A STRATIFICATION OF THE NULL CONE
VIA THE MOMENT MAP

By LinDA NEss

With an Appendix by DAvib MuMFORD

0. Introduction. Given G X V — V, a linear representation of a
reductive group G, defined over C, on a finite dimensional complex vector
space V, one may fix a maximal compact subgroup K C G and a K-
invariant hermitian inner product on V.

From this data, one can define a moment map, as in symplectic
geometry,

m: P(V) = Lie G¥/Lie K* ~ it* bym(x) =——d,||g-v|?

1
v

and the square-norm of the moment map
lm|?: (V) > R [|m|*x) = [|m ()]

Here v e V — {0} lies over x, and the differential of G > R g — || g - v||%is
computed at the identity e € G. Also ||m (x)||? is computed with respect to
an ad-K invariant inner product on i/t*. The moment map is K-equivariant
and its component functions are Hamiltonians for the canonical vector
fields on P(V). The norm-square || m ||? is a K-invariant function on P(V).

The first observation [K-N] is the orbit G - v is closed if and only if
m(g-x) = 0 for some g € G if and only if |m ||?(g - x) = 0 for some g € G.
Here v # 0 lies over x.

In this paper, I apply the moment map to the main problem of Geo-
metric Invariant Theory—understanding the G-orbit space of the action of
a reductive group on a complex projective variety. I have restricted atten-
tion to the core case—where the variety is P(V)—so that I did not have to
introduce the notion of linearization of an invertible sheaf—a common ini-
tial source of confusion. The results are easily generalized.
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If one wants to construct a quotient of P(V) by G, one must first throw
out the variety of N C P(V), where all of the G-invariant homogeneous
polynomials vanish. This variety is called the null-cone N; it consists of the
“unstable points.” Mumford proved in [M] that the quotient of the com-
plement P(V) — N = P(V),, (the semistable points) by extended G-
equivalence is a projective variety P(V),,g. In Section 2 it is shown that
this is the “Marsden-Weinstein reduction” of symplectic geometry.

In Sections 3 through 7 the real valued function ||m |%: P(V) = R is
studied. The trajectories of the gradient flow of || m || are easily seen to be
tangent to the G-orbits. The limit set of the gradient flow of | m ||? is, of
course, the set of critical points of ||z ||2. The main result on the critical
locus of ||m|? is

THEOREM 6.2. Let ||m|?|g., denote the restriction of ||m||* to the
G-orbit of x in P(V). If d||m ||*(x) = 0, then

(i) |m|?|G.x attains its minimum value at x
(i) ||m||?|g.x attains its minimum value on a unique K-orbit.

The nonminimal critical points are all in the null one. Hence, the gradient

flow of | m||? determines a stratification of the null cone N. A stratum N,
of N is the set of all points x which flow into C,y, where C, is the set of
critical points y of |m|? such that m*(y) € K - a. Clearly the limit set
C(sy C Ny is K-invariant.

Hesselink in [H] defined an algebraic stratification of the null cone
using Kempf’s adapted one-parameter subgroups. There is a natural flow
via adapted one-parameter subgroups and hence, a limit set in each strata
Ly, o, which is invariant under the action of a “‘smaller”” reductive group,
determined by the strata.

In Section 9 we show there is a natural one-to-one correspondence
between the two stratifications. The main result of Section 9 is a compari-
son of the two limit sets. The main result is: the quotients C,y/x and
Ly (ay/1 are naturally isomorphic projective algebraic varieties.

The point of this result is the following: one would like to understand
the space P(V),,/¢ = P(V) — N/G. One could do this, mimicing Bott and
Atiyah in [A-B] by understanding the varieties of C(y/x = L (ay/1’ atis-
ing from the stratification of the null cone.

Examples are computed in Sections 8 and 10.

There has recently been a flurry of applications of moment maps to
geometry. It seems that the impetus came from a thesis of Gerritt Heck-
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man [He] in which he proved Kostant’s convexity theorem using these
techniques. Guillemin and Sternberg observed that one could define a mo-
ment map in the case that we are considering and proved a more general
convexity theorem [G-S]. This theorem is stated in Section 5 and a proof
due to Mumford is in the appendix. Atiyah [At] has independently given a
proof of the convexity theorem for the case G = T, a torus using Morse
Theoretic techniques. Bott and Attiyah point out that the Yang Mills func-
tional on connections on vector bundles over a Riemann surface can be
interpreted as the square norm of a moment map [A-B].

Recently, I was informed that Frances Kirwin in her Oxford thesis is
studying the stratification determined by the gradient flow of ||m |2 in the
case of reductive group acting on a smooth projective variety. For the case
that the stabilizer of every semistable point is finite she announces a for-
mula for the rational cohomology of the quotient variety P(V)/c. Her
approach uses G-quivariant Morse-theory.

Finally, I would like to thank David Mumford for suggesting this
problem to me, for several discussions of the problem, and for writing the
appendix. The basic outline of Section 2 follows a lecture he gave at the
Institute of Advanced Study in Princeton in March 1982.

1. The moment map on projective space. Let G be a reductive
group defined over C. Let V be a complex vector space of finite dimension.
Assume G acts linearly on V by

GXV->YV (g,v) > g v

Fix a maximal compact subgroup K C G. We may assume V is endowed
with an hermitian inner product ¢, ) which is invariant under the action of
K,so kv, k-w) = (v, w) for all k € K, and for all v and w in ¥. As
usual let |v > = <v, v).

We want to study how the squared length changes as G moves a vector
v infinitesimally along its orbit. Because G acts linearly, we only need study
this for each x € P(V), the projective space of lines in V.

For each v € V, define

1) p,:G—R byg—|g-v|%

Now let dp, (e) denote the differential of p, computed at the identity e of G.
Since the inner product is K-invariant we may view dp,(e) € g*/t*, where
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g* and f* are the vector spaces of real-valued linear functionals on the lie
algebras ¢ = Lie(G) and f = Lie(K). Since G is reductive ¢ = [ @ if.
Thus we may define a function

dp,(e)

Ivii?

m: P(V) — if* byx — ,veV overx,v # 0

Thus IT1: V — {0} — P(V) is the usual projection map, II(v) = x.

We will verify in this section that m is a moment map (of symplectic
geometry).** The key observation, which we will use throughout the pa-
per, will be: the component functions of m are easy to compute and easy to
differentiate. For each « € if, the component function m,(x) = m(x)(a).
Thus m,, just gives the infinitesimal variation of the squared length as v is
moved by the real one-parameter subgroup exp tc, so

1

—_— expta:v 2,v0verx.
oI ] =g 0 7

2) my(x) =

A moment map [G-S] is defined as follows. Suppose M is a real mani-
fold, of even dimension, endowed with a closed nondegenerate 2 form w.
Suppose K is a real compact Lie group which acts on the symplectic mani-
fold M preserving its symplectic structure. Thus there is a homomorphism

¢: K = Aut(M) k— o and Orfw = w.

For each « € f = Lie(K), the action of K determines a canonical vector
field X, on M; X, is just d¢ (o). Note that K acts on £*, the real dual of f by
the coadjant action.

A map

®: M — {* is a moment map

if

(1) @ is K equivariant
(2) Foreacha e, d®, = w(, X,) so X, is the Hamiltonian vector-
field for ®,,.

#*¥Guillemin and Sternberg proved this in [G-S]; the verification here is, I believe, sim-
plet. One example of a moment map is angular momentum [A].
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Here ®,: M — R is & followed by evaluation at o, ®,(x) = ¢(x)(w),
x € M.

There is a natural symplectic structure on P(V). Let w denote the real
1-1 form of a Fubini-study metric on P(V) determined by the inner product
{,> on'V. We will normalize so w is computed as follows. LetZ: W - V —
{0} denote a local holomorphic lifting of an open set W C P(V). Then
on W

(3) w = 290 log| Z||?

Since w is real nondegenerate and closed, w is a symplectic form on P(V).
Furthermore, for any automorphism U of P(V) induced by a unitary trans-
formation of V, U*w = w. Thus the action of the maximal compact sub-
group K C G preserves the symplectic structure. Note that w is ‘4 times
the usual normalization for the Fubini-study metric.”

For each a € g, there is a canonical vector field X, on P(V) and a
canonical vector field X « on V. They are related by m,Xx « = X,. The ca-
nonical vector fields on V are easily understood. Denote the action of G on
V by

¢: G = GL(V).

Then ate in G

do,: g — ¢f(V) = Lie GL(V).

For o € g, let T,, = d¢,(a). Then the canonical vector field on V is defined
by

“4) X, ) = T,(v) = do () ().

Recall that ¢£(V) = iJC @ 3JC where JC is the real vector space of Hermi-
tian transformations of V, relative to {,). Thus /JC consists of the skew
Hermitian transformations of V, so /JC is the Lie algebra of the unitary
transformations of V relative to {,), {3C = V. Since the inner product is K-
invariant, d¢,(f) C {3C. Since d¢, is complex linear d¢,(if) C i(3C. In
terms of the notation we just introduced, this is expressed as the

Facts: (i) Fora e g, T;, = iT,
(i) faet, T,ei3C
(iii) If @ € it, T, € 3C.
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The last fact (iii) implies that for each « € i, there is an orthogonal
decomposition of V, namely the decomposition of V into eigenspaces for
T,

(5) V= @V, for v V, write v = Ev,-, v; € V,-.
Since T,V = (d/dt)|,=oexp ta - v, (6) implies that

@) exp ta v = L %'y,
1

Thus we will call the decomposition (5) the a-weight decomposition of
V; we will call the a;'s the a-weights.

LemMma 1.1, Suppose o € if. The canonical vector field X, on P(V)
vanishes at x if and only if the line in V over x is contained in one of the a-
weight spaces if and only if exp ta*x = x or x € G,.

Proof. I1dentify V with the tangent space to V at v. Then the kernel
of ITx at v is the line through origin containing v. For v over x, x,(x) =
Mg (T,(v) = 0<(=) T,(v) C V, for somei (=) v C V,; for some i. The
second equivalence is a consequence of (7).

Next we will show that the component functions ., of the map m can
be computed using the a-weight decomposition. This will be very useful.
We use the notation in (5), (6) and (7) to state

LemMA 1.2.  Suppose o € if. Supposev € V — {0} lies over x e P(V)

2, T,()) _
v li? IIVII2

(ii) Yam,(x) is a convex combination of the weights a; such that

L a;|v;|?

() mx) =

Vi * 0
(ifi) dIT*mg(v) = W:TT Re< T,y — ’""‘Z(x) v>
(iv) dll*my(v) = i ”2 Re X <a, m°‘2(x)>< , Vi)

(v) The gradient of m, with respect to the Fubini-study metric on
P(V) determined by the 1-1 form w, is X, .
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(vi) For B € {, the hamiltonian vector field of m;s on P(V), is Xg.
Thus dm,-ﬂ = w(, XB)
(vii) m g —1(0)(x) = mo(k - x) for any k € K.

Proof. Part (i) follows from (2) and (7)

d d
ma(x)=:l—t- 0||exptoz'v||2=E 0<2e2‘”|v|2>—22a|v,I
t= t=
=24y, T,(v)).

Part (ii) is trivial. Parts (iii) and (iv) follow directly from (i). To deduce part
(v) from part (iii), we recall the Fubini-study metric as we normalized it.
Let (, ), denote the Fubini-study metric on P(V) at x. Identify V with 7V,
the tangent space to V at v. For any vector w; € V write w; = Av + wt,
where {(w}, v) = 0. Then

4 4
I ,H — J_, Ly — , L .
(I, wy, Iyywy), HE (w1, wy) P (wy, wi)
Also note
<Ta(v) _ Ma(x) v, v> = 0.
2
Thus
grad m(x) = n*,,<Ta(v) — m"‘z(x) v> =0, ,T,(») = X, (x).

For part (vi),

w(H*,vwl’ H*,vwz)x - lz Im(wlv W2>

Suppose 8 € f. Then Re( , Ty(v)) = Re(—i( , Ts(v))) =
Im( , Tg(v)>. Thus

B ”2 Re( , Tis(v)) = w( , I, ,T(v)) = w( , Xg(x)).
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Finally, we check the k-equivariance in part (vii). Recall Ad (k) is the dif-
ferential of the automorphism of G: g = Kg K~ '. Now

d d
2 — 2
. . —_ . ] 2R . - .
Ivll*- my(k - x) = tzo”exp ta- kvl e<k v t:Oexp ta kv>
d -1
= 2Re(v, I (k™ 'exp tak) v
t=0

= 2Re<v, TAdk_l(a)(v)> = [|v[|2mAdk—1(a)(x). QED

CoroLLARY 1.2.1. After identifying t with it, 8 — if3, m is a mo-
ment map.

Proof. Define m: P(V) — f by mg = m;g, 8 € f. Then by part (vi),
dmg = w( , X ,3). Next we must check that m is K-equivariant. Since
Ad(k ™) is complex linear mg(k - x) = myg—1(5)(x) by part (vii).

It remains to see that 7 445 —1(5)(x) = (Ad*k - m)z(x) where Ad*k - m
is the coadjoint action of K on k*. But this just follows from the definition of
the coadjoint action. Let (,): g¢* X g — R denote the natural pairing. Then
(Ad*k - a*, B) = (o, Adk ~1(B)). Thus  is K-equivariant. Q.E.D.

2. Links Between the Moment Map and Geometric Invariant Theory.
Let V be the representation of a reductive group G as in Section 1. We will
retain the assumptions of the first section.

The basic problem of geometric invariant theory is the construction of
orbit spaces. One then wants to understand the orbit spaces in concrete
cases. A fundamental theorem states that there are enough polynomial
functions on V, which are invariant under G, to distinguish between closed
G-invariant sets. For characteristic 0, this was proved by Mumford in
Chapter 1, Section 2 of [M]. These G-invariant polynomial functions are
then the regular functions on the orbit space. Mumford’s work on the con-
struction of orbit spaces in [M] lead him to develop the geometric notion of
a stable vector.

Definition 2.1. Suppose v is a nonzero vector in V.

(i) v is unstable if the zero vector is in the closure of the orbit of v,
0eG: v
(ii) v is semistable of 0 ¢ G - v




A STRATIFICATION OF THE NULL CONE 1289

(iii) v is nice semistable if the orbit G - v is closed
(iv) visstable if the orbit G - v is closed and the stabilizer subgroup of
v, G,, is finite.

The G-invariant polynomial functions, thus, cannot distinguish the
unstable vectors from the zero vector. The unstable vectors form the “null
cone”’. The moment map will lead to a stratification of the null cone.

Notion (iii) is new; we will show in this section that it expresses a link to
the moment map.

Let P(V),,, P(V),, P(v), denote the images viaIl: V — {0} = P(V) of
the sets of semistable, stable, and unstable vectors in V, respectively. Let
P(V), denote the image via IT of the nice semistable vectors; i.e. those with
closed orbits.

The first link between the moment map and geometric invariant theory
is made via the notion of minimal vector, studied in [K-N].

Definition2.2. A nonzero vector v € V is a minimal vector if dp,(e) =
0 where

p,: G > Ris defined by g — || g-v|%

The image x = II(v) € P(V) of a minimal vector is a minimal point.
We next recall some results from [K-N]. Part (i) of the result justifies
the definition.

TaeorREM 2.1. Let © C V denote a G-orbit. Consider the restriction
of | 210 O:

(i) Any critical point v of || ||| is a point where || ||?|¢ attains its
minimum.
(i) || ||| attains its minimum if and only if O is a closed orbit, if and
only if O consists of nice semistable vectors.
(iii) If Ois a closed orbit, the minimum value of || ||*|ois attained on a
unique K coset.

A link between the moment map and geometric invariant theory then is
expressed as:

THEOREM 2.2. Let m: P(V) — it* denote the moment map.
(i) m~1(0) is the set of minimal points
(i) G-m~1(0) = P(V),, the nice semistable points
(iii) P(V), D G-m~1(0) = P(V), D P(V),
(iv) 0is a regular value of m if and only if P(V); = m ~1(0) = P(V),,.
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Proof. The first three statements are easily checked. Part (i) follows
immediately from the definition m (x) = (dp,(e))/||v||% v # 0 over x, and
from the definition of minimal points as those for which dp,(e) = 0. Part
(ii) follows from part (i) and Theorem 2.1 part (ii). Part (iii) follows immedi-
ately from (ii) and Definition 2.1. The last part (iv) of the theorem follows
easily from the next three lemmas. The first was proved in [G-S].

LeEmMMmA 2.1. (GUILLEMIN-STERNBERG). For x € P(V), the follow-
ing are equivalent:

(i) dm(x): T,(P(V)) — it* is not surjective
(ii) there exists o € if such that dm,(x) = 0
(iii) the canonical vector field vanishes at x, X, (x) = 0
(iv) the one-parameter subgroup exp too C G, the stabilizer sub-
group of x.

Proof oflemma. (i) & (ii) is obvious. The other three parts are conse-
quences of Lemmas 1.1. and 1.2.

LEmMA 2.2. Suppose x € P(V) and suppose v lies over x, v # 0. Let
G, and G, denote the subgroups of G which fix x and v respectively.

i G, DG,
(i) G./G, = C*or G,/G, s finite
(iii) G,/G, = C* = v is unstable
(iv) v semistable = G,/G, is finite, dim G, = G,.

Proof of Lemma. (i) is obvious and (iv) is logically equivalent to (iii).
For (ii) consider the exact sequence

0-G,— G, - C*V = C*

The first homomorphism is inclusion; the second is g — g - v. The image of
G, is a complex algebraic subgroup of C*, hence is either finite or all of C*.
For part (iii) G, /G, = C* implies that there exists « € Lie G, N if such that
expta-v = ey, somea eR, a # 0. We may assume a < 0. Then lim,_, .,
expta-v =0,s00 € G-vand v is unstable.

LEmMMA 2.3. Suppose x is semistable, and suppose v lies over x,
v # 0. Then G- v contains a unique closed orbit.

Proofof Lemma. This is a corollary of the fundamental result (Corol-
lary 1.2 [M]) which says that there are enough G-invariant polynomials to



A STRATIFICATION OF THE NULL CONE 1291

distinguish closed G-invariant sets. If G - v contained more than one closed
orbit, say O; and O,, there would be a G-invariant polynomial f, f = 1 on
01 and f = 0 on O,. This contradicts the fact that f is constant on G - v. On
the other hand G - v contains a closed orbit—an orbit of minimal dimen-

sion. Finally, we can give the

Proof of part (iv) of the theorem. 0 is not a regular value of m ¢ there
exists x € m ~1(0) such that dm (x): T,(P(V)) — if* is not surjective &
there existsv €V, G - v closed and dim G, = 1 & by part (iv) of 2.1 and 2.2
there exists x € P(V)y, — P(V), m(x) = 0 & by 2.3 P(V),, —
P(V), # ¢. Q.E.D.

A canonical construction is the ‘“Marsden-Weinstein’’ reduction
determined by a moment map m. It is the set of K orbits of m~1(0),
K\m™Y0).

In [GS], Guillemin and Sternberg proved, essentially using the notion
of minimal vectors

THEOREM 2.3. Suppose P(V), = P(V),,, and suppose G acts freely
on m~1(0). Then K\ m ~1(0) is a smooth complex projective variety.

The analogue in geometric invariant theory is obtained by modding
out by the following equivalence relation. Suppose v # 0 lies overx € P(V);
suppose w # lies over y € P(V)

def. x~y if G+ v and G+ w contain the same closed orbit.

By Lemma 2.3, this is an equivalence relation. We will call this “‘extended
G-equivalence’’.
THEOREM 1.4,
(i) P(V)s modulo extended G-equivalence is the Marsden- Weinstein
reduction. That is, there is a set isomorphism

~\P(V),, = K\m~1(0)

(i) ~\P(V), is a projective algebraic variety.

Proof. For part (i) one simply notes that each set consists of one point
for each closed orbit. Part (ii) follows from Guillemin and Sternberg’s theo-
remif G acts freelyon m ~1(0). In general this is Mumford’s theorem 1.10 in
[1]. Q.E.D.
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In this paper, we want to show that one can use the moment map
approach to get some more information about ~\ P(V),;.

3. Another Link. Another link between the moment map and geo-
metric invariant theory can be made because of the fundamental

TeeoreM 3.1. HiLBERT [M]. The closure of the G orbit of v con-
tains 0, G-v 3 0, if and only if there is an algebraic one-parameter sub-
group N C G such that 0 is in the closure of the \ orbit of v.

This allows one to reduce questions of stability to numerical questions
about the actions of one-parameter subgroups. In fact, one can do slightly
better. Among one-parameter subgroups A, there are those which are com-
patible with K in the sense that A is the complexification of its intersection
with K. In fact, one can reduce questions of stability to numerical ques-
tions about the action of one-parameter subgroups compatible with K. For
give o € g one can define a parabolic subgroup by

P(a) = {g€G: lim gexptag ! existsin G}.
t—>—oo

In the P(c) conjugacy class p - exp tap !, p € P(a), there is a unique rep-
resentative which is given by exponentiating an element in 7.

Thus we will define two numerical functions for exp t«, o € if.

For « € if, denote the a-weight decomposition of V by

V = @V;
where « acts on V; by weight a;. For v € V, write
v=2Xv, vi€eV;.
Thus exp to - v; = e’y;. The first numerical function is defined by

(8)
u(x, o) = min{a;: v; # 0}, where v liesoverx v # 0, x e P(V).
Thus if u(x, @) > 0, lim,,_,, exp ¢-v = 0, for over x, so x is unstable.

Now fix a positive definite ad-K invariant inner product (,) on if. Let
l«ll> = (a, ) for a € if. Define a composite numerical function
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(x, @)
9) M(x) = sup £
( A AP
a#0.

(10) Remark. Mumford proved [M] that the supremum is attained, so

there exists a € if, M(x) = u(x, @)/ | «||. The first easy observation is: if

M(x) > 0, x is unstable. The function M is G-invariant [see M or N].
The whole numerical connection is given in:

THEOREM 3.2. The Hilbert-Mumford Numerical Criterion for sta-
bility [M]

(i) x € P(V) is unstable if and only if there exists o € it such that
p(x, @) > 0if and only if M(x) > 0.
(ii) x € P(V) is semistable, but not stable, if and only if there exists
o € if such that p(x, o) = 0if and only if M(x) = 0
(iii) x € P(V)is stable if and only if, for all o €, u(x, @) < 0—so x is
stable if and only if M(x) < 0.

Now fix an ad-K invariant positive definite produét (,) on if.
To state a link between the moment map and geometric invariant the-
ory, it will be useful to introduce the dual moment map

(11) m*: P(V) — it x = m*(x), where m (x) = (m*(x),).

The numerical functions M: P(V) = R and u(, a): P(V) — R give bounds
on ||m||(x) = [[m*(x)| and the component functions m,, of the moment
map. If the bounds are attained, special phenomena occur.

LemMmA 3.1. Forx € P(V)and o €if

(D) plx, @) = (m,(x))/2
(i) p(x, o) = (my(x))/2 if and only if exp ta € G, if and only if

dm,(x) =0
i k@) 1 ma(x) _ [[m] ()
@ el = 2 al 2
(iv) M(x) < 1)

2

(v) M(x) = (||m||(x))/2 if and only if dm,,«)(x) = 0 if and only if
exp tm*(x) € G,
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vi) FM(x) = , then M (x) = sup

weit el

| m || (x) plx, @)
2
_ k(x, m*(x))
[| m* o) ||

Proof of the Lemma. To check part (i) we use Lemma 1.2(i). In
terms of the «w-weight decomposition for v over x, v # 0,

* mo(x) _ La;|v|?
2 Iv]?

= min{a;: v; # 0} = u(x, a).

For part (ii), it is clear that equality holds in * if and only if v is contained
in one a-weight space. This is equivalent to exp to € G,.. By Lemmas 1.1.
and 1.2 this is also equivalent to X, (x) = dm,(x) = 0. The last inequality
in (iii) is easy. Just notice that

_ Im*@| _ lIm]x)
2 2

el 2

my(x) 1 <m*(x), o >

el

Part (iv) follows from part (iii) and the definition of M (x). The last two
parts of (v) are equivalent by part (iv), so we need only check the first
equivalence in (v). For « assume dm,,«)(x) = 0. By parts (ii) and (iii)

o M) 1 ) _ L (a0 0) Ly

ImlG) 2 |mlx 2 I | x)
SO
1
M) = sup 25 S Ly,
acit el

Hence by (iv), M(x) = (1/2)||m || (x). We will next assume part (vi) and
prove = in(v). We assume, then

[m|(x) _ wplx, m*(x))

M = = T ml®

Thus, u(x, m*(x)) = (1/2)m,x() so by part (ii) exp tm*(x) € G,.. Part (vi)
follows from Remark (10). If M (x) = (||m || (x))/2 there exists « € if such
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that M(x) = (u(x, @))/||a|| = (| m]||(x))/2. Thus by (iii) (m(x))/| a | =
(m*(x), o/||a|)) = [|m]|(x) so @ = cm*(x) for some ¢ = 0. Q.E.D.

For special unstable points x, there is another connection between the
moment map and geometric invariant theory.

Definition. If x € P(V) and M(x) = (u(x, @))/||e||, @ € if. Then
exp ta is an adapted one-parameter subgroup for x.

LemmMa 3.2. For x € P(V), let G, C G denote the stabilizer sub-
group of x. Assume exp m*(x) C G, and assume m*(x) # 0. Then

(i) x is unstable
(ii) exp tm*(x) is adapted for x.

Proof. The hypotheses and Lemma 3.1 imply that exp tm*(x) - v) =
[exp(z| m] (x))/2]v, for v over x, v # 0. Thus lim,, _,, exp tm*(x) v =
0, since m*(x) # 0, so x is unstable. The definition of adapted and Part
(vi) of Lemma 3.1 imply exp tm*(x) is adapted for x. Q.E.D.

We will close this section by recalling a result of-Kempf’s which gives
content to the notion of adapted, for unstable points x.
Define P(a) C (G) to be the subgroup

(12) P(a) ={peG: lim expto-p-exp(—ta)exists in G}.
t——o

P(a) is a parabolic subgroup and hence fixes a flag. Note that if « is
adapted for x, so is any positive multiple of a. Also P(ca) = P(a), ¢ > 0.
Thus each ray of adapted o’s determines a flag.

THEOREM-KEMPF [K]. Suppose x € P(V) is unstable. There exists a
unique ray of adapted o'’s in if.
Thus there is a unique “worst flag” for each unstable x.

4. A Rationality Result for M*. In this section we first recall that
there is a natural notion of integral, and hence rational, elements in i¥;
then we prove Theorem 4.1.

We will say 8 € it as integral if exp(27i3) = e. This is equivalent to
saying there is an algebraic one-parameter subgroup A: C*¥ = G such that

exp(tB) = A(e").

Then (8 € if is rational if nf is integral for some n € Z.
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If T C Gis a torus such that T is the complexification of K N T, then
LieT = t; @ ity where f; = Lie (K N 7).

The integral elements of if; C it form a lattice of maximal rank inif;. For
the set of nontrivial algebraic one-parameter subgroups of 7, I'(T') is a free
abelian group, because 7' = C* X - - - X C* (r times) so the one parameter
subgroups are

ANE) = (@™, ..., t") for some r-tuple of integer nq, ..., n,.
Thus there is a natural isomorphism
ity = T'(T) ®zR.
Globally the Cartan decomposition implies

it = Uity

tEt

where ¢ is the set of maximal tori “‘in K”’, i.e. T C G is the complexification
of T N K.

A natural condition, which we will henceforth assume, on the ad-K
invariant inner product is

(12) (x,y)eZ for all x,y integral such that
[x,y] =0, (e.g.x =y).
Kempf proved that each adapted ray R «, o adapted for x, contains
an integral point.

ProrosrtioN 4.1.  Kempf (K) for x € P(V)

(i) there exists a € if such that M(x) = (u(x, @)/ | |
(ii) If M(x) = (u(x, a))/|| ], the ray R "« contains an integral
B eif.

TueEoREM 4.1. Let G, C G denote the stabilizer group of x € P(V).
Assume condition (12) holds. If exp tm*(x) € G, then m*(x) is rational.



A STRATIFICATION OF THE NULL CONE 1297

Proof. I m*(x) = 0, the theorem is trivially true, so we will assume
m*(x) # 0. ByLemma 3.1, M (x) = [u(x, m*(x))]/(]|m || (x)) so by Propo-
sition 4.1, the ray R -m*(x) C if contains an integral element, «,. Let
@, = o, /|| e, ||. Complete &, to an orthonormal basis &,, o, . . ., @, of if.
Write m*(x) as a linear combination of these basic elements. Thus

m*(x) = ms (x)&; + él mg, (X)o;.

But for i = 1, m, (x) = (m*(x), ;) = c(&o, @y) = 0 for some ¢ > 0.
Since m; (x) = 1/]| o, Hzm%(x),

m*(x) = Mg, (x)a,.

S
e |

By condition (12), ||, ||* € Z. Also exp ta, € G,, and q, integral imply
m%(x) = u(x, a,) € Z. Thus m*(x) is a rational multiple of an integral
element «,, so m*(x) is rational. Q.E.D.

5. The Convexity Theorem. Fix a maximal torus T C G and a Borel
subgroup 7' C B C G. Recall that if, = I'(T) ® R, so B determines a
positive Weyl chamber if,;" C if,. Since m*: P(V) — it is K equivariant,
with respect to the adjoint mapping on if, the image of each K-orbit under
m*, m*(k - x) has unique point of intersection with the positive Weyl
chamber. Let n2(x) = m*(k -x) N if,", denote the unique point of inter-
section. Thus we have

m:P(V) = it x - m(x).
THEOREM (GUILLEMIN-STERNBERG). The image via m of a G invar-
iant closed set in P(V) is a rational convex polytope in i £,

The theorem immediately implies

13) Remark. Suppose x is unstable then 72 (G - x) % 0, the distance
from 0 to #1(G - x) = 2M(x). The closest distance is attained at a
unique point in if*.

A proof, due to Mumford, is given in an Appendix to this paper.
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6. The Norm of the Moment Map. Define the norm of the moment
map by

(14) |m]?: P(V) - R [m|2(x) = |m*(x)|>

Here we are using the conventions (11) and (12).

Since m*(x): P(V) — if is K-equivariant with respect to the adjoint
action of K on if, and since || ||? is ad-K invariant, the norm function
[ m |2 is constant along K-orbits. Thus the restriction of | m ||>to G - x, the
closure in P(V) of the G orbit of x, may be computed from the polytope
m(G-x)

|| m ||*(x) is the square of the distance from the origin in if to
the point #2(x) in the polytope m (G - x).

We are particularly interested in the gradient flow and the critical
points of the norm function || m || 2. P(V) — R. Clearly the minimal points,
where ||m ||2(x) = 0, are critical points. The other critical points we will
call nonminimal critical points.

The first key fact is: at each point x € P(V), the gradient flow of || m ||
is given by the gradient flow of the (simpler) function m,: P(V) = R where
a = m*(x).

LemMMmaA 6.1. For o € if, let x, denote the canonical vector field on
P(V) determined by o

grad|m|?(x) = 2X,(x)  for a = m*(x).

Proof. Let «,, ..., a, denote an orthonormal basis of /f. Then
m*(y) = Li=omq(y)a;, and |m|*(y) = E?:omfzx,-(y). Thus
d ]]mllz(y) = 22,~=0mai(y)dmai(y). By Lemma 1.2, part v, grad m,, =
Xq, SO grad |m|? = Li<02myx,,. Thus, at x, by linearity,

grad [|m | 2(x) = 2Z1=omq ()Xo, (X) = 2X e () ().

Recall that the numerical function M: P(V) — R defined in (9) is G-
invariant [N]. Using this fact and Lemma 6.1 we can characterize the criti-
cal points of the norm function.

THEOREM 6.1. Supposex e P(V). Let M = M(g - x)forg € G. The
following four conditions are equivalent:
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(i) x is a nonminimal critical point of ||m ”2: P(V) - R
(ii) exp tm*(x) C G, the stabilizer group of x in G and m*(x) # 0
(i) M = 12||m*(x)|| = 1/72||m||(x) > 0
(iv) the convex polytope 11 (G - x) does not contain 0 € i¥; the distance
from 0 to m(G - x) is attained at ri(x) and equals 2M.

If x is a nonminimal critical point of |m||?: P(V) — R then

(a) x is unstable and exp tm*(x) is adapted for x
(b) m*(x) is rational

COROLLARY 6.1. Ifxandy = g ' x are nonminimal critical points of
[m||%: P(V) = R, then rii(x) = ri(y), and hence |m||*(x) = ||m |*().

Proof of the corollary. (Assuming the theorem) By part (iv) of
the theorem the distance from O to the polytope m(G-x) =
n'z(G—-y) is attained at m(x) and m (y). Since the polytope is convex and
does not contain 0, the distance is attained at a unique point in /f. Hence
mix) = m(y). Q.E.D.

Proof of Theorem 6.1. ByLemma 6.1, d || m||*(x) = 0 if and only if
dmy(x) = 0 where « = m*(x). Parts (ii) and (iii) are now equivalent to (i)
by Lemma 3.1. Part (iv) implies (||m [|(x))/2 = M > 0 which is part (iii).
Next we show that (iii) implies (iv). By Remark (13), distance
(0, m(G-x)) = 2M. Since M > 0, 0 ¢ m(G-x). Since ||nt](x) =
|7 (x)|| = 2M the distance is attained at #2(x) and equals 2M. Finally,
we check parts (a) and (b). By criterion (ii), d|m||> = 0 implies
exp tm*(x) C Gy. Since m*(x) # 0 Lemma 3.2 gives part (a) and Theo-
rem 4.1 give parts (b). Q.E.D.

The principal result of this paper is the following theorem which gen-
eralizes parts (i) and (iii) of Theorem 2.1.

THEOREM 6.2. LET ||m|?|g., denote the restriction of ||m |?:
P(V) = R to the G orbit of x e P(V). If d || m || *(x) = 0, then

(i) |m|?|G.x attains its minimum value at x.**
(i) [|m ||2 lg.x attains its minimum value on a unique K-coset.

Proof. If x is a minimal critical point, the theorem is just Theorem
2.1 parts (i) and (iii). Hence we may assume ||m Hz(x) > 0. Part (i) is easy
to check. Let M = M(g x),g € G. ByLemma 3.1, ||m| (g - x) = 2M, for

**QOne can check that the minimum is nondegenerate.
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allg € G. By Theorem 6.1, d||m||*(x) = 0 implies || m || (x) = 2M. Thus
|m||?|G. attains its minimum value at x.
To prove part (ii), it suffices to prove

#If x and y are critical points of || m ||*: P(V) = R which are in
the same G-orbit, they are in the same K orbit. (This will be
Theorem 7.1).

Next, we will compute the index of a critical point of ||m||?: P(V) -
R. Denote the hessian of ||m]|? at a critical point x by Hess || ||(x).

Then Hess ||m||?(x) is a real quadratic form on the tangent space
T,.P(V) viewed as a real vector space. We want to compute the number of
negative eigenvalues which is, by definition, the index of the critical point.
This is made easier for nonminimal critical points by Theorem 6.2.

There is an orthogonal decomposition of 7, P(V) into the space tan-
gent to the orbit G - x and the space normal to the orbit G - x.

T,P(V) = T(G x) ®c N(G-x).
Denote the restriction of the hessian to each of these subspaces by

Hess " ||m ||?(x) = Hess [|m |*(x)| 7Gx

Hess* || m | (x) = Hess | m |2(0) n-»-

LEMMA 6.2. Suppose d|m ]|2(x) = 0. Let oy, ay, ..., o, denote

an orthonormal basis of it. If |m|(x) # 0, we will assume o, =
(m*(x))/ (|| m || (x)). Then

() if |m|(x) = 0, Hess || m||*(x) = 2L!—odm,, @ dm,,.
Now assume ||m||(x) # 0, so x is a nonminimal critical point of |m |?*:
P(V) - R.

(i) Hess ||m ||*(x) = 2Z!—odm,, @ dm,, + |m | (x)Hess m, (x)).
Let V = @, V; denote the weight decomposition for m*(x), (hence for
a, = (m*(x))/(||m||(x)). Say exp a,t - v; = e%'v;,v;e V.LetV; = V[ @
V* denote the orthogonal decomposition of V; into a space V | tangent to

the orbit G * v, and a space V L normal to the orbit G - v, where v lies over x,
v # 0. This is possible because exp(¢«,) stabilizes v. *

*The spaces V] are the root spaces g, C g = Lie G, with respect to the adjoint action of «,,
so gy = {x €g|le,, x] = N-x},and g,/g\ N Lie G, = V] ifa; — ;) = \.
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(iii) Some weight a; = (|m || (x))/2
Choose v over x, w and w' orthogonal to v
(iv) Hess H*mao(")(n*vwo’ H*,,W')(4/”V||2)E,‘Eg(ai - (”m ” (x))/
2)Re{w, w’) IV,-,fO" v over x
(v) Hess ||m||*(x) = Hess " ||m ||*(x) + Hess* ||m||*(x)
(vi) index Hess ||m ||*(x) = index Hess ™ ||m ||>(x).
(vii) Hess™||m ||*(x) = 2||m || (x)Hess* m, (x)
(viii) index Hess* || m ||*(x) = 2 _):g , dimc V4.
il
i

Using the notation of the Lemma 6.2, we record the answer in
THEOREM 6.3. Suppose x is a critical point of |m|*: P(V) - R

(i) If x is a minimal point, the index of x is zero
(i) Otherwise the index of xis 2 ¥ (lliirﬁl(c) A\
m|[{x

a; < 2

(iii) The zero eigenspace of Hess' | m||*(x) is V,,, the orthogonal
complement of the line over x in V.

We can easily deduce the theorem from the lemma. Part (i) of the lemma
implies part (i) of the theorem. Part (ii) of the theorem follows from part
(vi) and (viii) of the lemma. Part (iii) of the lemma follows parts (iii), (iv)
and (vii) of the lemma. Part (iii) shows that the critical point x can be de-
generate (in directions not tangent to the K-orbit through x).

Proof of Lemma 6.2.  Since the ¢;’s form an orthonormal basis of ¥,
m*y = Li—omq(y)a;, y € P(V), so [m]? = Emii. Thus d||m|? =
L2m,dm,, and hence

* Hess ||m||> = 2 Zdm,, ® dm,, + 2 £ m, Hess m,,.

Ifm*(x) =0, mai(x) =0fori =0,1, ..., nsothe second term drops out,
and part (i) is verified. If m*(x) # 0, m, (x) = ||m|(x) since o, =
(m*(x))/||m*(x)]| and mai(x) = (m*(x), ;) =0fori =1, ..., n. Thus
part (ii) is true. For (iii), we note that x a nonminimal critical point of
| m ||? implies exp tm*(x) C G, which implies v, over x, is in one weight
space V; . Thus
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llexp zex, - v]?

dt |, d ra.
my (x) = = — "% = 2aq; .
° Iv]? dt |;=o °
But m, (x) = ||m||(x) so a;, = (| m|(x))/2, as we wanted to show.

Assuming part (iv) for the moment, we can check the rest of the
lemma. For part (v), we want to show that the subspaces N(G - x) and
T(G - x) of T, P(V) are orthogonal with respect to the form Hess || m || 2(x).
It suffices by (ii) to check that N(G -x) and T(G - x) are orthogonal for
dmy @ dm,, o € it and for Hess m, . But kernel dm,(x) O N(G-x),
since grad m, = x, € T(G - x). Thus the subspaces are orthogonal for
dm, & dm,. Next note that 1, (® V) = N(G-x), andII,(® V) =
T(G-x) where II(V — {0} = P(V). Since V* and V7 are orthogonal by
definition, (iv) implies that @V and @ V+}are orthogonal with respect to
Hess H*m% (x). Part (vi) follows from Theorem 6.2. The eigenvalues of
Hess " are 0 or positive since x is minimum of ||m ||?|5.,. Thus index
Hess ||m||*(x) = index Hess" | m ||%(x). Part (vii) follows from part (i)
and the fact that dm,, ® dmg,|y.x = 0 since kernel dm, D N(G - x).
For the last part, just note that II, ]Vi is an isomorphism for each i such
that a; # (||m||(x))/2, since v, over x, is contained in V; = a; =
(|| m || (x))/2. Clearly each V; is an eigenspace and the eigenvalue is nega-
tive only if a; — (|| m || (x))/2 < 0. Finally, we multiply by 2 because we are
computing real dimension. To complete the proof of the lemma, we must
compute the formula in part (iv).

1 1

* = — el . a1 o2
T*m, (v) oI 2 t:OHexp to, vl Tk (Z2a;]v;]?)
2
dIl*m, (v)(w) = ™ L a;({vi, ws) + (w;, v))
Ky, w)y + {w, v))
— mg, (%) -
v
-2 _ m%(x)> . -
=T < i 5 v, wiy + Cwgy vi)).

Differentiating again, and recalling that dm, (x) = 0, since x exp ta, €
Gy, and m, (x) = ||m||(x) gives
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E (= L9 Yty + o

Hess [I*m, (v)(w, w') = Bk

+ a term that vanishes if {<w’, v) = 0.

Thus

> <a,~ - M) Re(w, W'>|v,-

Hess m%(v)(H.,,vw, I, w’) =

v ii? 2
__4 _ Hmll(x)> ,
= ”v"z E <a,~ ) Re(w,-, w; Y.

7. The Uniqueness of Critical Points of ||m||%. In this section we
will complete the proof of Theorem 6.2 by proving

Tueorem 7.1. If x and y are nonminimal critical points of |m ||*:
P(V) — R which are in the same G-orbit, they are in the same K-orbit.

Proof. We will deduce the theorem from two lemmas and then prove
the two lemmas. First note the hypothesis implies, by Corollary 6.1.1, that
|m ||2(x) = ||m ||2(y) > 0. Denote by P the parabolic subgroup P(m*(x))
determined by m*(x), as in (12). (Since x is a nonminimal critical point,
m*(x) = 0). Let L C P denote the Levi subgroup which centralizes
exp tm*(x). By the Levi decomposition P = L - U, where U C P is the
unipotent radical of P. Also G = KLU, since m*(x) € if. Thusy = kfu - x,
wherek € K,leL,ue U. Thusy = kfu -x, wherek e K,feL,u e U. Since
y is a critical point of || m ||? if and only if the K orbit Ky consists of critical
points of ||m |2, it suffices to prove the theorem for y = fu - x. Using this
notation we state

LeMMA 7.1. Suppose x andy = fu - x are nonminimal critical points
of |m||®. Then u = e, the identity in G.

LemMma 7.2. Suppose ( € it, exp t3 & G,. Then mg(exp tBx) is a
strictly increasing function of t.

Assuming the lemmas, we will deduce the theorem. By Lemma 7.1,
y=1{x.IfleG,,y = x and we are done. Otherwisey = (' x, £ ¢ G,. We
will show that £¢ G, implies || m ||*(y) > | m ||*(x). This contradiction will
prove the theorem. Let K; = K N L. Since K;\ L is a symmetric space,
there is a geodesic joining the cosets [e] and [£]. Thus there is a real one-
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parameter subgroup exp t«a, « €if; such that the orbit [exp ¢« * e] contains
[¢]. Hence exp t,a-k;x = k,y for some k;, k, € R. Note that
m*(k;-x) = Adk, - m*(x), since k; € L, which centralizes exp tm*(x).
Now replacex by k,-x andy byk, 'y, soexp t,a x =y. We may assume
a is of length 1 and perpendicular to o, = (m*(x))/(||m | (x)) since
exp tm*(x) C G,. We may also assume ¢, > 0. Set « = «; and set
[ m %) = || m||*(exp t; - x). Complete g, ; to an orthonormal basis of
it. Set m, (exp tay - x) = m,,(¢). Then

lm |2@) = iéo m2 (t) = m} (1) + m2 (2).

Now m,, (¢) is constant since exp za; commutes with exp s and exp sy €
G, . For, if v lies over x, v # 0, then

1 d
Mg, (t) = ————————| |lexp say-exp tay - v||% so
0 llexp zory v ||* ds [s=0
1 d 5
) ==—— -~ sa;, t . = 2a:
mao( ) ” exp ta; - v||2 ds =0 ”e €Xp fay v” azo
where 2a; = ||m | (x).

Thus |m |2(2) = ||m|?(x) + m2 (2).
But by Lemma 7.2, m,, (¢) is strictly increasing. Since m,, (0) = 0 and
t, > 0, m2 (t,) > 0. We conclude

Im]*(») = Ilm[*(@,) > [|m|*©0) = ||m|*(x).

This contradicts the fact that | m ||>(x) = || m|*(y). Hence £ = e, and y =
x, so the theorem follows from the lemmas.

Now we prove the lemmas. The first lemma follows from the well-
known

GENERAL LEMMA. Suppose o € if. Let U(x) denote the unipotent
radical of the parabolic P(«) associated to exp ta. Let V = @V, denote
the a-weight decomposition of V; say exp to* v; = e™iy; for v; € V;. Then
forv;eV,uelU

wu'vi—ve @V, and u-vy, —v; #0
aj>a,»
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Proof of Lemma 7.1. We will show u # e implies |m|*(y) >
|| ||%(x). This contradiction will prove the lemma. Let V. = @V, denote
the m*(x) weight decomposition of V. This is also the weight decomposi-
tion for a, = (m*(x))/(||m || (x)). Say exp tay - v; = e*%iv;, v; € V;. Suppose
veV,v # 0liesoverx. Thenv € V,-o. from i,, since exp tm*(x) C G,.
Since u is in the unipotent radical of P = P(m*(x)), the general lemma
implies

uv—y= L where some v; # 0
aj>al’o

oru-vy = Eajzal, Vi, v, = v, somev; # 0a; > a; . Since f commutes with
0
exp to,, {v; € V;, so the o, -weight decomposition of fu - v is

w-yv= ¥ v,
ajza;,
Thus by Lemma 1.2,
my (fu-x) = ! r a-||17‘||.2.
° e vl a=za; 77

Since some v; # 0, a; > a; .
mo(fu - x) > 2a; = my(x) = ||m|(x) > 0.

Since ||m||*(y) > mga(y) = mﬁo(l’u -x), we have shown u # e implies
I [1(p) > [lm|* ).

This is a contradiction, so # must be e, and Lemma 7.1 is proved.

Proof of Lemma 7.2. We will show (d/dt)mg(exp tB-x) > 0. Let
V = @V, denote the weight decomposition of V for exp ¢3; say exp tBv; =
e'tiy. for v;e V, forve Vover x, v # 0, write v = Lv;, v; € V;. Then

exptB-v = L ebiy,.
By Lemma 1.2 part (i)

L2be?i|v,;|?

mg(t) oz mplexp 16 - x) = LePi|y|?
1
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If one computes the derivative one finds

4 L (b; = b2 |||y |?
i<j

E?mﬁ(t) = T e2tbflv,~lz)2

This expression is not identically zero since exp t8 ¢ Gy implies there is
more than one nonzero term in the sum exp ¢8 - v = Lebiv;, and if i # j,
b; + b;. Hence

d
— mg() > 0.

Thus Lemma 7.2 is verified and so the proof of Theorem 7.1 is com-
plete. Q.E.D.

8. A General Example: Weight Vectors Determine Critical Points of
[m]|2. Let T C G denote a maximal torus such that 7T is the complexifi-
cationof K N T. Let V = @V, denote the T-weight decomposition of V,
so T acts on V, by the character x. There is a perfect pairing between the
characters of T, x(T), and the nontrivial algebraic one-parameter sub-
groups of T, I'(T).

x(T) X T(T) > Z (x, 7) = {x, 7).

This clearly extends to a nondegenerate pairing x(7) @ R X I'(T) ®
R - R. Since I'(T) @ R = ify, x(T) ® R = if;. There is an obvious
inclusion.

x(T) ® R — if*,

Namely {x, ) = 0 for each « € if orthogonal to if.

ProrositioN 8.1. Suppose y, € P(V) is the image of a nonzero
weight vector v, € V. . Then

(@) m(yy) = 2x
(i) y, is a critical point of |m|?: P(V) = R
(ifi) index (y,) = 2 dimc V,

Go0=lIxl? x #x
x'#x+p, p aroot for G.
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In (iii), the inner product (x’, x) is the inner product induced on if* =
x(T) @ Rby (,) on if.

Proof. For (i) we first note that if o € i¥,, then

d
= el

= = — 2, @)t — 2
el [l &m0 o -

Thus we need only show that if « €/ f# , the orthogonal complement of if__
in if, then m,(y,) = 0. One can choose a basis o; of if# such that o; =
B; + +; where 8; and v; in Lie G are each root vectors. Denote the roots of G
associated with 3; and v, respectively by pg.and p,. . Recall the

General Fact. Suppose p is a root for G. Suppose ([ €
Lie G is in the p-root space. If v € V, is a T-weight vector, then

Jr| _ exp tB-veVyy,

t=0

SO

PV ar

lexp 6|2
=0

= L2Re<v, i exp tﬁ-v> =0.

IvlI? dt

t=0

Then this general fact implies m,, (y,) = mg (y,) + m, (y,) =0+0=0
so kernel m, D i f#. Hence part (i) of the proposition is verified. Part (ii)
now follows easily from part (i). For by part (i) exp tm*(y,) C T C ny , SO
Yy is a critical point by Theorem 6.1. For part (iii) we compute the index
using the formula in Theorem 6.3. There is an orthogonal decomposition
V =N(G'v,) @ T(G"v,) into the spaces normal and tangent to the or-
bit G - v, respectively. Let Vi, = V.. N N(G - v,). Then by the formula

index(y,) = 2 ) dim(V3).

G x) <l

Butif x’ # x + p for any root p for G, V,, = Vi/ , so the estimate in part
(iii) is true. Q.E.D.
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9. The Stratification of the Null Cone and the Limit Set. The gradi-
ent flow of ||m ||? determines a stratification of the null cone. Each point
x € N C P(V) is carried via the gradient flow into a critical point of || m ||2.
Each K-orbit (o) = K-« C if determines a stratum—namely the set of
points N,y C N which flow into a critical point x such that m*(x) €
K-a = {a). Our computation grad|m|*(x) = 2X,(x), where o =
m*(x) and X, is the canonical vector field determined by «, shows that the
trajectories of the gradient flow are tangent to the G-orbits. The limit set
C (o Of the gradient flow in the stratum N, is the set of critical points x of
|| m ||? with m*(x) € {a). The limit set C,, is K-invariant. The first result
of the section is

THEOREM 9.1. C(,y/k is a projective variety.

To prove the theorem, we will have to produce a projective variety
whose points are in one-to-one correspondence with the K-orbits of critical
points C,,y, in a natural way. Recall that a G-orbit contains at most one
K-orbit of critical points of || m ||?, by Theorem 6.2., so the theorem could
also be stated as: G C(,y/c is a projective variety. -

We will first define a smaller set C,, C C(,, and a “smaller” group K,
which depends on «, such that there is a set bijection C,y,x = Co/x-. We
will then prove that C, k- is naturally a projective variety. Define

= {x:d||m|* = 0and m*(x) = a} s0 Cy C C(qa

We will call C,, a blade of the limit set C(, .
Set

K3

M=
2
Then C, non-empty implies exp ¢(a)/ | a| - v = CM'y, for v # 0, over
x € C, by Lemma 3.1, part v. Let V), C V denote the M-weight space for
exp t(a)/|| «|. Thus

Ctx - P(VM)

If C, is non-empty, then « is rational by Theorem 4.1 and Lemma 3.1.
Thus, there exists a positive integer n, and an algebraic one-parameter
subgroup 7 € I'(G), such that 7oe’ = exp nat. Identify 7 with its image in
G and define
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L(7) = the centralizer of 7
L' =L(7),

Clearly L’ is a reductive group, which is independent of the choice of r.
Also P(V,,) is L(7) invariant and the action of L () on P(V,,) induces an
action of L’ on P(V,,) because 7 fixes each x € P(V,,). Every v # 0 over x
in P(V,,) is unstable for the action of L («), since exp (a/ | a|))t - v = eMtv,
so we are forced to passtoL’. Let K; = K N L(7); let K’ C L’ denote the
image of K ; thus K; and K’ are maximal compact subgroups of L (7) and
L’ respectively.

Remark 9.1.

(i) C(qy is the disjoint union of orbits of cosets K /¢, * C,
(ii) There are bijections of sets

Ciasyg = Cayy, = Ca_/K,

THEOREM 9.2.

(i) C, is the set of minimal points in P(V,,) for the action of L'

(i) Ciqy CL'-C, CP(Vyy)ss, where P(Vy)ss C P(Vy)is the set of
L' semistable points

(iii) Cy . is the Marsden-Weinstein reduction of P (V) for the
moment map my. determined by L', and hence is a projective
variety

(iv) CQ/K, =~ P(VM)SS/~ where ~ is extended L’ equivalence on
P(VM)ss

COROLLARY 9.2.1.
C<°‘>/K = CO‘/K' = P(VM)ss/~ .
Hence C(,, /, is a projective variety. The corollary follows immediately
from the remark and Theorem 9.2, and is just Theorem 9.1.

Proof of Theorem 9.2. Parts (ii), (iii) and (iv) follow from part (i) by
Theorem 2.4. Thus it suffices to prove part (i). We have to show m . (x) =
0 & xeC,.Letmy,): P(Vy) — if; denote the moment map for L (7). The
first observation is

m = mp on P(VM)
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Let U C P(7) denote the unipotent radical of the parabolic subgroup P(7).
Let U™ C G denote the unipotent radical of the opposite parabolic sub-
group. Then the Levi decomposition implies

g = Lie (G) = Lie (L(7)) @ Lie (U) @ Lie (U™)

View m(X) € g*. It suffices to show m(x)(n) = 0forneUorne U™.
However, then

2 d
m,(x) = m(x)(n) = W <E exptn v, v> =0

for v over x € P(V,,) by the General Lemma cited in the proof of Lemma
7.2. Hence * is checked.

Next note that there is a subgroup L’ (r) C L(7) such that L' (7) N
Im 7 is discrete and such that multiplication L’ (7) X Im 7 — L(7) gives a
finite surjective homomorphism of groups. Thus, Lie L’ (7) = Lie L(7) and
Lie Im 7 = C-«. Hence, we may identify the moment maps m; . with
mpr () and Mimr with mey,

m = mpy; = mp +ma onP(VM)
S0
mp(x) =0 & m(x) = my(x)

Since x € P(Vy,) exp t(a/|| ) - v = ™y, for v # 0 over x.
Lemma 3.1 implies for x € P(V,,)

mp(x) =0 & m(x) =m,(x) e xeC,

Thus C,, is the set of minimal points for the action of L’ on P(V,,) and part
(i) is proved. Q.E.D.

In [H], Hesselink, using the notion of an adapted one-parameter sub-

group, defined an algebraic stratification of the null cone. A stratum is

Ny, (ry = {x € N: M(x) = M and there exists a g € G such that
g7g~!is adapted for x}
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Since the numerical function M: P(V) — R is G-invariant, the strata are
G-invariant. Hesselink showed that the strata are Zariski-locally closed,
irreducible, nonsingular, rational projective varieties.

We will study the limit set L for Hesselink’s stratification. We will
show that the essential “‘pieces” of L are P(V,,),,. Hence the quotients of
the two limit sets are isomorphic projective varieties P(Vy)ss, - = C,, -
The relation of the two limit sets, then, will perfectly reflect the symplecto-
geometric definition of one and the algebro-geometric definition of the
other.

The natural limit set to consider from Hesselink'’s stratification is

L={yeN:y=}£n(}r(t)-x, 7 adapted for x }

Let Ly, (;y = {y = lim,o 7(¢) - x, x € N); , and 7 adapted for x }.

*THEOREM 9.3. Suppose x e N C P(V) and 7 is adapted for x. Let
y = lim;o 7(¢) - x. Then

(i) 7 is adapted for y
(i) M(y) = M(x)
(iii) 7 fixes y, so 7(¢t)-y = y for all t € e*.

COROLLARY. Ly ¢,y = Nps oy N L.

We first deduce the corollary from the theorem. The theorem implies
Ly ¢ry C Npg,¢ry- Supposey € L N Ny ¢y Theny = lim,o 7' () - x, 7’/
adapted for x. By the theorem, 7’ is adapted fory so 7’ € {(r) and M =
M(y) = M(x). Thus x € Ny, (,, and hence, y € Ly (,y.

Proof of Theorem 9.3. Part (ii) follows from part (i) and the defini-
tion of adapted. For part (iii), suppose v e V — {0} lies over y. The defini-
tion of y implies that v is in one 7-weight space, so 7(¢) - = t"v. Hence,
7(t) 'y = y. Thus, we need only check part (i). We shall first show that it
suffices to prove part (i) when G is a torus T and then we will prove part (i)
for a torus.

Suppose { € I'(G) is adapted for y. The intersection P({) N P(7)
contains a maximal torus 7. Since any torus is conjugate to a subtorus of
T, there exist p € P(7) and g € P({) such that prp ! = 7’ and qgéq l=¢’
are in I'(T). Then 7’ is adapted for p-x = x’ and lim,_o 7' (¢) ' x’ =
py=y,andy=p7ly".

*Ramanan and Ramanathan have recently proved part (i).
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Assume now that the theorem is proved for 7. Set P = P(7) = P(7’).
Then we could deduce that 7’ was T-adapted for y’. However, the para-
bolic invariance property of u implies that the adapted one-parameter sub-
groups for the Porbitof y’ are P 7’ = { pr'p': peP}. Sincey =p 'y’
and 7 = p~l7'p~1, 7 is T-adapted for y. So

T 7
u<y, ———> = sup u(y, —> = M7(y).
Il 7eI(T) k4

Since I'(T') contains an adapted one-parameter subgroup for y, M(y) =
M(y). Hence, 7 is adapted for y.

To complete the proof, we must prove part (i) for G = T a torus. Let
k(T) denote the set of characters of T. There is a perfect pairing (, ):
k(T) X T(T) = Z. Let V = @)V, denote the T-weight decomposi-
tion of V, so 7(¢) - Zv, = Et‘x’”vx. Forx e P(V),veV — {0} over x, let
S7(x) = {x: v, # O wherev = Iv, }. Let S7(x) C x(7) ® R denote the
convex hull. We may identify I'(7) ® R with «(7) ® R via the perfect
pairing. Since u(x, (7/]| 7)) = min{<x, (7/|7|)>: x € S7(x)} = the dis-
tance from 0 to the projection of E;fx_) onto the direction 7,

Myp(x) = sup u(x, ——‘f—> = distance (0, S7(x))
7er(r) 71

By hypothesis Mr(x) = u(x, (7, ||7]])) so the distance is attained in the
direction 7. By definition of y, S7(y) C Sr(x) is the closest face to 0. Thus,
dist (0, §T—(—y)) = dist(0, S7(x) and the distances are attained in the same
direction 7. This proves part (i) for the case of a torus, and completes the
proof of the theorem. Q.E.D.

Let Ny, = {x € Ny (ry: 7 is adapted for x }. Hesselink called these
sets blades. Let Ly, , = Njps . N L. We will call Ly, , a blade of the limit set
L N Ny ¢qry. As before, let V,, C V denote the M-weight space for the
action of (1/|7||) - 7. If N) , is non-empty, V,, is non-empty since

Ly, C P(Vy)

Again, as before, let L (7) denote the centralizer of 7 and let L’ = L (7)1, -

THEOREM 9.4. Let P(V,,),, denote the set of L' semistable points.
Suppose x € P(Vy,)
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(i) x e P(Vy) s © 7is G-adapted for x
(11) P(VM)ss = LM,T

Note: Part (ii) follows immediately from part (i). The forward implication
in (i) shows P(Vy)s C Ly .. The backward implication in (i) shows
LM,r c P(VM)ss'

The main result of the section will follow easily from Theorem 9.2 and
Theorem 9.4.

Given a rational « € i¥, let n, denote the smallest positive integer such
that n,a is integral. Then there exists 7, € I'(G) such that 7,0e’ =
exp nqat. Let L’ = L(7,)/1ms, and let K’ C L’ denote the image in L' of
K N L(r,),so K’ C L’is a maximal compact subgroup.

Using all of this previous notation, the main result is

THEOREM 9.5.

(i) There is a one-to-one correspondence between the gradient flow
stratification and Hesselink's stratification* given by

Neay = Npiryy where M = M
“ z

Corresponding blades of the two limit sets are related by:
(i) C, C L Cy C Ly, = P(Vp)g
(iii) C, K is the Marsden-Weinstein reduction of P(Vy) by K’
(iv) LM’TDI/L’ is Mumford’s quotient of P(Vy;)s by L'

Hence

(v) There is a natural isomorphism of projective varieties

C

ar LM,TQ/L,

(vi) The quotient by K of a stratum of the critical locus of | m|?,
Clay /i » Is naturally isomorphic to the quotient of a blade of either of the
two limit sets.

C(a)/K = Coz/K: = LM,TD(/L;

*F. Kirwan has proved the two stratifications are the same. However, the limit sets are not
the same.
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Proof of Theorem 9.5 (Assuming Theorem 9.4). Theorem 9.4 im-
plies Ly, = P(Vjy)s,. Thus, partsii, iii, iv, v, and vi follow from Theorem
9.2 and its corollary. Hence, it suffices to check part (i). If N, is non-
empty, then C,, is non-empty, so by part (ii), N (s, is non-empty, so the
mapping is well-defined. Next we check that the mapping is injective. Sup-
pose {7,) = (7,) and ||«| = ||a’|| = M/2. Then 7, = gr,g~'. How-
ever, 7, and 7, are both real, so g € K, and then k7,k~! = 7;.,. This
implies o’ = k-« or {a) = (a’) and hence N,y = N(,,. Finally we
must check that the mapping is surjective. Assume N, (,, is non-empty.
We may assume that 7 is the generator of the ray in I'(G') which contains 7.
Then (7) = {gn-7g"';n e Z*, g e G}. Hence, () contains a (unique)
K-conjugacy class of real one-parameter subgroups, so we may assume 7 is
real. Then Ny .y = G+ Ny, non-empty implies Ny, ., non-empty which
implies Ly, , = P (V) is non-empty. Thus P(V,,);; contains a non-empty
set of L’ closed orbits and hence P(V,,),, contains a non-empty set of K’
minimal vectors. By Theorem 9.2. part i, this set is C,, where ||| = M/2
andn 7= 7,forsomen e Z*. Thus {r,) = (7), and N¢yy D C,isnon-
empty so Ny = Ny (ry. We have verified surjectivity. Q.E.D.

Before proving Theorem 9.4, we will make precise the notion of
semistable and unstable for the action of L’ = L(7),im,-

Remark 9.1. There exists a reductive subgroup H C L(7) such that
H X C - L(7) (h, t b h-7(2) is a finite surjective homomorphism of
groups. Thus I'(L’) = T'(H). Hence x is L’-semistable or L’-unstable if
and only if x is H’-semistable or H'-unstable.

LemMA 9.1. Suppose 7(t) x = x.Setx’ =p-x,p € P(7); set 7’ =
pp Y, s07'(t) x' =x'.LetL” = L(7'),qm:)- Thenx'is L"” semistable if
and only if x' is L’ semistable.

Proof. SetH' = pHp~!. Since L(r’) = pL(7)p !, the remark im-
plies x’ is L ” semistable if and only if x’ is H' semistable. Suppose v € V
liesoverx,v # 0,s0 V' = p-vliesoverx’ = p - x. Then0eH v o 0e
H'-v' =pHp~ ' pv =p-Hy. Q.E.D.

LEmMMA 9.2, Suppose 7(¢) - x = x and p(x, (7/|7||) = M. Then x is
L’ = L(7)/im, unstable if and only if there exists { € I'(L(7)) such that
wlx, (E/151D) > M.

Proof. Remark 9.1 implies I'(L(7)) = T'(H) ® Z-7 where
n-r(t) = r(t")ifn = 0and n-7(t) = 7' (¢/"!) for n < 0. Given ¢ €
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I'(L(7)), then there exist {’ € I'(H) and n € Z, such that ¢(z) =
C'()(n-7@)). Clearly || ]| > |n|| 7] so

ol ey) = wle )+ e i) = e i) + 0l )

_ ¢ >
+ M.
< <l
Thus, M < p(x, /|| €)) = 0 < plx, ¢’). Conversely

. ¢
0<nlx, ¢ =M< “("’ e n> Q.E.D.

Using these Lemmas, it will be much easier to give the

Proof of Theorem 9.4. It suffices to prove part (i). Suppose 7 is G-
adapted for x; then the definition of adapted and the definition of V),

imply

M= ”<x, __T__> M) = = sup l‘«(x, 7)
7] remi@ |7l

Thus Lemma 9.2 implies x is not L’ unstable; this is equivalent to saying
that x is L’ semistable.

Suppose x € P(V),,) is semistable for the action of L’ = L(7) 1, . Since
Vi is the M-weight space for the action of (1/|7|)7, 7(¢)-x = x and
u(x, (#/||7|)) = M. In particular, if v € V), v # 0, lies over x, then
7(t)v =1t v, wherea = | 7| - M > 0, so v is G-unstable. Hence we may
seek a G-adapted one-parameter subgroup for v. We want to prove that 7
is G-adapted for x, so we must show that

]
M=plx,—) = , = M(x).
"(" ||T||> E&%"(" ||:||> (x)

Suppose ¢ € I'(G) is G-adapted for x,

Since the intersection of any two parabolic subgroups contains a maximal
torus, there is a maximal torus T C P(7) N P(¢). Since any torus in either
P(7) or P({) is conjugate to a subtorus of 7, there exist p € P(1) and g €
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P(9)such that prp ™! = 7’ and gg ™! = ¢’ are both in I'(T). Then 7’ is
also adapted for x, so u(x, ($'/|| ¢’|])) = M(x) > M. Also {’ e L(7’), the
centralizer of 7’. Letx’ = p - x; then 7’ fixes x’ and x’ is semistable for the
action of L(7’)/im,» = L” by Lemma 9.1.

Claim. If

) (1) >
,——— | > M, th s M.
“Gurn )

The claim implies by Lemma 9.2, that x’ is L ” unstable. This contra-
dicts the fact that x’ is L” semistable. Thus u(x, (/| ¢ |)) < M. Since
plx, '/|I¢" 1)) = M(x) and M(x) = M, we conclude M(x) = M and
hence, 7 is G-adapted for x. Thus it suffices to give the

Proof of the Claim. LetV = &, 1)V, denote the T-weight decom-
position of V, where «(T) is the set of characters of 7. Denote the natural
perfect pairing «(7)) X I'(T) — Z by (,). The symmetric Z bilinear form
on I'(T') induces, via the perfect pairing, a symmetric R bilinear form on
k(T) ®zR. Giveny e V,vovery,v =Ly, # 0,v, €V, let S7(y) = {x:
v, #0}, and let S7(y) = the convex hull of S7(y). Then

Mr(y) 55 sup ;4( , > = distanic(0, S7(y)).
7€T(T) [kd

In our situation u(x, (7/| 7|))) = p(x’, (v’ /|| 7" ||)) = M. Since 7’ also fixes
x’, §7(x") is contained in the hyperplane ¢, (7'/||7’|])) = M. Since x =
p Lx',p leP(s), m—) is contained in the half-space {, ('/||7'|])) =
M and S1(x’) is a face of m However, M (x) = u(x, ('/|IS'])) =
M (x) = distance (0, m) > M implies S 7(x) is contained in the open
half space ¢, ({'/|| ¢’ |)Y > M. Since Sp(x’) C Sp(x), Sp(x) is also con-
tained in the open half space ¢, ({'/||’]])Y > M, which is equivalent to
saying u(x’, (§’/|/§’|)) > M. This proves the claim and completes the
proof of Theorem 9.4. Q.E.D.

10. An Example: SL(n, C) Acting on Homogeneous Polynomials.
In this section we will compute the moment map and some of the critical
points for || ||? for the case

G = SL(n, C) K =SU(n) and V = Sym?(C")*.
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For several cases, we can compute the minimal vectors and all of the criti-
cal points. Here the action of G on V, the vector space of homogeneous
polynomials of degree d in n variables is just linear change of coordinates.
We will let G act on the right so the action is

VXG>V (f,g~fog.

In this case P(V) parametrizes hypersurfaces of degree d in P* !,
The decomposition Lie G = f @ ifis

gf(n) = n Xn matrices = n Xn matrices + n Xn matrices = iJ¢ @ IC.
trace 0 skew hermitian hermitian
trace 0 trace 0

An ad-K invariant inner product on g{(») is defined by
(a, B) = Re(trace af3) o, B € gf(n) = Lie (G).

If o and @ are integral, («, 8) € Z. Also (,) is positive definite on JC = i¥,
and i3 @ JC is an orthogonal decomposition of gf(n).

Thus the dual moment map m*: P(V) — if will assign to each hyper-
surface of degree d in P*~! an n X#n hermitian matrix of trace 0. The K-
equivariance of the moment map implies that after moving the hypersur-
face by some unitary transformation, the assigned matrix m* ([ fo k~1]) is
diagonal, with real entries on the diagonal. The map m: P(V) — ifi,
which maps G-invariant closed sets to polytopes, is equivalent to the eigen-
value map

17) N:P(V)—R” A= Ax) = (N(x), ..y Ap(x)).
where A\ {(x) = -+ = \,(x) are the eigenvalues of m*(x).

To compute m*(x), we must first fix a K-invariant Hermitian inner prod-
uctonV. Since V X G = V is an irreducible representation here, there is a
unique (up to scalar multiple) K-invariant Hermitian inner product on V.
Let Sym(®4(C")*) C ®4(C"*) denote the subspace of d-fold tensors in-
variant under permutation of the factors. The induced inner product on
®%(C™) is K-invariant. Define a K-invariant hermitian inner product ¢, )
on Sym?(C™*) by declaring the natural quotient map

Sym(®4C™*) = Sym?(C"*)

to be an isometry. Then the inner product ¢, ) is computed by:
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(1) IfXy, ..., X, form an orthonormal basis of C** the monomials of
degree d, m* = X{1 - -+ X5» form an orthogonal basis of V =
Sym¢(C™*).

o

Q) |m*| = —Tj]_ where [Z] = ﬁ

We will use the convention that {,) is complex linear in the first factor and
conjugate linear in the second factor.

Now we can compute the moment map. Fix an orthonormal bases
X{, ---5 X, Of C™*. Choose a defining equation f = 0 for x € P(V). Write
f = Ec,m*, c, € C. Define an n Xn hermitian matrix H(f) by

1 9 1 of af>
15 HGyi=-— (-2 =_L1 1/ )
> HP= 47 <f % ax,-f> T < 3

The second equality is an easy calculation. Clearly any two defining equa-
tions f = 0, f* = O for x determine the same matrix, since f’ = Nf for
some A € C — {0}.

LEmMmaA 10.1. ForV = Symd(C"*), G = SL(n, C), the value of the
dual moment map

m: P(V) = it

at a hypersurface x defined by f = 0 is
1 d
—m*(x) =H(f) ——1
2 n

where 1 is the n Xn identity matrix.

Proof. We first check that m *(x) is hermitian of trace 0. The second
equality in (15) shows H(f) and hence m*(x) is hermitian. Next: trace
m*(x) = 2(trace H(f) — d). But by (15)

(7 Exngl) = T 4 =d

trace H(f) = 3
X

IIfIl2
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by Euler’s formula, so trace m*(x) = 0. Next we check that the formula is
correct. It suffices to check

1

d , 1
(**) DTS o | foexp ta||* = i(m*(x), o)

for « running through a (real) basis of Lie SL(r, C). We will use the basis
Ei,N—1FEi fori #j,1<i,j<nandE!—Eifl,i=1,...,n—1. As

usual E{ is the matrix with 1 in the i, jth position and zeroes elsewhere.
Thus let « = FJ. Then

. d . af
— o tE: = — I+ tF)X = x;
dt t:of exp El dt t-_—()f( t) xJ 3x,~
SO
1 1 d ‘ 1 6f>
— — I = —= Re(f; x; —).
P) “f”Z dt t=0”f°exp tEY| ”f”2 e<f Xy dx;
Also,
Re : 1 ;1 of . d
—2—(trace m*(x)E%) = > Re m*(x); = l|f||2 Re<f, x; a—x,> — 5{-71— .
Since H(f) is hermitian we conclude
1 . 1 6f> . d
— (m*(x), E%) = Re(f, x; —) — & —.
y (nt. B = i Relfi i) — o

Thus ** holds for « = E%i # j and for « = E! — Eifl. Next set « =
N —1Ei. Then

1
ik

1 d
2717 dt li=o

Re<f, V—1x; :—f>

X;

| foexp eN—1 EJ||* =

1 af
Tk I“‘<f % 3¥,~“> ‘
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Since

—;—(m*(x), V-1E}) = % RevV—1m*(x)i =

1 of
“me@%aﬂ'

&ﬁm@”g>

7

We have checked ** for « = v —1 E/. Q.E.D

Henceforth, for convenience, we will write
m*[f] = m*([ f]), when f # 0, fe V.

It would be nice to understand which polynomials f had diagonal moment
matrices m*[ f]. Then, essentially, [ f] is m*[ f] up to a permutation of
the diagonal elements. Also, if m*[ f] is diagonal, then f has some sort of
optimal form. If

hi 0 hi—d/n 0
H(f)= -, som*[ f] =
0 h” 0 h” —d/n

We will write (when it is clear that m*[ f] is diagonal)
m*[f] = h — (d/n).

If m*[ f] is diagonal, it is easy to ““graph”. Recall that the convex hull
of the weights o, Lo; = d, is a polytope in R” with vertices “x¢”’ and with
barycenter (d/n) = (d/n, ..., d/n). U m*[f] = h — (d/n) is diagonal,
then m*[f] is graphed as the vector from the barycenter to # =
(b, ..., h%)inR™". Forn =3, withX; = X, X, = Y, X3 = Z

(d/n) = (1,1,1)
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Furthermore, if m*[f] is diagonal, |m||[f] = ||k — (d/n)|| where
the right side is just computed from the standard Euclidean norm. With
this interpretation and notation in mind, we note the following easy but
graphic consequence of Lemma 10.1.

COROLLARY 10.1.1%*

(i) For monomials m* = x$1, ..., x5, m*[m®] is diagonal and
m*[m*] = o — (d/n).

(i) If m*[f]is diagonal, and f = Xc, (m®/||m*®|), then

2
mf] = Z 2 ) so

« |I711?
m*[f] is a convex combination of the vectors o — (d/n), such
that ¢, # 0. Thus m*[f]is “in the weight polytope”.

(iii) Iff = Ecom® where c,, # 0 implies c, + ¢; — ¢; = 0 for i # j,
1 <1i,j < n, then m*[f] is diagonal. Here ¢, = (0, 0, ..., 1,
0,...,0).

it’h position.

(iv) Ford = n = 3, m*[\N(x> + Y° + Z°) + 3uXYZ] = 0 for all
N\, w€C. Thus N(X3 + Y3 + Z3) + 3uXYZ is a family of mini-
mal vectors in Sym3 (C3).

We illustrate the corollary in the case d = 4, n = 3 using variables X, Y,
and Z.

if f = ax32 + bxjy + cy3x

then m*[f] is diagonal and

my[xzzzl the vector "m*[f]" ends
somewhere in the shaded

triangle

the "zero vector" i.e. the barycenter.

**Parts (i), (ii) and (iii) and their graphic interpretation can be generalized to the moment
map arising from an arbitrary representation of a reductive group G on a complex vector space
V.
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For arbitrary values of d and n, we can find a number of critical points
of ||m]|?: P(V) — it, V.= Sym?(C"*) and determine their index.

Lemma 10.2.

(1) Any monomial m® = xj! - -+ x% determines a critical point of
|m||?: P(V) = if. Furthermore

index[m®] = 2 card{m®: 8 # « and< (@ — (@d/n) ,B8— (d/n)>

lloe = (d/m)]|
< |a = @m)]

where (,) here denotes the usual inner product on R”
(ii) The critical points with the largest index are the image of a high-
est weight vector, e.g. x¢

index[x¢] = 2(dim¢ Sym?(C™) — 1) = 2 dim¢ P(V).

Proof. Immediate from Lemma 10.1, and the index formula theo-
rem 6.3

(@ - (d/n) , B - (d/n))
@~ (a/n)|

Thus a monomial m? contributes to the index of m® if and only if the pro-
jection of 3 — (d/mn) in the direction of o« — (d/n) is less than
la — (d/n)]|. Q.E.D

LetV,, = Sym?(C™*). There is a natural inclusion Vin = Vantk
for k € Z, k > 0. One may inquire about the image of the critical points
and the mininal points. For V; , = V, , 1, The old weight polytope, from
V.., is a face of the new weight polytope (of V; ,+4). Denote the respec-
tive barycenters by

B,=(d/n,...,d/n,0,...,0)

n-times k times
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and B, x = (d/n + k, ...,d/n + k). ThenforfeV,,, if m*[f], is
diagonal, m*[f1,+x = B,+xB, + m*[f], (vector sum). Here the sub-
scripts indicate the domain of the dual moment map.

Lemma 10.3.

(i) If[f1€P(V,,)is a critical point then [ f] € P(Vy ,4+1), k > 0,isa
nonminimal critical point. The two indices are related by

indexn+k[f] = index,, [f] + 2(dimc(dimCV,,+k - dlmCV,,))

(ii) The gradient flow of |m|%+x: P(V,+x) = R on the image
P(Vy,) = P(Vy,4x) is just the gradient flow of lm||2:
P(V;,) = R.

Proof. We may assume m*|[f], is diagonal and m*[f], = h —
(d/n). Then m*[fl,4x = (Byy .-+, h,, 0, ..., 0) — (d/n + k). But [f]
critical for m*[ ], implies exp th fixes [f] € P(V,,) which implies
exp tm*[f1, 4 fixes [f]1 € P(V;,,+4), so [f] remains a critical point. The
nonminimality of [f] in the bigger space follows from |m |,+.[f] >
| Bn+xB,|l > 0 for & > 0. By the next formula (theorem 6.3)

index,+;[f] = index,[f] + card{m®: o« = oy, ..., Ay41),

some o; # 0 fori > n so
index, +4[f] = index,[f] + 2(dimcV, 45 — dimcV,,).
Part (ii) follows from the fact that
grad”m||2(x) = grad my(x), a = m*(x). Q.E.D.

The lemma implies that one of the projective varieties Cyy, o/ from the
nullcone of Sym?(C™*) will be Sym?(C" ), /51 (n—1.c)- For the cases of
Sym?(C%*) and Sym3(C*"*) we have computed all of the critical points.

LemMa 10.4. Let V = Sym?(C%"), so P(V) = P?. Then every K-
coset of nonminimal critical points contain a monomial.

Proof. Suppose [ f] is a nonminimal critical point. After replacing f
byfok, perhaps, we may assume m*[ f] is a diagonal matrix. Thus m*[f]
is a nonzero multiple of o = [(1) _‘l’]. Hence exp ta fixes [f]. But f =
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Iioc; X Y#andexp ta- X' Y? = ¥ X1 y?~i Thusexp to acts by a
different weight on each monomial so if [ f] is to be fixed by exp ta, [ f] =
[X'Y“™"] for some i. Q.E.D.

Thus the projective varieties Cy; ./ arising from the stratification of
the nullcone for P(Sym?C?*) = P are points. The correspondence is

i—d/2 0
0 j—dn2|’

Xyl i<je CM,o:/GM:J—z—l, o = m*[x'y/] = 2{

LemMA 10.5. (The critical points of ||m||? for plane cubic curves).
LetV = Sym3 (C*). Let G = SL(3, C). Each K-coset of critical points of

|m||?: P(V) = R contains an [f] from the following list. The f’s listed
have diagonal moment matrices.

F Index m*[ f] eigenvalues = diagonal entries
X’ 9 [G,0,0—-(11,1D)=@2, —-1,-1
X’y 8 [@2,1,0—(1,1,1)=(@,0 -1
xX’z+v'x 6 [3/2,1,1/2) =11, 1,1) = (1/2,0, —1/2)
andf =t e, X' y?! 6 |(3/2,3/2,0) —(1,1,1) = (1/2, 1/2, —1)

which is minimal

in Sym®(C¥" )+
3x%z + 273 5 1/13(5, —1, —4)
AXE + Y2+ Z%) 4 3uxyz 0 |[(,0,0

Proof. One can check that the f’s listed are critical points by noting
that exp tm*|[ f] fixes [ f]. One can also check their index from the index
formula. To see that these are all of the critical points, one can simply write
down all of the cubics g that are fixed by a diagonal one parameter sub-
group exp ot. Then one calculates m* [ g]. If m*| g] is a multiple of «, g is
a critical point. To do these calculations, it is very helpful to use the weight
diagram as follows

The line represents a one-parameter
subgroup fixing

2 2
g =ax z = By z
Now choose a and B

2 so m*[g] is the foot of the

perpendicular so a = B
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Now one can check ** and find that up to K-equivalence, x> + y° is
only one minimal cubic Z¢—, c;x'y3~'. Hence the projective varieties
Cw,q/c arising from the stratification of the null cone for P(Sym>C>*) are
again points and the chart shows that there are S points, Cp /6.

For P(Sym3 c*, ““quartics in 3 variables”’, though, not all of the vari-
eties Cyy o/ Will be points. For there will be one strata with C, , equal to
the orbits of A(x® + y* + 23) + 3uxyz, \, p € C, since every minimal cubic
in 3 variables is K-equivalent to one of these. Thus this variety Cy o, Will
have dimension 1 and will be singular at ““the two cubics” with complex
multiplication and “at xyz”’.
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APPENDIX: PROOF OF THE CONVEXITY THEOREM

By DAavip MUMFORD

In this Appendix, we prove the convexity theorem of Section S by
using the techniques of geometric invariant theory. Half of the proof in
fact can be viewed as giving a purely algebraic definition of the convex
set Image (m). First fix the following notation:

G  a reductive algebraic group, Lie algebra g

K a maximal compact subgroup, Lie algebra f

T a maximal torus such that 7' = complexification of K N T
B a Borel subgroup containing T

t  the Lie algebra of T

t™ the positive Weyl chamber determined by B

V  a representation space for G ’

{,) an inner product on g satisfying (12).

+

As in Section 5, we get moment maps
m*: P(V) — it
m: P(V) = itt.

Let X C P(V) be a G-invariant subvariety. We wish to prove that
m(X) is a convex rational polytope in it*. The proof consists in 2
steps.

Step I: Let w € Weyl group carry t* to —t™ and let an integral
point (in the “weight” lattice) o € t (define a character of T, hence a
line bundle L* on G/B. Then I claim:

(A1)  Vaeitt, a = B/n, B integral
(—w)a € m(x) & the generic point of X X G/Bis O,(n) ®
LP-semi-stable.

Step II: Let G act on VY, ..., V™ and let X C P(V?) X--- X
P(V) be a G-invariant subvariety. Then there is a rational convex poly-
hedral cone C C R such that for allk; € Z, k; = 0,
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(A2) (ky, ..., k,;) € C & the generic point of x is Op(k{) R
Op(k,,)-semi-stable.

(A1) and (A2) together prove that the rational points in m (X) are the
rational points in a rational convex polytope. In view of lemma 2.1, m and
hence m is generically regular and hence rational points will be dense in
m(X), unless the intersection of K and the generic stabilizer G, is positive
dimensional. In the rather special case that dim K N G, > 0, all x, we can
still argue that rational points are dense in n2(x) as follows: Replacing x by
kx, some k € x, we may assume m (x) € it* and apply lemmas 1.2 and 2.1
for the moment map just for the torus 7. By lemma 1.2, the components of
m in directions in 7' N G, are rational and constant on T - x; by lemma 2.,
the other components vary independently hence can be made rational by
replacing x by ¢ * x, t € T arbitrarily close to e.

Proof of Step 1.  This follows from 2 easy lemmas:

Lemma A3. Embed P(V,{) X P(V;) inP(V; ® V,)as usual. Then
the moment map for P(Vy) X P(V,) is the sum of the moment maps for
P(Vy), P(V,):

mpwv,ev,)(x & y) = mpy,)(x) + mpwv,)(y).

This follows from the formula of Section 1.
LEMMA A4, Let a et be integral and let it define L* on G/B. Map
G/Bto P(V), V =T'(G/B, L*): call this ¢: G/B — P(V). Then
mg wvye /) = K-orbit of iaini-t
This follows from the calculations of Section 8. Putting these together, we
see that

gen. pt. of X X G/Bis & Image (myxxg/p) where x X G/B is
9,(n) ® LP-semi-stable mapped to P(V); V = T'(0,(n)) ®

(L)
& Ix € X,y € G/B such that n - m,(x) +
mg/p(y) = 0

& 3x € X such thatn m,(x) + =0

& Ax e Xsuchthatn -m,(x) + w(B) =0
or m,(x) = (—w)(). Q.E.D.
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Proof of Step I1.  Decompose V¥, into weight spaces with respect to
T:

Ve = @ v9, W, C tx
ieW,

For each x € X, write the coordinates of x in the Segre embedding as

( r v,(l)) ® R ( ' z v,('")), W@ e Vi,

ieW; iew,,
Define
So(x) = {i € W, |v® # 0}
and call the m-tuples of subsets ($;(x), ..., 8,(x)) the “T-state” of the

point x. As there are only finitely many possible T-states, X decomposes
into locally closed pieces

X = HXg
where all points on X, have the same T-state. For each {, either G - X, is
dense in X or is part of a finite set of proper subvarieties. Call the T-states of
the X, such that G - X, is dense the generic T-states, and write then
(8)155 ---» 84p), B € 1. We now apply the numerical criterion of semi-
stability of Geometric Invariant Theory:
x € X semi-stable & Vg € G, V one-parameter subgroups A € I'(T),

u(g-x,\) =0.

If semi-stability is calculated by the embedding Op(k;) - & 0p(k,,),
then

p(g x,\) = max L’< Y kasa>
s1€8(gx) a=1
[smesm(gx)}

where A corresponds to £ € t. Therefore:
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the gen. pt. x e X is © V generic T-states 3, V{e t
Op(ky) ®---® Op(ky,,)- m
semi-stable max _{ <a§1 ka8a> = 0.

o
l<asm
To analyze the right hand side, define
85 C R™ X t*
by
85 ={(ky, ..., kp, L koso)|k; €R, k; = 0, 5, € convex hull ($,5)
Then 8;‘ is rational convex polyhedral cone such that

85N [(ky, ..., k) X t*] = ¥ k, (convexhull of 8 4).

The condition on the right hand side is just that for all 3,

0 € X k,(convexhull of 8 ,5).

But 8;3" may be defined by a finite set of inequalities

(ki ok, ) €8F & T eqgke + b, (x) = 0,

hence it follows that the right hand side is equivalent to L, e,g,k, = 0, all
B, v which defines a rational convex polyhedral cone. Q.E.D.





