.
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2. Negatives in Chinese and Indian Mathematics

We will discuss China first. The classic of Chinese mathereati theJiuzhang
SuanshuNine Chapters on the Mathematical Artike Euclid, this is a com-
pendium of the mathematical concepts and techniques wiaidibeen developed
slowly from perhaps the Zhou (or Chou) dynasty (begins I®0E) through the
Western Han dynasty (ending 9 CE). Unlike Euclid, itis adigtractical real world
problems and algorithms for their solution, without anyigation of proofs. Since
then, theNine Chaptershad a long history of ups and downs, sometimes being
required in civil service exams and sometimes being burnechearly lost. Each
time it was republished though, new commentaries were adtieding with those
of the great mathematician Liu Hui in 263 CE and continuingtigh those in the
English translation by Shen, Crossley and .uPage numbers in our quotes are
from this last edition.

Starting some time in the first millennium BCE, arithmeticGhina began to
be carried out using counting rods, which were arrangedwrs nasing a decimal
place notation. When doing calculations, different numivegee laid out by rods
in a series of rows, forming a grid: a Japanese illustratidrow they were used is
shown in the figure below.

Figure 2. A Japanese illustration of calculation with counting rods

The section of theNine Chapterdn which negative nhumbers are introduced
and used extensively is ChapterRectangular ArraysThis Chapter deals with
the solutions of systems of linear equations and expounds ishto all intents
and purposes, the method of Gaussian Elimination. In faist,imdistinguishable
from the modern form. The coefficients are written out in aaegular array of
rod numerals and one adds and subtracts multiples of onéieqdieom another
equation until the system has triangular form. Examplearaglas five equations in

5The Nine Chapters on the Mathematical Art: Companion and @entary Shen Kangshen, John
N. Crossley, and Anthony W. -C. Lun, Oxford University Pre399.
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five unknowns are worked. Naturally negative numbers apgletire time in such
an algorithm.

As describedin Liu’s commentary, red rods or upright rodeawsed for positive
numbers which he calls gainsheng and black rods or slanting rods for negative
numbers which he calls lossdg) He says fed and black counting rods are used
to cancel each othé&r Curiously, his colors are the exact opposite of our Wester
accounting convention! Here is Problem 8 from this Chaget09 in the Shen,
Crossley and Lun edition:

Now sell 2 cows and 5 sheep, to buy 13 pigs. Surplus: 1000 &a#h3 cows and 3 pigs to
buy 9 sheep. There is exactly enough cash. Sell 6 sheep ags.8hien buy 5 cows. There is
600 coins deficit. Tell: what is the price of a cow, a sheep ap@jaespectively?

This means the three equations (all of which have negatigéficients as well as
positive):

2C+55S—-13P = 1000
3C-954+3P = 0
—-5C +6S+8P = -600

The solution is found to b€ = 120Q S = 500, P = 300. TheNine Chaptergoes
on rather mysteriously (p.404):

Method: Using rectangular arrays lay down counting rodséach entry to be added.
The Sign Rule

Like signs subtract; opposite signs add; positive withattae make negative; negative
without extra, make positive.
Opposite signs subtract; same signs add; positive withatragemake positive; negative
without extra, make negative.

Liu's commentary explains: the first set of sign rules refersubtraction of array
entries, the second to addition. He goes on to clarify theningaof the cryptic
Sign Rule. In fact, the rule is precisely what we wrote outabl€ Il above for both
addition and subtraction. What is clear is that negative remtvere analyzed and
treated correctly as soon as the need arose, presumabheffirdt time anywhere
in the world.

I cannot find in the Shen et al edition of tiNene Chaptersany treatment of
multiplication of negative numbers, although Martzfaftiotes the Chinese edition
of Qian Baocong as sayintRods of the same name multiplied by each other make
positive. Rods of different names multiplied by each otretemegative In any

8Jean-Claude Martzloffy History of Chinese Mathematic&' edition, Springer, 1997, page 203.
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case, Liu's commentary, written in th&2entury CE, makes the remark (p.405):
“Interchanging the red and black rods in any column is immateBo one can
make the first entries of opposite sigithis is the correct rule for multiplication
by —1.

Chinese algebra had a renaissance in the Song and Yuan (Nldggasties. In
particular, Zhu Shijie (c.1260—c.1320) extended the idd&3aussian elimination
to the simultaneous solution pblynomialequations, inventing the equivalent of
the resultant and using ever larger and more complex arrageefficients. At
this stage, as one would expect, the full rules for negatitbraetic emerge quite
explicitly as well those for the algebra of polynomials. aya theory of negatives
is the clear prerequisite for going further in the study afedra. Zhu's algebra
reached a stage not attained in Europe until the latecédtury.

| want to turn to India next. In every culture, one of the ma#agons for the
development of arithmetic — arguably the principle drivifagce — is the need
of merchants to keep accounts. In fact, it is even hypotkddizat arithmetic and
writing itself emerged in the'8millennium BCE in Mesopotamia as a development
of a crude system of tracking transactions of agricultucalds by means of small
specially shaped and inscribed tokérBy around the year 2000 BCE, one finds
tablets from Ut with a yearly summary accounting, showing budgeted andahctu
inputs (with value converted into a common unit of barleyddeted and actual
outputs, budgeted and actual labor and differences, sitieif profits! In India, very
sophisticated principles of accounting were codified in tga’'s comprehensive
manual of statecraft, the ArtBatra written in the # century BCE. The Arth&atra
covers in amazing detail every aspect of setting up and niagad a kingdom
(including managing a special forest for elephants). InlBibcChapter 6 and also
in many later Chapters of Book Il, Kautilya details how aattsuare to be kept
He describes a complete system of book keeping: he has a leddgecomewith
dates, times, payers, categories, etc. and a ledgesxjmendituresand finally a
third ledger forbalances There are sections on auditing, insurance against theft,
debtors, borrowings, mortgages, auditing, etc. and sudtpunting issues such as
currentvs. deferred receipts, how to account for price gaaof items in inventory,
fixed vs. variable costs. Although he does not use negativiets explicitly, he is

The pioneer here has been Denise Schmandt-Besserat, whmbghtther life’s work together in
the multi-volume booBefore Writingyolume | being=rom Counting to Cuneiforptniversity of Texas
Press, 1992. In particular, she has “deciphered” the mgstetokens found throughout the Middle East
from roughly 8000 BCE to 3000 BCE, finding a simple method of actimg which merges seamlessly
with highly developed cuneiform accounts in tH& @illennium.

8See Chapter 5 in Richard Mattessidthe Beginnings of Accounting and Accounting Thought
Accounting Practice in the Middle East (8000 B.C to 2000 Ba@id Accounting Thought in India (300
BCE to the Middle Agesysarland Publishing, 2000.

95ee Chapter 6 in MattessidBp. Cit.,which is based on the bodkodern Accounting Concepts in
Kautilya’s Arthasastray Anjan Bhattacharyya, Firma KLM, Calcutta, 1988.
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clearly aware of how accounts must sometimes show a defitithet people may
carry a negative net worth.

Although the Arth&atra does not mention negative numbers explicitly, they
appear full blown in Brahmagupta'’s treatiBehma-sphuta-siddhan{®28 CE).
The development of mathematics in India in the first millemmiCE is connected
much more strongly to astronomy than to accounting. For nofdhis period,
treatises covering both mathematigaifita) and astronomy (the motion of the sun,
moon and planets and their positions at a given time and pidbe sky) and called
siddhantasvere composed. Many of these were in verse, highly compilesse
cryptic, meant to be memorized and handed down generatigebgration from
teacher to student.

TheBrahma-sphuta-siddhantacludes two Chapters on mathematics which are
a compendia of the mathematical concepts and techniquebhd been devel-
oped over previous centuries. Here we find all the correesrfdr arithmetic with
negative numbers and ingbsitive numbers are referred to as “fortunes”, negative
numbers as “debts’It appears that accounting led naturally to an arithmetic i
which negative numbers took their natural place. Here amesguotations, show-
ing first the rules we laid out in table | and then, significgrgbing on to describe
how to multiply negative numbef$

[The sum] of two positives is positive, of two negativesatieg; of a positive and a negative
[the sum] is their difference; if they are equal, it is zertneéTsum of a negative and zero is
negative, of a positive and zero positive, of two zeros, zero

[If] a smaller [positive] is to be subtracted from a larger pitive, [the result] is positive; [if]
a smaller negative from a larger negative, [the result] igagve; [if] a larger from a smaller,
their difference is reversed — negative becomes positidgasitive negative.

The product of a negative and a positive is negative, of twatiees positive, and of positives
positive; the product of zero and a negative, of zero and &ipesor of two zeros is zero.

A positive divided by a positive and negative divided by atieg is positive; a zero divided
by a zero is zero; a positive divided by a negative is negadiviegative divided by a positive
is negative.

Chapter 18, verses 30-34

The only oddity seems to be his confident assertion thiit8 0. The rest is
as clear and modern as one could wish for. It would be wonbtierfknow what
considerations led Indian mathematicians in the late ce®tBCE or the early
centuries CE to these conclusions — especially for the pligitition of nega-
tive numbers. The predominately oral transmission of kedge in the Vedic

10we quote from the translation by Kim Plofker in her boblathematics in India, 500 BCE — 1800
CE,Chapter 5, p.151.
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tradition — and perhaps the difficulty of preserving peridbawriting materials
through yearly monsoons — has not left us with any record edetdiscoveries.
They just appear full blown in Brahmagupta’s summary. Ribksich has devel-
oped atlength the idea that it was the highly developedttoadhf accounting which
led to the full understanding of negative numBéisut unfortunately no evidence
for this plausible conjecture exists.

As in China, having negative numbers opened the way to destpdies of
algebra itself. Perhaps the deepest of these was the Indidnon Pell's equation
x2 — Ny? = m, especially finding solutions fon = 1. Brahmagupta himself made
the first huge step, discovering the multiplication lawiagfrom the factorization

x2—Ny2=(x+«/Wy)(x—«/Wy).

More exactly, he showed how from solutions of the equatiomfg my, one gets
one for their produatn = m; - mp. Some centuries later, Jayadeva found a complete
algorithm for constructing solutions with = 1.

We find reflections of the Indian use of negatives in theircastmy too. As
stated, the main goal of these scholars was not to develdpemaitics for its own
sake but to apply mathematics to predict the positions oftinemoon and planets.
An epicyclic theory is used and, for the planets, both a ‘skmwd ‘fast’ correction
is added to the mean motion of the planet (in our terms, onedgalthe ellipticity
of their orbit, the other to the shift from a heliocentric tgeocentric description).
David Pingre&” has hypothesized that through the intermediary of the Bdeek
empire, some version of the pre-Ptolemaic Hipparchan yhefgslanetary motion
reached India. What is quite striking is that in making theseartions the sine
functionin all four quadrantsis understood. Hipparchus had computed tables of
chords which are fundamentally unsigned positive quantitieg Fuian tradition
shifts to sines (actually ‘Rsines’, sines multiplied a krgdius and rounded to the
nearest integer) and then it is natural to extend them frenfitst quadrant to the
full circle. Here is a quote from thBrdhma-sphuta-siddhéant&hapter 2, verse 16
describing the corrections made by adding or subtractipgagiate sine function
corrections to the mean position:

(In successive quadrants) (in the slow case) negativetipespositive, negative correction,
otherwise in the fast case. (The sum) of two positives (isjtige, of two negatives (is)
negative, of positive and negative (is their) differendegquals (positive and negative is)

zer0.13

11see Chapter 7 in Mattessiddp. Cit

12David Pingree, The History of Mathematical Astronomy in India Dictionary of Scientific
Biography Charles Gillespie editor, Scribner, 1978, pp.533—-633.

L3Translation by J. Shah (personal communication).
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It would be nice if they had drawn a graph of the correctionlig@adrants, i.e. of
the sine function, to clarify this verse, but that was cheadt theirmodus operandi
But further evidence that the sine function was seen as lexitegnded to more than
one quadrant comes from the rational approximation of the Bi the first two
quadrants given by Bhaskara f{gentury CE}*:

16-6(z = 0) O<f<nm

sin@) ~ m, =

This is an extraordinarily accurate approximation whichuldde hard to come up
with if they had not grouped the first and second quadrantiege

Another natural place for using negative humbers is for dimates, e.g. to
measure the celestial latitude (perpendicular to the ic)jr the declination (per-
pendicular to the celestial equator), of a planet or stadifion, however, sanctifies
describing latitudes and declinations as north/soutleausof positive/negative and
thisis hard to change. But this latitude must often be potfiotmulas when convert-
ing from celestial coordinates to horizon based coordiata. when calculating
the veryimportantrising times of planets. Atthis pointesfor negatives again must
be used. Here is an example from BrahmagupthandakhadyakaGh.6, verse &

Multiply the northcelestial latitude by the equinoctial shadow and divide Bydpply the
quotient taken as minutes negatively or positively to @ngitude measured from) the orient
and occident ecliptic points. When the celestial latitusisduth apply the resulting minutes
to the same points positively or negatively.

In modern terms (see Figure 3), he is computinggitude KA + (latitude K V)

x tan(p), where¢ is the observer’s latitude and distinguishing the casesavhe
longitude is measured eastwards or westwards and wherdahetp latitude is
north or south.

An explicit interpretation of negatives as coordinates grumber line occurs
later in the work of the 12 century Bhaskara Il (so-called to distinguish him from
the earlier ¥ century Bhaskara 1). He wrote an immensely popular textbmok
Algebra, the ilavati'®. The title was said by a Persian translator to be the name of
Bhaskara’s daughter and, although this is not made explittie book, it is full of
verses addressed to the “beautiful one”, “the fawn-eyed, @be Present day texts
are so drab in comparison!

The remarkable passage is in verse 166 and again it is gitbouwviany fanfare
stating that a new interpretation of negative numbers iadgiven. But, to my

14Bhaskara IMahabhaskariyaCh. 7, verses 17-19.

15The Khamlakhadyaka of Brahmaguptaith the commentary of Bhaitpala, edited and translated
by Bina Chatterjee, World Press, Calcutta, 1970, p.122-3.

18 e follow the classic translation by H. T. Colebrooke, finsbfished by in 1817 and subsequently
reprinted in numerous editions.
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M A
M/

Figure 3. Diagram for calculation of rising time. Planet dt
r K A ecliptic, P north celestial pole.

knowledge, it is the first occurrence of the “number line”,using positive and
negative numbers as coordinates on either side of an oliaskara is in the
middle of a discussion of triangles and, specifically, gitrenthree sidea, b, c of
the triangle with a distinguished sidethe base, how to find the altitude and the
position of the foot of the perpendicular dropped on the bHs®u let x be the
distance from one endpoint of the base to the foot, thenX) is the distance from
the other endpoint to the foot and Pythagoras’s theoresusli

a? — x2 = altitudé = b? — (c — x)?
which gives us:
X = (a® + c? — b?)/2c
In verse 166, he poses the problem:

In atriangle, wherein the sides measure ten and seventekthamase nine, tell me promptly,
expert mathematician, the segments, perpendicular aral are

and his formula gives him = —6, c — x = 15 (see Figure 4). Aha: what to do?
Well, if you draw this triangle, you find the foot of the perplcular lies outside
the base. So what does Bhaskara say?

(The result 6) is negative, that is to say, in the contrargdiion. Thus the two segments are
found 6 and 15. From which, both ways too, the perpendicidanes out 8.

This is stated so casually, as if it were common wisdom, tim&t can only
conclude that this way of thinking about negative distaveas well-known in his
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Figure 4. A triangle with a perpendicular falling outside the
base, Bhaskara Il

time. Nonetheless, as we will see, it doesn’t occur in Eutogfere the work of
Wallis near the end of #7century.

3. The Shunning of Negative Numbers, From Al-Khwarizmi to Gdileo

| now turn to the Arab and Western treatment of negative numb¥® keep the
story within bounds, | will pick a small selection from the nydigures who might
be discussed, those who seem to me key figures in the story@exdmplify a
particular stand.

Al-Khwarizmi (c.790—c.840)

It is repeated everywhere that the Indians invented zer@kaug notation and that
the Arabs learned it from them and later transmitted thisuooge. It's bizarre
that such a misunderstanding should be widespread but intfeecBabylonians
invented place notation (albeit using base 60) and thetihragtic was used by
many Greeks, e.g. Ptolemy. | hope | have made the case thatastesubstantial
arithmetic discovery of the Indians — and independentlyGhénese — was not
merely that of zero but the discovery of negative numberdlyShis discovery was
not absorbed in any but a superficial way by the Arabs.

Al-Khwarizmi (whose full name was Abu Ja'far Mohammad ibn $4auAl-
Khwarizmi) was familiar with Indian mathematics and astroty and apparently
with Brahmagupta'8rahma-sphuta-siddhantaritten some 200 years earlier. He
worked under the patronage of the caliph Al-Mamun about wihensays That
fondness for science, . . ., that affability and condescenaihich he(the caliph)
showsthe learned. . . has encouraged me to compose a shaérdwoalculating by
Completion and Reduction .. such as men constantly requaases of inheritance,
legacies, partition, law-suits and trade .”1/ His book on Algebra is entitledl-
jabrw’al mugabalavhich refers to the operations of completion and reductiih w

e Algebra of Mohammed ben MuJaanslated by Frederic Rosen. Facsimile reprint of 1831
edition by the Oriental Translation Fund, London, AdamantiieéCorporation 2002.
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which he simplified his equations. These were relations eéetwan unknown, its
square and constants, given in prose. Nearly half of his lsookerns incredibly
complex inheritance cases.

| find three things especially striking in this book. Firsthegative numbers
appear only once, in a section on multiplication whose gppéars to be to explain
the identity

(@a—c)-(b—d)=ab—ad—-bc+cd

and justify it by geometry, just as in our discussion of “MadHI” for multiplying
negative numbers. But then they are never mentioned aghasécond striking
thing is that quadratic equations always have positivefwierits and thus belong
to three types:

1. ax’* + bx = c,a,b,c > 0 (referred to as “roots and squares are equal to
numbers”)

2. ax’ + c = bx, a, b, c > 0 (“squares and numbers are equal to roots”)
3. ax?> = bx+¢c,a, b, c > 0 (“roots and numbers are equal to squares”)

This separation of cases continues down through the whalepgan tradition
through De Morgan. An equation, in short, must be an idebgtyveen two positive
numbers. Thirdly, he discusses exactly the same problenBtreskara Il was to
take up: finding altitudes of triangles whose sides are giBei, unlike Bhaskara,
all the examples he treats have the foot of the perpendimdafethe base so this
big clue about negatives never comes up.

Leonardo of Pisa (1170-1250)

Leonardo of Pisawas one of the first Europeans to master geahts of calculation,
including the use of Indian symbols and place notation. H#&wa remarkable book,
hisLiber Abaci(Book of Calculation), in which the rules for all the basitlametic
operations are laid out in great detail and exhaustivelisithted by numerical
examples. This occupies the first half of his book which ise8ally what we
would call a primer. But he deals exclusively with the ari#tim of positive integers
and positive fractions. His section on subtraction is E@ti©On the Subtraction of
Lesser Numbers from Greater Numhers

As in the Indian tradition, accounting was one of the priteigtimuli for the
development of arithmetic in the Middle Ages and much of tbelkbdeals with
the arithmetic of money, goods and possessions. The seatfraf the book treats
a huge number of “word problems” involving goods and money.i$ifollowing
a curious tradition going back to Diophantus (and found ifnn€se and Indian
works also) of what, to modern eyes, are quite bizarre asiffevord problems”
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involving a group of people who, after exchanging variousmswf money, have
sums satisfying some linear relationships. Here is an eletfhp

Three men had pounds of sterling, | know not how many, of vdmethalf was the first's, one
third was the second’s and one sixth’s was the thirds; aswiskied to have it in a place of
security, every one of them took from the sterling some atmend of the amount that the
first took he put in common one half, and of it that the secoal, tiee put in common a third
part, and of that which the third took, he putin common a spett, and from that which they
putin common every one received a third part, and thus eadtisportion.

In modern algebra terms,¥is the sum of sterling anxi, X,, X3 are the sums which
the three men took, so thét; /2 + x2 /3 + x3/6) is what ‘they put in commdi
then the last sentencedch had his portioh sets up three equations:

X1 1 (X]_ X2 X3) . S

2 3\2 3 6/ 2
2X2 1 X1 Xo X3 S
T+3(3t3+38)=3
5X3 1/xg X2 X3 S
St3ar3te) =5

This is only one of hundreds of such problems. He developfiodst of laying
out the coefficients in rows and manipulating the numbergtdtge answer. In the
above, the ‘answer’, is the smallest set of relatively prisevhich solve these three
homogeneous equations in 3 unknowns. Leonardo has a ratkeead and special
version of the Chinese algorithm for solving linear equagion many unknowns.

Now most of his problems are set up so all the numbers whichr@re positive.
But not all! First of all, negative numbers can arise in therse of the calculation.
He then says things lik&

[he is in the middle of an algorithm]. and from the240you subtrac288leaving minu#8,
and this | say because tf&88 cannot be subtracted from ti240; from this48 you takel/3
for the1/3 of the second position; there will be mini&. . . .

He is getting close to the red and black rods of the Chinesdhbse examples are
few and far between and are not pursued very far. In a few ctses, the answer
itself is negative. For example, after solving the problersatibed in the first quote,
he varies the proportions &owned by the three men to 1/2, 2/5 and 1/10. In this
case, the solution is, = 326,x, = 174 andks = —30. The setting of the problem,
that all thex’s are amounts of money, comes to his rescue. The third masays

18 eonardo of Pisal.iber Abaci p.415 of the English translation by L. Sigl€iponaccis’ Liber
Abaci Springer-Verlag, 2002.
Lpid, p.4109.
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does not take anything from the suBwhich they share but instead puts in an
additional 30 pounds of his own “proper” money: there wer@ ggunds in all, and
when they “wanted to have it in a place of security”, the thirdnadded30, the
first man took 326 and the second took 174. When money is coadenegative
guantities can always be given a simple meaning!

Leonardo is making the first tentative steps towards enigrdiie number system
to include negatives. With money, he is comfortable withetsand debts, giving
and taking. But his examples are few and he never makes éxplés for extending
arithmetic.

Nicole Oresme (1323-1382)

Nicole Oresme was a mathematically inspired scholastickiwg in Paris in the
mid-14" century. He made a giant stride taking geometry beyond &uicii his
great book;Tractatus de configurationibus qualitatum et motu{ireatise on the
configurations of qualities and motio$ he proposed considering all intensities
which varied in time and whose values at different times ddd compared by a
proportion. To any such quality, he proposed constructiggpph First he took a
line segment, called trmubjectwhose points represented the interval of time over
which the quality was varying. This, in itself, was a radidaparture from Euclid:
now space was being usadalogically, as a substitute for time. Then he proposes
erecting line segments perpendicular to the subject whersgths had the same
proportions as the qualities being graphed:

Therefore, every intensity which can be acquired succelysaught to be imagined by a
straight line perpendicularly erected on some point of thace or subject of the intensible
thing, e.g. a quality. For whatever ratio is found to existMeeen intensity and intensity of the
same kind, a similar ratio is found to exist between line amel land vice versa. . . . Therefore,
the measure of intensities can be fittingly imagined as theesare of lines(Oresme, 1.i)

He talks about graphing many things (although he never gattata or actually
goes beyond making simple cartoons of his graphs — see Fijuhe particular,
he discusses graphing velocity, temperature, pain anédcd@ soul). Some of
these are clearly positive quantities by nature, e.g. padrgaace. He is interested in
contrasting intensities which are constant (graph (a) uréyy intensities which vary
at a constant rate (graph (b) in the figure) and intensitiégsiwdre more complex
(graphs (c) in figure). For example the grace of a sootupied by many thoughts
and affected by many passiomsll be difformly difform — his name for type (c).
On the other hand, velocities can clearly change sign anfbrasmperature, he
even considers there to be complementary intensities atelsstand coldness. For

20Translations are from Marshall Clagett's translatiNicole Oresme and the Medieval Geometry
of Qualities and MotiondJniversity of Wisconsin, 1968.
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Figure 5. Oresme’s examples of graphs

temperature, hotness might have a graph with valies and coldness a graph
with valuesC — f(x). In other words, he adds a suitable positive constant so as t
make every intensity positive everywhere.

Because his graph is the whole area, not simply the curvesdiyh of the his line
segments, he cannot have a graph which goes from positivegtatiae, crossing
the ‘subject’! This is especially striking because at one point he makegadogy
of various types of difformly difform graphs: but no graphthe catalog is, for
example, regularly oscillating like a sine wave. He everishat the fact that the
area of the graph of velocity is the distance traveled, tineldmental theorem of
calculus, but to make his picture, the velocity cannot cleasign: no backtracking.
Oresme has gone beyond Euclid in a striking way but he cana&éerthe further
leap of allowing negative values for an intensity.

Luca Pacioli (1445-1517)

Pacioli's importance is not due to his discoveries but tofttot that he wrote an
encyclopedic workSumma de arithmetica, geometria, proportioni et propartio
alita which summarizes the contemporary knowledge of arithmgéometry and
especially accounting. The work’s greatest influence wastduts description of
double-entry book keeping which was a key step in the exparg the interna-
tional business enterprises which characterized the Resate. Here we find a
small number of linear equations involving amounts of mowépse solution is
negative. As in Leonardo, when the result was a negative ruritlis described as
a debt. In one case, the price of an egg comes out negative in@itie egg puts
you in debt so the sellers are paying you to take their eggs.
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Sesiano@p.cit), however, tracked down one isolated instance of a probtem i
Pacioli's writings which is more exciting. There is an uleiit manuscript, writ-
ten for his students in Perugia, which survives in the VafitaA standard class
of problems (going back to Babylonian times) involves divgda number into
two parts which satisfy some quadratic condition. Aftevsal some such prob-
lems with positive solutions, he comes to what he callshiiéssimo casoThis
example asks you to divide 10 into two patite difference of whose squariss
200. The reader may like to check that the answer is=1A5 + (—5). Here
is a problem not only in pure numbers one of which is negativerbquiring
squaring this negative number. Although an obscure anafteng footnote to his-
tory, it seems that the young Pacioli ventured briefly intecharted territory in
a truly original way. It is unfortunate that in hBummahe did not pursue these
ideas.

Girolamo Cardano (1501-1576)

The only reason to include Cardano is that he wrote the baskMagn&?, so
we can analyze how he thought, how he looked on negative dssvehaginary
numbers. The solution of cubic equations was due to Scipémid-erro, Pro-
fessor of Mathematics at Bologna around 1515, and the salwf the quartic
to Cardano’s student Ludovico Ferrari. Cardano himself armsrrogant man, a
compulsive gambler, who led a wild life of ups and downs. Thatcomputed
the odds of various sorts of gambling was arguably his gstatathematical
achievement.

If Al-Khwarizmi had spun out the solutions for quadratic atjans in to many
different cases, Cardano really went to town describing tmaolve 13 distinct
cases of cubic equation (and 44 types of derivative cases).s&/imany? Because
(a) the coefficients all had to be positive and (b) the equodtéad to equate a positive
guantity to another positive quantity. The many sectiop<atitled things like On
the cube and square equal to the first power and number, ghyierdNonethe-
less, he did recognize that some of his equations had negatlutions: these he
called

“fictitious (for such we call that which is a debitum or negajiv

but he does very little with such roots, ignoring them systecally. But in the later
Chapter, Onthe rule for postulating a negatiViéne does explore a bit what algebra

21cod. Vat. lat. 3129.
22Quotations are from the 2007 Dover repriite Rules of Algebra: (Ars Magnajanslated by T.
Richard Witmer.



What's so Baffling About Negative Numbers? 133

can do for you if you admit negative roots. His example of abfgm requiring
negative numbers is this:

The dowry of Francis’ wife is 100 aurei more than Francis’ oprmperty, and the square (?)
of the dowry is 400 more than the square of his property. Hireddowry and the property.

This works outto give Francis —48 aurei of property, thdtésis in debt 48 aurei, but
fortunately is getting a dowry of 52 aurei. Here he correitifntifies the negative
solution with a debt. This is an excellent illustration altigh squaring a sum of
money is a pretty weird thing to do.

There would little else to say except for the curve ball thas thrown to Cardano:
for all cubic equations which have only one real root, defré&srformula worked
like a charm. But if there were three real roots (the othesibi#ty, known as the
casus irreducibili}, it gave an apparently meaningless result. His formulaHer
roots of the equatior® + ax + b = Oiis:

X = \7/(b/2 + \/m)+\7/(b/2 - \/m) whereD = —4a°—27b?

D, the discriminant, is equal to the square of the differerfcalairs of distinct
roots, hence it is positive if all the roots are real. So wednedfind the a square
root of a negative number even though in the end we only wantethl numbek.
Cardano struggled unsuccessfully with what this might ipbgsean.

His one attempt to deal with these complex expressions isarsame Chap-
ter, “On the rule for postulating a negatiVenentioned above. Here he considers
problems which have complex roots, such as the following:

Divide 10 into two parts the product of which is.40

The usual quadratic formula gives the two parts as3—15 and 5- +/—15. This
is also the answer his math gives him and which he puts inngriti his book but
he doesn't attribute much meaning to it. He makes his famooswent:

So progresses arithmetic subtlety, the end of which, asdsisas refined as it is useless

At the end of this Chapter, he gives a third type of examplere/tee reasons

incorrectly with products of a real and an imaginary. In &dadition, he added

an appendiDe aliza regula liberin which he flirted with the idea that maybe
(=1 = +1 was wrong. Why not try{1)> = —1? Between ‘fictitious’ neg-

ative numbers and useless imaginaries, you get the sens€ahdano was at

sea.
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Galileo (1564-1642)

Perhaps mathematicians were stuck thinking that negatireers were fictitious
but surely physicists who were actually measuring thinghénreal world, had a
clearer view? Arguably, Galileo’s great contribution tg/pits was his recognition
that momentum was a key property of objects, that it was emtsthen no forces
were acting and that the force of gravity acting on projestind falling bodies
changed their momenta at a constant rate, not their positisian old man, when
the Pope commuted his sentence for heresy to house arregtoteedown these
theories in hiDialog concerning Two New Sciené&sHe starts off with his foil
Simplicio getting put down again and again by Galileo’s ninpigtce Salviato. But
by the Fourth Day, Galileo lapsed into a more standard Estlitk exposition
and puts out the centerpiece of his theory: the demonstrakiat a projectile
follows a parabolic arc under the force of gravity. Here wamething he had
actually experimented with and he was on solid ground, gtexzily as well as
experimentally. Figure 6 is an excerpt from his notebookskimg on projectiles.

The central assertion in these dialogs is that gravity esdbe projectile with
a constant downward acceleration. Thus its vertical valaill be positive going
up, zero at the peak and negative coming back down. Itis arfio@ction changing
from positive to negative. The math couldn’t be simpléfyou are willing to use
negative numbers

What does Galileo do? His main result is:

Theorem 1. A projectile which is carried by a uniform horizontal moticom-
pounded with a naturally accelerated vertical motion déses a path which is a
semi-parabola.

Note that he uses a semi-parabola: the half of the parabathich height is
a monotone function of time. Considerably later, after eglaiiscussion of the
time and distance of the semi-parabolic arc carrying thgeptite to the ground,
he reverses time without any discussion and concludeshbaiding phase of a
projectile is also a semi-parabola.

The discussion continues on optimal angles at which to firssgBut the as-
tonishing point is that he never talks about the whole pdiabec, with ascending
and descending halves and how there is constant downwagteeation through-
out the pathAll the diagrams in the book resemble the figure from his notes: a
semi-parabola with some auxiliary chords and tangentsndlaes the geometry
of the semi-parabola and the physics of a falling body and #sserts without any
discussion that one can reverse the direction of motion faofall to a climb —
nothing else. That the velocity changes at the apex fromntipes$o negative is not
stated anywhere.

23Quota'[ions are from the 1956 Dover editidialogues Concerning Two New Sciences, translated
by by Alfonso De Salvia Henry Crew.
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14

Figure 6. Galileo’s notes on projectiles

Fermat (1601-1665)

Fermat and Descartes, at essentially the same time, hadeaheof introducing
coordinates into the plane and connecting geometric Idbipalynomial equations
intwo variables. Plane curves are not confined to the pegjtiadrant, so one might
expect that their logic would have pushed them to allow thairables to take on
both positive and negative values. But no! Their coordisiatere only in a positive
guadrant and the other parts of a curve were treated selyafaiteall.

Below are two figures from Fermat’'s paper on the subjadtlLocos Planos
et Solidos IsagogéIntroduction to Plane and Solid Ldcilncidentally,planeloci
meant lines and circlesplidloci meant the other conic sections, terminology which
dates from Greek times.
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Figure 7. Two diagrams from Fermatlsagoge

Inthese figured is the origin NM is thex-axis (although Fermat used the letter
A, notx because his variables were vowel)D or N P is they-axis (the lettelE
for Fermat)x = NZ, y = Z1 sol is the point with coordinatex( y). On the left,
he is describing the locus of the equation:

d*+x-y=r-x+s-y (which he writesDpl.+ Ain E aeq.Rin A+ Sin E).

Heres = NO,r = ND andd* is a constant area, so we have a rectangular
hyperbola, centered &, with asymptote¥ O andV P. The curious pointis that he
draws only this small part of the hyperbola, cutting it offthex-axis. He also cuts

it off at the plotted point . On the right, he is describing a parabola with equation:

x?=d-y  (which he writesAq aequatuD in E)

Again, he cuts the locus off at his axes (and)at

Descartes’ treatment is similar, except that he does sdeitekt that there are
multiple orderings possible for the relevant points on tkessaand that you must set
up different equations depending on the directions andrglef both the variable
point and the constants in the construction. The goal is tkerbath sides of your
equation sums of positive quantities, just as in Al-Khwaniand Cardano’s work
on quadratic and cubic equations. Note that this is how Fésmarsion of the
equation for the hyperbola reads.

4. Clarifying the Muddle: Wallis and Newton

So when did European mathematicians begin to make theirepeilb negative
numbers? The first treatment which seems to me quite modenatisf John Wallis
(1616-1703), Professor of Mathematics at Oxford. He phblishisTreatise on
Algebrg#, written in English, in 1685. This was just two years beforetbn
published by his earth-shakifincipia Mathematicaand well after Newton had
done his major work in mathematics. In his mathematical syothere he used

24pvailable online at http://eebo.chadwyck.ctinnough subscribing universities.
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algebra and coordinates, Newton was equally modern inéeégrtrent of negative
numbers, putting them on equal footing with positive nursb&o we should
attribute the first clear European view of negative numbe/allis and Newton
equally.

In Chapter 16Addition, Subduction, Multiplication and Extraction of &s in
Specious ArithmetjdVallis defines negative numbers as nicely, simply and lglear
as you could wish (hereSpeciousis Viete’s term for arithmetic with variables
given by letters):

To these Notes, Symbols or Species are prefixed (as occasjaites) not only numeral
figures, but the sign$ and — (or plus and minus), the former of which is a Note of Rosit
Affirmation or Addition; the other of Defect, Negation or 8ubtion: According as such
Magnitude is supposed to be, or to be wanting. And where rfo Sigm is, it is presumed to
be Affirmative and the sig# is understood.

And accordingly these Signs are still to be interpreted as ioontrary signification. If
+ signify Upward, Forward, Gain, Increase, Above, Beforedifidn, etc. then — is to be
interpreted of Downward, Backward, Loss, Decrease, Beédafajnd, Subduction, etc. And if
+ be understood of these, then —is to be interpreted of theagnt

In this quote, the capitalization is his. With this undenstiag of negatives, how
does he justify the rule for multiplying negatives? Here isthe says:

For the true notion of Multiplication is this, to put the Miglicand, or thing Multiplied
(whatever it be) so often as are the Units in the Multiplier. .and this, whatever the
thing Multiplied, Positive or Negative: for there may we#t b Double Deficit as a Double
Magnitude; and-2A is as much the Double of —A a2A is the Double of A. . . .

But in case the Multiplier be a Deficit or Negative quantityppose—1; then instead of

Putting the Multiplicand so many times, it will signify so myatimes to Take away the
Multiplicand. . .. so that+ by — makes —; But to Multiply —A by2 is twice to take away a
Defect or Negative. Now to take away a Defect is the same agpfsit; and twice to take

away the Defect of A is the same as twice to add A or to put 2ASo that — by — (as well as
+ by +) makest.

As far as | know, this is the first place in Western literaturevhich the rule of signs
is not merely stated but explained so clearly. After thisewlhe gets to writing
out the formulae for roots of equations, he no longer hasparsee all these cases
which we saw in Al-Khwarizmi and Cardano. For the quadragianites:

Given the equatiorx? + 2bx +c?
therootsarx +b = +/+c2+b?

(I have only changed his variable fraarto x and noted squares by using egjfor
his cc.) Note that he follows Euclid is making all terms homogenes® that, for
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example x, b, c can all be lengths and the equation relates an area to arFarea.
this reason, he needs the symkah front of thec?.

Finally, Wallis gives what | believe is the first explicit usihe full number line,
positives to the right, negatives to the left, in Westemréture:

Yet is it not that Supposition (of Negative Quantities)aitinuseful or Absurd when rightly
understood. And though, as to the bare Algebraick Notaftamport a Quantity less than
nothing: Yet, when it comes to a Physical Application, itates as Real a Quantity as if the
Sign weret; but to be interpreted in a contrary sense.

As for instance: Supposing a man to have advanced or movedifd(from A to B) 5 yards;
and then to retreat (from B to C) 2 yards; If it be asked, how Imliad he Advanced (upon
the whole march) when at C? | find . .. he has Advanced 3 Yardsf, Baving Advanced 5
Yards to B, he thence retreat 8 Yards to D; and it then be adked; much is he Advanced
when at D, or how much Forwarder than when he was at A: | say +@sYa. . Thatis to say,
he is advanced 3 Yards less than nothing. . .. (Which) is bat wh should say (in ordinary
form of Speech), he is Retreated 3 Yards; or he wants 3 Yatlsmg so Forward as he was
atA.

[ A L™ H
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Figure 8. Wallis’s illustration of the “number line”

Newton, as one would expect, had a full command of negativebeus and all
their uses. He wrote lecture notes on arithmetic, algetdgaometry at some point,
presumably early in his career. They were first publisheth@uit his approval) in
1707 and later translated into English with the titleiversal ArithmetickHere he
introduces negative numbers at the very beginning withaheviing sentences

Quantities are eitheAffirmative, or greater than nothing; oNegative or less than nothing.

Thus in human affairs, possessions or stock may be callathaffve goods, and debts
negative ones. And so in local motion, progression may bledalffirmative motion, and

regression negative motion; because the first augmentsttendther diminishes the length
of the way made. And after he same manner in geometry, if @tanen in a certain way be

reckoned for affirmative, then a line drawn the contrary waayrhe taken for negative.

Later on, he discusses multiplication and is very clear po@a& numbers arise as

ratios of quantities with the same dimension and one caeritlltiply a quantity
with a dimension by a pure number, getting another such dguamtmultiply two

25page 3 of the second edition published in 1728.
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pure numbers. He states the rule for the sign of the produgtigias “ . . making the
productAffirmative if both factors are Affirmative or both Negative; aNégativeif
otherwis€’ Unfortunately, he says nothing about why one should beliethis rule.

Whereas Fermat had given a systematic study of quadratidieqsian two
variables showing that they all defined conic sections arst8res had introduced
several cubic equations giving new curves (notably the t&san parabola” and
his “Folium”), Newton went on to look at all possible cubigsan article entitled
“Curves” in Lexicon Technicurby John Harris published in London in 1710. He
classified them into 72 types and sketched théfithout hesitation, he used all four
guadrants of the planand plotted all rootsx, y), positive and negative. Here is an
example:

Figure 9. One of the 72 types of cubic curves plotted by Newton

After Wallis and Newton’s work, a modern arithmetic with agige numbers
was widely accepted in Continental Europe, where there waglosion of math-
ematical research during the Enlightenment. In Englandously, the resistance
to negative numbers continued for some 150 years, culmigati De Morgan. A
long debate ensued between those who accepted them andhthiodiein’t, a story
which is beautifully described in Pycior's book that we haited. In the end, De
Morgan and Hamilton founded the general theory of fields aghtive reals took
their place in the greater world of complex numbers and gnoetes.

5. Two Factors in the World View of 15"-17" Century Europe

| hope | have proven my point that Europe in thé"l#hd 17" centuries resisted
expanding their numbers to include negatives in a way whadlls éor some expla-
nation. China and India both seem to have moved naturalhisdtgger domain of
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numbers when the occasion presented itself. | want to makeatbe that the Euro-
pean reticence was due to two factors. The first was the owdmithg importance
of Euclid in defining what is and what is not mathematics aredalet that negative
numbers had no place in Euclid’s view of mathematics. Therseds that, at the
time negative numbers should have been accepted, imaginariers cropped up
too and the idea arose that both negative and imaginary mgnhiael the same
twilight existence. It was because of negatives that squets had a problem, so
maybe it was best to consider them both as second classsitifehe world of
numbers.

Euclid'sElementsvere written in the newly founded school/library at Alexaad
around 300 BCE and integrated the mathematical ideas oEtéies, Eudoxus and
many others in a systematic treatise. It is written in a mitimol theorem/proof
style not seen again in the History of Mathematics until tbisective ‘Bourbaki’
composed their treatise in the®@entury. It was translated into Arabic in th& 8
century CE and from Arabic into Latin in ¥Zentury. As a result, it came to define
what mathematics is for every generation of Arabs and Eanapearguably until
Newton and the Enlightenment when concepts with no rootsaEtements began
to take center stage.

But what is Euclidean mathematics? There are roughly thages o theEle-
mentsBooks I-VI on plane figures, Books VII-X on number theory anationals
and Books XI-XIII on three dimensional geometry. What nursheecur in the
Element8 Here’s a list:

1. “magnitude’ the length of a line, the area of a plane figure and the volume
of a solid figure

2. positive integers implicitly as inThe greater is a multiplef the less when
it is measured by the les&definition 2, Book V) and explicitly as in A
numbeiis a multitude composed of urdi(glefinition 2, Book VII). Note that
the number is still a length but, because he always has & ‘anitind when
studying numbers, it becomes in effect dimensionless.

3. ratios as in A ratio is a sort of relation in respect of size between two
magnitudes of the same kih@lefinition 3, Book V).

Note that none of these concepts give numbers which can la¢iveegr even zero.
What sort of arithmetic does Euclid have for these numbers?

1. Magnitudes are clearly added and subtracted (so longasshlt remains
positive), lengths are multiplied to give areas and volyrats But “units”
are only introduced in Book VIl and there are no actual catohs and
certainly no approximations (e.g. fa).

2. Positive integers are also added and subtracted ancplination is defined
in “A number is said to multigla number when that which is multiplied is
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added to itself as many times as there are units in the othettlams some
number is produced

3. Adding and multiplying ratiosis the main goalin the ertirdy abstract Book
V, which is said to be the work of Eudoxus. Book V begins witfiiiag
when two ratios are equal. For any ratio given by two lieand B, he
considers which multiples satisfyA > m B and which satisin A < mB.
Of course, this is the ‘cut’ Dedekind re-introduced in thé"X@ntury to
constructreal numbers from rationals. Here Eudoxus doesn’t needfioede
real numbers — they are ratios given by geometry. What he rieeftsis to
define equality of ratios and he does this by requiring theit tissociated
cuts are the same. Addition and multiplication of ratiostasth implicit in
that (a) if a line segmenA is divided into two part8 andC thenA : D
is going to the sum oB : D andC : D and (b)A : C is to going to be
the product ofA : B andB : C. What is not at all clear is that addition
and multiplication arevell-definedoperations on the equivalence classes
called ratios. This is exactly what is asserted in Propmsi?i4, Book V (for
addition) and in Proposition 22, Book V (for multiplicatipafter a long
and subtle sequence of intermediate steps. One standsaatazadoxus’
mathematical skills.

How about algebra, identities and formulas with the arittiengperations? Euclid
studies at length in Book Il what people call ‘geometric alge, a series of propo-
sitions which amount to algebraic identities such as

(@a+x)%+ (a—x)? =2a% 4+ 2x°

which is essentially the content of Proposition 9, Book IbviNwhat about the
solutions of quadratic equations? This seems to be eslhentiwt the lengthy and
confusing Book X is all about. As Heath points out in his idotion to Book X,
Euclid’s classification obinomialsandapotomegan be read as a systematic study
of all the positiveroots of all possible quadratic equations. This sets trgeshar
the separation of cases in treating roots of polynomial gojsin all the works we
have reviewed.

Allinall, if you are going to start with Euclid, you are notigg to be predisposed
to introduce negative numbers in to your calculations. Hegume to extraordinary
lengths to reduce arithmetic and algebra to geometry anmodlgbly inoculate it
against negatives. It is worth looking briefly at what elses\waown at 300 BCE
which Euclid didnot put in his book. There is apparently an unbroken tradition
starting in Babylon in 1800 BCE and continuing through Rtgleof calculating
with the sexagesimal equivalent of decimals and approximat.g../2 andz to
many sexagesimal places. Moreover, there was also a tnaditso going this far
back of solving quadratic equations by algorithms — descrih words but exactly
equivalent to the quadratic formula. Euclid, in other wodistanced himself from
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a rich numerical tradition and consciously, it would seenrjffied his version of
mathematics.

The Europeans, then, had the benefit of this shining exanfiplere math and
of the wonderful deductive logic on which they built. But iaeshard to go beyond
it in any radical way, to model other phenomena in the realldvatich cried
out for negatives. Euclid was both the strength and the wesskof the European
mathematical world of the 16and 17" centuries.

But I think there is a second factor behind the slow accegtaficegatives which
ought to be considered. As soon as one acceptedhe algebra of the day thrust
upon you formulae requiring its square root and this way tingxplicable. The
fate of —1 andi were inseparable. Cardano’s book makes this very clear.ae h
already quoted from Chapter 37, near the end of his book]eth®n the Rule for
Postulating a Negativerhe Chapter starts with the sentence:

This rule is threefold, for one either assumes a negativegeks a negative square root, or
seeks what is not.

He is essentially equating three follies, all problematichat he later entertained
the idea that perhaps-()? ought to be equal te-1 shows how he viewed the
problems as intertwined. Harriot (1560-1621) also playéH toth possibilities,
as in the poem:

Yet lesse of lesse makes lesse or more,
Use which is best keep both in store

(Here lesse of lesseneans multiplying—1 by —1 and he asks in line 1 whether
this should equal-1 or+1).

Even if you didn’t accept-1, thecasus irreducibilisnentioned above, the case
of cubic equations with three real roots, was a bone in theatrof algebraists. As
long one of these roots was positive, you really ought to bdeemula for this root.
But the formula of del Ferro for solving cubics requires iisttase that you take the
square root of a negative number in an intermediate stepo@se, the imaginary
parts of the resulting complex expressions will cancelatthd but not before. The
full story of this problem is quite ironic. Wte in 1593° discovered that trisecting
an angle was equivalent to solving the special cubic equathich belongs to the
casus irreducibilis

x3—3x=hb

26 hisSupplementum Geometrigefull treatment is inTheoremata ad sectiones angulai@pera
pp 287-304]
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and he showed how to reduce the geneeaus irreducibiligo this special case.
Thus he reduced a famous unsolved algebraic problem to afagemmetric one,
unsolvedinthe sense that no ruler and compass construga®mknown (nor exists).
At the same time, Bombelli proposed that Cardano’s formalddmake sense if
you solved

(x+v=y)’=a++v-b

Sotrisecting an angle was related to taking complex culis rdaut no one put these
togetherforalongtime by finding the geometric meaning afptex numbers. Later
we have Wallis, knowing the geometric meaning of negatigetha left half line,
searching for a two dimensional geometric interpretatibimaginary numbers.
There was a big clue on the table if anyone had linket&Js trisection with taking
cube roots of complex numbers. | believe it was Euler who lfinabrked out
complex exponentials and made the link between these twdly@atough, even
then Euler did not make explicit the geometric interpretratf complex numbers,
leaving this to Wessel, Gauss and Argand.

Finally, thereis alsothe issue of a psychological explandbr avoiding negative
numbers. As Tversky and Kanneman have made popular, peepless averseg
a loss of & causes more pain than a gain aféhd they do not act rationally using
mathematically correct expectations. The fear of loss ésaftthemes in lonesco’s
bizarre playThe Lessonwhere a young woman comes for a tutoring lesson: she
can add with proficiency but cannot subtract. The mathematoesn’t come off
very rational either: he winds up killing her.

Mathematicians are attracted to Platonism, of believirg their discoveries
are all insights into the eternal true world of mathematfaals. This example,
the discovery of negative arithmetic and its incorporatitn our numerical and
algebraic toolkit, shows us that we must not be too literak,hegative numbers
were eventually accepted in the West as well as in China adid bnd all three
cultures made the same math out of them. But there can be ffegenices between
cultures in the way mathematics unrolls. Euclid led the Westn a certain path,
dominated for many centuries by geometric figures and coctstns. Other cultures
were more practical and looked to solving concrete problesitis approximate
numbers. | think the discovery of calculus is another insteof this split: in India,
studying the numerical table of sines led mathematiciartheddea of first and
second differences and the fundamental theorem of calcBlusthat is another
story.



