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Henri’s Crystal Ball
Philip J. Davis and David Mumford

O
n April 10, 1908, at the general session 
of the Fourth International Congress 
of Mathematicians held in Rome, Gas-
ton Darboux presented a talk by Henri 
Poincaré (1854–1912) entitled The 

Future of Mathematics (Poincaré was unfortunately 
unable to deliver the talk himself). The original 
can be found on the web at: http://gallica.
bnf.fr/ark:/12148/bpt6k17083c/f934n10.
capture.

It is now a full century since this date, and it 
is of some interest (and amusement) to see how 
its contents shape up in view of the historically 
turbulent years and the tremendously productive 
mathematical ones that followed. Poincaré’s talk 
has long been available in an English translation. 
This translation can now be downloaded either 
in pdf or html form: http://www-history.mcs.
st-andrews.ac.uk/Extras/Poincare_Future.
html or http://portail.mathdoc.fr/BIBLIOS/
PDF/Poincare.pdf. The remarks in this paper are 
based on the latter translation.

The talk is divided into two parts; the first 
presents generalities. In the second part, numer-
ous specific problems are mentioned in ten dif-
ferent areas, in which the current status of the 
problems is described and suggestions are made 
that research would be welcome along certain 
follow-up lines. The language of the first part is 
vivid and clear. This is not the case with the second 
part, but what impresses there is the wide range 
of mathematical material that Poincaré had at his 
command.

Poincaré’s talk should be compared and con-
trasted with the earlier talk by David Hilbert 
(1862–1943) at the Second International Congress 
of Mathematics held in Paris in 1900. Hilbert 
specified twenty-three problems that he said were 
important and open for solution. History has given 
the accolade and notoriety to Hilbert’s problems, 
whereas Poincaré, who did not list specific prob-
lems, has attracted not nearly as much publicity 
and éclat within the mathematical world.

Poincaré’s Generalities
First: a brief summary of the first part of Poincaré’s 
paper. He proposes that some people considered 
mathematics in 1908 to be rich in ideas, having 
developed in “every sense”. But then he says, if this 
was absolutely true, “Our riches would become an 
encumbrance” and produce an incomprehensible 
increase in knowledge. One answer to the plethora 
of material is professional specialization. But this 
may be a “vexatious obstacle to the progress of 
our science”. Instead, he affirms that we must fight 
specialization by seeking unifying ideas:

If a new result has value it is when, by 
binding together long known elements, 
until now scattered and appearing un-
related to each other, it suddenly brings 
order where there reigned apparent 
disorder.

Poincaré is fond of the Viennese physicist/phi-
losopher Ernst Mach (1838–1916). “The role of 
science,” Poincaré quotes Mach as saying, is “the 
production of economy of thought, just as a ma-
chine produces economy of labor.” Poincaré carries 
this over to mathematics, citing both formulas and 
unifying theories.

He further asserts that the aesthetic element 
is often bound up with an achieved economy of 
thought as well as labor. The aesthetic element in 
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methods and results is thus of great importance. 
It is not pure “dilettantism” because it brings “a 
comprehension at the same time of the whole and 
the parts”. He asserts that long calculations alone 
cannot reveal the general structure of the originat-
ing problem:

When a somewhat long calculation has 
led us to a simple and striking result 
we are not fully satisfied until we have 
shown that we could have foreseen…its 
most characteristic details. … how vain 
would be any attempt to replace by any 
mechanical process the free initiative of 
the mathematician.

Poincaré appreciates the rigor that the preced-
ing fifty years had brought to mathematics but is 
wary of making a fetish out of it:

In mathematics rigor is not everything, 
but without it there would be noth-
ing…But is it necessary to repeat every 
time this discussion?…I fear that in 
this lengthening of our demonstra-
tions they will lose that appearance of 
harmony.

The linguistic element—i.e., the creation of 
new terms—is also of great importance. An older 
example is the word “convergence”, but he gives 
as newer examples “group”, “invariant”, “isomor-
phic”, and “transformation”.

One of those marks by which we recog-
nize the pregnancy of a result is in that 
it permits a happy innovation in our 
language. The mere fact is oftentimes 
without interest; it has been noted 
many times, but it is of no service to sci-
ence. It becomes of value only on that 
day when some happily advised thinker 
perceives a relationship which he indi-
cates and symbolizes by a word.

Poincaré acknowledges “the study of postulates, 
of unusual geometries, of functions having unusual 
values” as showing us “the workings of the human 
mind… when freed from the tyranny of the exter-
nal world.” But he is not impressed: “It is to the 
opposite side—the side of nature—against which 
we must direct the main corps of our army.”

He imagines a physicist or engineer coming to 
a mathematician with a problem. Sometimes but 
not often the solution can be expressed explicitly 
in terms of known functions. But there is likely to 
be a power series solution: still, does it converge 
fast enough to be useful? His engineer has a time 
constraint and cares little for what “the engineer 
of the twenty-second century” can do (is he imagin-
ing a future of ultra-fast computers?). But for the 
mathematician, the conclusion is that “there are 
no longer some problems which are solved and 

others which are not” because one has qualitative 
approaches as well as quantitative, computation-
ally useful as well as computationally useless 
power series in addition to traditional solutions. 
Poincaré promotes the qualitative as opposed to 
the quantitative when the latter is not immediately 
or easily forthcoming.

Poincaré’s overall conclusion is that the best that 
one can do in predicting the future of mathematics 
is to start with the present and give heed to these 
rubrics: take the various general lines along which 
progress has been accomplished, extrapolate these 
by generalization, abstraction, analogies, etc. But 
we should expect the greatest advances when two 
branches of mathematics find a “similarity of their 
forms despite the dissimilarity of material”, where 
“each takes profit from the other.”

A Few Comments
The comments that follow draw, of course, on 
our knowledge of post-Poincaré developments in 
mathematics.
Predicting the future
Is the possession of a crystal ball a specific skill 
possessed by some and not others, and do the 
people who are considered the most brilliant and 
prominent in a field have a better crystal ball? Per-
haps their prominence and their lines of thought 
in part shape the future. Can we do no better than, 
as Poincaré suggests, to extrapolate from the pres-
ent by calling for intensifications, generalizations, 
analogies, abstractions, etc., of what is already 
around? What about the genuinely new? Historians 
always find seeds of such developments in the 
past, but these are post-hoc judgments.

Henri Poincaré
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Freeman Dyson analyzed how well one can pre-
dict the future and came to the conclusion that, in 
science, unexpected technological breakthroughs 
were often the events that led to the discovery of 
wholly new and unexpected phenomena and thus 
to new theories. In mathematics it is harder to 
separate technology and theory, but we shall find 
much of Dyson’s caution reflected in mathematical 
developments that Poincaré did not predict when 
we take up specific fields below.

Increase in the corpus of mathematics and 
specialization
Poincaré’s remarks on the increase of the math-
ematical corpus, of the subsequent specialization 
and the limitations it causes, are certainly valid. 
Specialization and specialized vocabulary have 
exploded and create huge barriers to sharing ideas 
both within mathematics and to neighboring fields. 
When Alexander Ostrowski (1893–1986) came up 
for his doctoral examination in 1920 (under the 
supervision of Hilbert and Landau) he once con-
fided to one of us—perhaps in jest—that he was 
the last student in mathematics who would ever be 
expected to answer questions in any part whatever 
of mathematics. Poincaré himself has been called 
“the last of the universalists”.

At least the number of Ph.D.’s in mathematics 
who have been able to find gainful employment 
has increased. Specialization has led to a vast 
increase in the number of journals, societies, meet-
ings, papers (the last can be accurately tracked 
in the exponential growth of Math Reviews and 
Zentralblatt).

Rigor
As Poincaré feared, there has occurred a wide-
spread tendency towards more and more lengthy 
rigorous expositions and a resulting increase in 
the difficulty of finding the essential ideas often 
buried in a mathematician’s papers. Sometimes 
an increase in abstraction as well as the explosion 
of new technical terms has compounded the bad 
effects of meticulous rigor (although they are not 
the same). All of these make papers in any but your 
own narrow field harder to read.

But the question may be asked, insofar as abso-
lute rigor is an unattainable ideal, how is it to be 
attained and how much rigor suffices? An extreme, 
not envisioned in Poincaré’s day, is computer veri-
fication of proofs carried out within a precisely 
defined set of predicate calculus axioms, as in the 
work of R. S. Moore and J. S. Boyer. The history of 
mathematical proof shows that great mathemati-
cians of the past were not hung up on rigor, that 
the standards of rigor have waned and waxed. “Suf-
ficient unto the day is the rigor thereof.” However, 
the twentieth century did bring some debacles: 
many papers in algebraic geometry in the period 
1920–1950 did contain “proofs” which were wrong 
or uncorrectable.

Computation
Poincaré seems rather hard on what might be 
called “naked” computation, denying it a role in the 
discovery process. Of course, the electronic digital 
computer was not around in Poincaré’s day, and 
for him computation meant hand calculation, alge-
braic as well as numerical. We believe computation 
does have an important role. It has had differing 
impacts on different areas of mathematics, but 
few areas have not felt its impact. We will discuss 
several examples below.

In every generation, some mathematicians have 
used calculation extensively and some not. Gauss 
is a clear example that some of the most brilliant 
mathematicians have loved to calculate. With con-
temporary computers, those who do like to calcu-
late have the power of a race car at their disposal 
compared with Gauss’s horse and buggy.

One can cite the existence of journals devoted 
to “experimental mathematics”. Virtually all the 
papers published in them draw sustenance from 
computer results. In this connection, it is appro-
priate and revealing to quote from the announced 
philosophy of the Journal of Experimental Math-
ematics:

Experiment has always been, and in-
creasingly is, an important method of 
mathematical discovery. (Gauss de-
clared that his way of arriving at math-
ematical truths was “through system-
atic experimentation”.) Yet this tends 
to be concealed by the tradition of 
presenting only elegant, well-rounded, 
and rigorous results. While we value the 
theorem-proof method of exposition, 
and do not depart from the established 
view that a result can only become part 
of mathematical knowledge once it is 
supported by a logical proof, we con-
sider it anomalous that an important 
component of the process of math-
ematical creation is hidden from public 
discussion. It is to our loss that most 
of us in the mathematical community 
are almost always unaware of how new 
results have been discovered. It is espe-
cially deplorable that this knowledge is 
not made part of the training of gradu-
ate students, who are left to find their 
own way through the wilderness.

While we agree largely with the sentiments ex-
pressed here, we disagree with the above stated 
“established view” that all mathematical knowl-
edge rests on logical proof. We would assert that 
in various ways “mathematical knowledge” goes 
beyond that which is supported by logical proof.
The quantitative vs. the qualitative
Poincaré, of course, was one of the discoverers of 
the whole field of topology, and this is the prime 
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area where qualitative approaches to geometry 
superseded quantitative ones. But in many other 
fields of pure and applied mathematics these two 
approaches still vie for dominance.

In analysis, Poincaré uses the term “quantita-
tive” to indicate not just isolated numbers but the 
whole theory of particular special functions from 
which specific numbers relevant to a theory or ex-
periment have been derived and which then allow 
automatic application to other parallel theories.

From Poincaré’s own work to the present day, 
the replacement of the “quantitative” by the 
“qualitative” has played a great role in the theory 
of differential equations. It was challenged by an 
old comment of the Nobelist in physics, Ernest 
Rutherford, that “the qualitative is naught but 
poor quantitative.” What might have been in 
Rutherford’s mind was set out for us recently by 
a physicist friend:

Suppose, for example, someone has a 
theory of capillary attraction. Try it: 
water rises in the tube. Is the theory 
correct? Unless measurement agrees 
with a quantitative prediction you can’t 
possibly know; a qualitative experiment 
would be a waste of time and money. Of 
course, it can happen that a false theory 
gives a correct answer but it happens 
rarely; also no experiment is foolproof, 
but everybody knows there is room for 
coincidence and error. Science does not 
deal with facts but with probable facts. 
These would be a logician’s nightmare 
but they are part of a scientist’s every-
day thinking.

The so-called “catastrophe theory” of Thom, 
Zeeman, Arnold, and others is a prime example 
of a qualitative theory whose validity many have 
questioned. Its mathematical elegance is obvious 
but since it avoids ever committing to specific 
models and differential equations, its applicabil-
ity is uncertain. Self-similar “fractal” models are 
another example of a theory in this gray area. 
There is extensive numerical evidence in extremely 
diverse fields for self-similarity over several orders 
of magnitude but there are relatively few physical 
models that demonstrably exhibit this.

In many areas of applied mathematics, models 
are proposed for some aspect of highly complex 
systems that cannot be modeled in their en-
tirety. These models are qualitatively reasonable 
but, in order to argue for their validity, they are 
fleshed out in quantitative guise in order to make 
“predictions” about experimental results and/or 
computational simulations. This is sometimes a 
dubious procedure that can be summarized by 
the skeptical sentiment “every model is doomed to 
succeed.” However, there is much that can be said 
pro qualitative analysis, and there is an ongoing 

and red-hot debate between the qualitative and 
the quantitative that will most certainly be argued 
beyond our lifetimes.

Aesthetics as an element of discovery and 
presentation
Poincaré’s sentiments, when he asserts that for 
mathematicians elegance means a quality of a 
proof that makes the whole comprehensible, 
have been echoed by Gian-Carlo Rota. “A proof 
is beautiful,” Rota wrote, “when it gives away the 
secret of the theorem, when it leads us to perceive 
the actual and not the logical inevitability of the 
statement that is proved.” Aesthetics are certainly 
an important part of mathematics, one that has 
attracted much comment and speculation. But it 
should not be overstressed:

I once heard [Paul] Dirac (1902–1984, 
British physicist) say in a lecture, which 
largely consisted of students, that 
students of physics shouldn’t worry 
too much about what the equations 
of physics mean, but only about the 
beauty of the equations. The faculty 
members present groaned at the pros-
pect of all our students setting out to 
imitate Dirac.

—Steven Weinberg 
Towards the Final Laws of Physics

The aesthetic and the useful should not be 
confused. Thus, there are very many computer 
programs useful in promoting mathematical dis-
covery and scientific computation that are hardly 
aesthetic by the criterion of simplicity or any other 
criterion such as that proposed by Gian-Carlo 
Rota. The proofs of the four-color theorem and of 
Kepler’s conjecture, which rely heavily on compu-
tation, attest to their usefulness.

The linguistic element
Poincaré’s comment on the role of the linguistic 
element in mathematics is both sharp and pro-
phetic. It has been explored only in recent decades 
and deserves more elaboration and attention. The 
famous linguist, Benjamin Whorf, proposed that 
the structure of your language affects, in fact 
constrains, your understanding of a situation, the 
way you think about it. In a recent letter to us, 
semioticist and mathematician Kay O’Halloran  
put Poincaré’s perception in current semiotic ter-
minology (or jargon):

The “word” gives rise to existence!1 The 
relationship symbolized by the word 
undergoes processes of co-contextuali-
sation and re-contextualisation to enter 

1​This sounds almost theological. Cf. John: 1:1 “In the be-
ginning was the word.” But see: Kay L. O’Halloran, Math-
ematical Discourse: Language, Symbolisms and Visual 
Images, Continuum, London & New York, 2005.
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By “congruences”,2 he clearly means polynomial 
equations mod p. Although “indeterminate analy-
sis” is pretty vague, a sympathetic interpretation 
would be that he is asking for connections between 
solutions of polynomials in many variables mod p 
and their solutions over the integers, Diophantine 
equations. And this is what Weil’s conjectures 
made precise and Dwork, Grothendieck, and 
Deligne proved. He pursues the analogy between 
number theory and algebraic geometry in the next 
paragraph:

Another example where the analogy 
has not always been seen at first sight 
is given to us by the theory of corpora 
and ideals. For a counterpart let us con-
sider the curves traced upon a surface; 
to the existing numbers correspond the 
complete intersections, to the ideals 
the incomplete intersections, and to 
the prime ideals the indecomposable 
curves; the various classes of ideals 
thus have their analogs.

Here he seems to be talking about the theory 
of divisors on varieties, the “Picard” group or 
ideal class group and the analogy again between 
the number-theoretic situation and the algebro- 
geometric situation. In the twentieth century, class 
field theory in the number-theoretic case, and 
the theory of generalized Jacobians and Picard 
varieties in the algebro-geometric case, have devel-
oped this analogy. But note that Hilbert’s famous 
Zahlbericht had appeared when this lecture was 
given and contained clearer leads to later devel-
opments.

His next topic is the theory of quadratic forms 
for which he says “(It) was one of the first to take 
shape … when the arithmeticians introduced unity 
through the consideration of groups of linear 
transformations.” He suggests that further groups 
may yield more fruit, and he brings up discontinu-
ous groups and Minkowski’s Geometrie der Zahlen. 
Although this is a bit of a leap, one might say that 
his ideas are leading to the theory of semi-simple 
algebraic groups and their discrete subgroups. 
This has been one of the major themes of work in 
the twentieth century.

Finally, there is a paragraph about prime num-
bers, where, he says,

I believe I have a glimpse of the wished 
for unity…All leads back without doubt 
to the study of a family of transcenden-
tal functions which, through the study of 
their singular points and the application 
of the method of M. Darboux, will permit 
the calculation asymptotically of certain 
functions of very great numbers.

into other relationships: a never-ending 
ongoing phenomenon.

On the other hand, the development of twenti-
eth century mathematics has seen the explosion 
of specialized vocabularies in each sub-sub-area 
of mathematics. Who is conversant with all the 
concepts of Woodin cardinals, Lie superalgebras, 
algebraic stacks, perverse sheaves, Weyl tensor, 
Thom spectra, Besov spaces, semi-martingales, 
chromatic index, and trapdoor functions, each 
basic in its own field? It is not that these concepts 
are minor—they are each part of the standard vo-
cabulary in their area. But sadly, they are a huge 
impediment to Poincaré’s dream that “interlock-
ings” between diverse fields will drive the deepest 
future discoveries.

Poincaré’s specific predictions
In the second half of his talk, Poincaré takes up 
each of the areas of mathematics and makes spe-
cific comments. Poincaré, in contrast to Hilbert, 
does not pinpoint the problems to be worked on; 
he merely points in a general way to certain “sub-
areas” and issues in each field, sometimes with 
frustratingly vague phrases. Ideally, the second 
part of the talk should be responded to by experts 
in the various fields or sub-fields—thus confirming 
Poincaré’s concern about the specialization and the 
fragmentation of mathematics. Nonetheless, we 
will do our best to say something about what he 
had right and what he missed! In some instances, 
what followed after 1908 cannot be adequately 
described except at the monograph level.

In each section, the heading is Poincaré’s, and, 
in parentheses, we put in some cases the more 
standard contemporary name. A word of caution: 
much of what he says is pretty vague, and one 
needs (or at least we need) to interpret his text and 
guess what he is suggesting.

Arithmetic (number theory)
In this field, Poincaré is quite successful in predict-
ing the twentieth century developments. His first 
point seems to us to foreshadow clearly the work 
of André Weil creating characteristic p algebraic 
geometry alongside traditional algebraic geometry 
over the complex numbers:

The first example which comes to mind 
is the theory of congruences where we 
find a perfect parallelism with that of 
algebraic equations. And we will cer-
tainly complete this parallelism which 
must exist between the theory of alge-
braic curves and that of congruences of 
two variables, for instance. And when 
the problems relative to congruences 
of several variables are solved we shall 
have taken the first step toward the 
solution of many of the questions of 
indeterminate analysis.

2​The translator mistakenly wrote “congruents” for 
Poincaré’s word “congruences”.
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In this rather mysterious passage, it is possible 
to guess that he is foreshadowing the tremen-
dously successful use of L-functions in number 
theory. If so, he has touched on all the major 
themes of twentieth century number theory.
Algebra
In Section II (Algebra), Poincaré focuses narrowly 
on polynomial equations. He starts by saying “the 
most important [subject here] is that of groups…,” 
obviously meaning Galois groups, but he will treat 
groups in a separate section. He discusses instead 
“the question of the calculation of the numerical 
value of roots and the discussion of the number 
of real roots.”

Concerning the numerical calculation of roots 
of polynomials, it is hard to decipher Poincaré’s 
specific remarks but there has certainly been much 
work and much success both experimental and 
theoretical—all stimulated by the appearance of 
increasingly powerful digital computers. Indeed, 
the whole of numerical analysis, relatively stag-
nant, burst forth in the digital age like the desert 
cactus that blooms when it suddenly rains. Now, 
there is hardly a package for scientific computa-
tion that does not have a reasonably high precision 
polynomial root finder. Many diverse attacks on 
the problem have been made, each with its pluses 
and minuses.

An allied problem, perhaps of more applied 
significance than “mere” root finding, is that of 
the numerical calculation of the eigenvalues of a 
square matrix. The roots of a polynomial are the 
eigenvalues of its companion matrix. The QR algo-
rithm gives a reliable method for eigenvalue calcu-
lation. So a method of choice, valid for polynomials 
of degree, say, less than several hundred, first 
inaugurated by Cleve Moler of (Matlab fame) and 
later provided a substantial theoretical underpin-
ning by Edelman and Murakami, also Trefethen, is 
to go that route. The companion matrix must first 
be “balanced” by a standard similarity transfor-
mation to reduce the condition of the matrix. For 
polynomials of enormously high degree, arising 
in special problems, effective special algorithms 
have been devised. Future work on root finding 
will very likely be stimulated by improvements in 
digital computers combined with demands from 
scientific/technological applications.

Poincaré goes on to talk about invariants of 
homogeneous polynomials, i.e., functions of their 
coefficients invariant by linear substitutions, and 
mentions Gordon and Hilbert’s work here. He then 
writes “If we have an infinity of whole polynomials, 
depending algebraically on a finite number among 
them, can we always deduce them from a finite 
number among them by addition and multiplica-
tion?” This would seem to be Hilbert’s 14th prob-
lem. It was disproved by Nagata in 1959 for the 
ring of invariants of a representation of a power of 
the additive group. Both Hilbert and Poincaré seem 

to have been overly optimistic about finiteness re-
sults for rings of polynomials. He ends this section 
by proposing that questions about algebra should 
be done over rings of polynomials with integer or 
other coefficients but not pursuing this.
Differential equations (dynamical systems)
Poincaré starts off with a very astute proposal: we 
need a group of transformations that will group 
dynamical systems into classes that are easier to 
describe. He proposes the analogy with using bira-
tional transformations to classify algebraic curves. 
One can read this as foreshadowing Smale’s idea 
of using the full group of homeomorphisms to 
classify dynamical systems, more precisely defin-
ing two systems to be topologically equivalent if 
there is a homeomorphism taking the orbits of one 
system to the orbits of the other. As an example, 
Poincaré raises the question of counting the num-
ber of limit cycles of two-dimensional dynamical 
systems.

Curiously, Poincaré does not talk about the 
complexities of dynamical systems that he had en-
countered in his work on the three-body problem 
theory. The modern theory of dynamical systems 
has been dominated by the struggle to find a sat-
isfactory theory for such chaotic systems, the split 
between the relatively simple hyperbolic systems 
and those with strange attractors. Simple chaotic 
systems, such as the famous Lorenz system model-
ing convection cells in the atmosphere, were found 
to be ubiquitous in three or more dimensions.

Instead Poincaré mentions holomorphic vector 
fields in the plane and asks when they have inte-
grals and what you can say about the functions 
that uniformize their orbits. One can imagine links 
with the discovery and exploration in the century 
to follow of the many unexpected completely 
integrable dynamical systems such as KdV, the 
Toda lattice, etc.
Equations with partial derivatives (linear PDEs)
Poincaré reviews what was then recent work of 
Fredholm on integral equations and clearly envi-
sions the idea that linear PDEs are going to require 
an understanding of infinite-dimensional space 
and the extension of linear algebra to these spaces. 
He describes the analogy he sees between Hill’s 
work on infinite determinants and Fredholm’s the-
ory, the analogy between an infinite-dimensional 
space of sequences and an infinite-dimensional 
space of functions. At the end, he acknowledges 
that “Thanks to M. Hilbert, who has been doubly 
an initiator, we are already on that path.” That path 
is unifying these “two methods” and applying it to 
problems such as the Dirichlet problem.

As it turned out, linear PDEs were essentially 
mastered using function space techniques, dis-
tributions, and Fourier analysis a little after the 
middle of the twentieth century. Then the cutting 
edge turned to nonlinear PDEs which remain an 
area full of mysteries. Poincaré says nothing about, 
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variable come in the harmonic func-
tions of four variables …In what sense 
may we say that the transcendental 
functions of two variables are to tran-
scendental functions of one variable as 
(algebraic or) rational functions of two 
variables are to (algebraic or) rational 
functions of one variable?

Poincaré certainly hit on a ripe area here. The 
work of William Fogg Osgood on functions of 
several complex variables that date shortly after 
1908 can be found in his influential Lehrbuch 
der Funktionentheorie. The field opened up wide 
in the first half of the twentieth century, and 
we have the later theories and books of e.g., 
Behnke and Thullen, Bochner and Martin, Bergman,  
Kodaira and Spencer, Hörmander, Remmert, 
Krantz, Scheidemann. It gave birth to topics such 
as pseudo-convexity, Stein manifolds, and sheaf 
theory. The link with the theory of algebraic variet-
ies of dimension two or more has been extremely 
fruitful, and the algebraic and transcendental 
theory have intertwined continuously. The ghost 
of Poincaré is very pleased.

Though Poincaré failed to mention analytic 
functions of one complex variable, this field also 
flourished in the years following 1908. It also has 
a rich history. The Riemann mapping theorem for 
simply connected regions was worked on by Os-
good, Carathéodory, and Perron. The Bieberbach 
conjecture and the extensive theory of conformal 
mappings, Nevanlinna theory and the work of Ahl-
fors on meromorphic curves, Teichmüller theory 
and its connection to three-manifolds via Thurston 
theory all drove the field far.
The theory of groups
In a third short section, Poincaré states he will 
talk only about Lie groups and Galois groups, thus 
ignoring both the growing general theory of finite 
groups and the discontinuous Kleinian groups on 
which he had worked himself. He recalls how Lie 
groups have been tamed by the use of Lie alge-
bras (which he describes as a “special symbolism 
upon which you will excuse me for not dwelling”). 
He says justly that “The study of the groups of 
Galois is much less advanced” and hopes that, as 
in the links between number theory and algebraic 
geometry, links can be made between Lie theory 
and Galois theory. The search for a better under-
standing of Galois groups has proven to be very 
difficult and continues to this day.
Geometry
Poincaré first asks if geometry is nothing more 
than “the facts of algebra and analytical geometry 
expressed in another language?” No, he says, 
“Common geometry has a great advantage in that 
the senses may come to the help of our reason 
and aid it in finding what path to follow.” But 
“our senses fail us when we try to escape from the 

for example, the Euler and Navier-Stokes fluid flow 
equations.
The Abelian functions
This very short section is remarkably specific. The 
question Poincaré raises is

What is the relationship of the Abelian 
functions begot by the integrals rela-
tive to an algebraic curve to the general 
Abelian functions and how shall we 
classify the latter?

The question in the last part of this quote has 
proven to be by far the more important one. It 
leads directly to the construction of Siegel’s modu-
lar variety, the moduli space that indeed classifies 
what are now called principally polarized Abelian 
varieties. These spaces are the simplest arithme-
tic quotients of Hermitian symmetric spaces and 
all such modular varieties and the more general 
arithmetic quotients are a key component of the 
theories linking number theory, algebraic geom-
etry and representations of Lie groups (especially 
the “Langlands conjecture”). Poincaré was certainly 
on the right track in raising this classification 
question.

The first part of his question is a much more 
special one, although it has been studied by quite a 
few mathematicians. In modern algebro-geometric 
language, it asks what is special about the Jacobian 
varieties of curves in the bigger set of all Abelian 
varieties? Finding ways to characterize Jacobians 
is now called the “Schottky problem”. There are 
remarkably very many quite different ideas for 
solving this problem whose interrelations are still 
not completely clear: a review up to 1996 is in an 
appendix to one of the second author’s books.3

The theory of functions (complex variables)
In another short section, Poincaré’s main concern 
is the theory of analytic functions of several vari-
ables as opposed to one:

The analogy with the functions of a 
single variable gives a valuable but 
insufficient guide; there is an essential 
difference between the two classes of 
functions (one and more than one vari-
able) and every time a generalization is 
attempted by passing from one to the 
other, an unexpected obstacle has been 
encountered…

Thus:

Why is a conformal representation 
more often impossible in the domain 
of four dimensions and what shall we 
substitute for it? Does not the true 
generalization of functions of one 

3​D. Mumford, The Red Book of Varieties and Schemes, 
2nd edition, Springer Lecture Notes 1358.



April 2008	  Notices of the AMS	   465

classical three dimensions.” One should not forget 
that it was during Poincaré’s lifetime that math-
ematicians had come to accept higher-dimensional 
spaces as a matter of course:

We have nowadays become so familiar 
with this notion of more than three 
dimensions that we may speak of it 
even in the university without arousing 
astonishment.

He states most eloquently that geometric intu-
ition is more robust than one might expect and can 
be useful in higher dimensions:

It guides us into that space which is too 
vast for us and which we may not see; it 
does this by ever bringing to mind the 
relationship of the latter space to our 
ordinary, visible space, which without 
doubt is only a very imperfect image, 
but which nevertheless is an image.

He then introduces Analysis Situs (topology) as 
a creation of Riemann and states that its impor-
tance is very great, that it is leading the way into 
higher dimensions and, indeed, must be studied 
in all dimensions. Of course, Poincaré is now usu-
ally considered as its creator. He is certainly on 
the money in foreseeing the central role topology 
will play in the twentieth century, creating key ele-
ments of our vocabulary (such as homology and 
homotopy groups) and giving us some intuition 
about higher-dimensional space.

It is interesting that he makes no speculations 
about how geometry in higher dimensions will dif-
fer from what we know in three dimensions. There 
had been one hint at his time: Schläfli’s classifica-
tion of regular polytopes showed that in dimension 
5 or more, life got simpler. It is interesting that 
this is exactly what happened with the higher-
dimensional versions of Poincaré’s conjectured 
characterization of spheres: Stallings and Smale 
showed that this was true in dimension 5 or more 
because, in some sense, life was simpler due to 
there being more “elbow room”. This phenomenon 
of things stabilizing as dimensions get higher has 
occurred over and over in many fields.

Poincaré goes on to doff his hat towards both 
algebraic geometry and differential geometry, “a 
vast field from which to reap a harvest”. This is 
certainly right but he has nothing specific to say 
about them—a bit sad considering their great 
flowering in the twentieth century.
Cantorism (set theory and foundations)
One senses in this section considerable ambiva-
lence of Poincaré towards Cantor’s ideas. While 
acknowledging that “(His) services to science we 
all know,” he ends the paragraph by saying “(with 
this theory) we can promise ourselves the joy of the 
physician called in to follow a beautiful pathologi-
cal case!” It seems that uppermost in his mind in 

this short paragraph are the paradoxes that arise 
in this field, the apparent contradictions which 
“would have overwhelmed Zeno…with joy.”

As we know, from our vantage point, it was 
Gödel’s ingenious use of exactly these paradoxes 
that led to the deepest result in the foundations of 
mathematics, to Gödel’s magnificent incomplete-
ness theorem, whose philosophical significance 
continues to reverberate. Starting from Russell 
and Whitehead (1910–1913), the foundations of 
mathematics, the search for universal axioms for 
integers, real numbers, and set theory, developed 
into a field of its own. But Gödel showed that any 
finite set of axioms could not be a complete foun-
dation for mathematics, and attempts to found 
mathematics on sets are not now universally ac-
cepted. Some of these skeptics (admittedly a mi-
nority of mathematicians) assert that mathematics 
can’t have “ultimate” foundation stones, and, in 
any case, it doesn’t need them.

In the century following 1908, brilliant math-
ematicians have created a large corpus of mate-
rial that goes under the rubric of logic, sets, and 
foundations. To name but a few: Zermelo, Fraenkel, 
Ramsey, Łukasiewicz, Post, von Neumann, Ber-
nays, Gödel, Turing, Cohen, Martin Davis, Henkin,  
Feferman, Chaitin. Scanning a recent text on math-
ematical logic yields postulate systems such as PA 
(Peano arithmetic), ZF (Zermelo (1908), Fraenkel: 
(1891–1965), ZFC (ZF + the axiom of choice), ZFL 
(ZF + constructibility). It yields such topics as 
decidability, consistency, forcing, generalized con-
tinuum hypotheses, non-standard analysis, hyper-
hyper inaccessible cardinals, alternate logics.

But, on the other hand, there is also a wide-
spread feeling among working mathematicians 
that measurable cardinals and the like, that is to 
say, present day set theory, are indeed some kind 
of “pathological case” as Poincaré put it, ideas 
that can give the uninitiated existential angst. So 
Poincaré perhaps caught the future mainstream 
reaction to this area as well as pinpointing its 
arguably most significant idea.
The research of postulates (axiomatic analysis)
This short section of Poincaré’s article may be 
differentiated from the previous one by saying 
that under “Cantorism”, he was thinking of the 
theoretical side of the logical analysis of the foun-
dations of mathematics, while in this section, he 
was thinking of the applied side. If he was skeptical 
of Cantor, he is even more so of the usefulness of 
axiomatic analysis:

We are trying to enumerate the axioms 
and postulates, more or less deceiving, 
which serve as the foundation stones of 
our various mathematical theories. M. 
Hilbert has obtained the most brilliant 
results. It seems now that this domain 
must be very limited and there will 
not be any more to be done when this 
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inventory is finished, and that will be 
very soon.

Consideration of the underlined phrase might 
very well suggest that Poincaré believed such an 
inventory or enumeration of postulates was unnec-
essary or misleading. Poincaré was really wrong in 
this instance: Hilbert’s initiative not only at listing 
all necessary postulates to complete Euclid, but at 
constructing alternate geometric universes where 
all but one axiom held, has had a major influence 
on twentieth century mathematics.

In the 1920s, the German school of “modern 
algebra”, with its completely general rings, its 
abstract ideal theory, and Noether’s spectacular 
generalizations of Hilbert’s results, seems to us the 
spiritual descendent of Hilbert’s inventory. Rings 
were now divorced from specific examples such as 
rings of algebraic integers, polynomials, or matri-
ces and instead were considered as having a vast 
array of possible incarnations, cases where some 
standard axioms held and others did not. Likewise, 
the abstract theory of topological spaces and of 
Banach spaces developed by the Polish school  

followed the same path: look at all combinations of 
postulates and see what spaces they deliver.

This point of view was thoroughly absorbed in 
the culture of twentieth century mathematics and 
was clearly enunciated in Bourbaki’s monumental 
treatise. It is now taken for granted as the “obvi-
ous” way to do things in the pure math community, 
the way to find the best abstract setting for every 
argument, the most general form for every theo-
rem. But it seems that Poincaré missed it, that it 
was definitely not his cup of tea.

We summarize our thoughts in the presumptu-
ous table below. It is interesting that in many areas 
he saw the possibility of links between fields and, 
perhaps because it was less exciting, deempha-
sized the deepening of existing fields. His negative 
feelings about the “Research of Postulates” seems 
to lie behind his missing the explosion of work 
in the first half of the twentieth century setting 
almost every area of mathematics, but especially  
algebra, in its most general abstract form and in-
vestigating all mathematical objects that this led 
to (e.g., all finite simple groups).

					                  SCORECARD

                            Foreseen                             Missed

Importance of linking number theory  
and algebraic geometry

Theory of general commutative, noncommutative  
rings

Importance of analytic methods in number  
theory, L-functions

Topological equivalence of dynamical systems Deeper theory of chaotic dynamical systems

Importance of function spaces and their  
linear algebra

Small successes, challenges of nonlinear PDEs

Differences of several complex variables from  
one, links of complex analytic geometry with algebraic 
geometry

Deeper theory of one complex variable (e.g., Teichmüller,  
Bieberbach) 

Importance of Lie and Galois groups Theory of general finite groups

Topology as the key to higher dimensions Rich diversity of dimensions 3 and 4 and 7 (exotic  
spheres)

Gödel and deep significance of the paradoxes

Axiomatic treatment of every field (eventually: categories)

Explosion of computational methods, computational  
experiments, numerical analysis

Development of probability theory, stochastic differential  
equations, information theory


