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On the Kodaira Dimension of the Moduli Space of Curves

Joe Harris and David Mumford

The purpose of this paper is to prove that the moduli space .#, of curves of
genus g over C is of general type if g is odd and g=25. Moreover, the Kodaira
dimension is at least 0 if g=23. It appears that a variant of our technique,
which is technically more difficult, will prove that .#, is of general type for all
sufficiently large g. In order to keep this paper to a reasonable length, we are
treating only the odd genus case here, postponing the even genus case to a
later paper.

The result of this paper should be contrasted with an earlier weaker result
[12] to the effect that .#, is of “log general type™ in the sense that there are
enough n-canonical forms' w on MSing (M) with logarithmic poles at in-
finity (i.e., if ,/_%_g—./lgzl/(xl), then w=a(x)(dx, A ... /\dxagva/xl)@”) to sepa-
rate points generically. By the results of Brylinski [3], this implies that for all
g, moduli spaces .#* of sufficiently high level « are of general type (the levels
in question are non-abelian levels).

The proof is based on the analysis of a special divisor D, =.#, with a very
natural geometric meaning:

. 1
D,= (locus of curves C which are k-fold covers of P! where kz%) .

We consider the closure D, of D, in .#, and compute the divisor class of D, in
terms of the basic divisor classes

Ay 0gy Oy, oens Opg yy € Pic(M) ® Q

introduced in [13]. Here 4 is ¢, of the “Hodge bundle” L,, where L, has fibre
A*H%w,) over a curve C, and ¢, are the divisor classes of components 4; of
J%—g—//g. In particular, 4, is the closure of the locus of irreducible singular
curves. The final result of § 5 will be:

' By an n-canonical form on a smooth variety X”, we mean a differential form locally expressed

as a(xy, ..., x)dx, A ... Adx,)®"

0020-9910/82/0067/0023/$12.80
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-1
Class of Bk:g(ﬁk—% {6(k+1),1 kS — Z 3oc(2k—1—oz)5}

On the other hand, using Grothendieck’s Riemann-Roch formula, we calculate
in § 2 the canonical class of ./Z,:

K, =134=28-38, =20, ~ ...~ 28s].
2

Putting these together proves

— 12 b. of §,,...,0
CkK‘]thQ.Dk“FCk (1 —‘k*)/l‘+~ com © ! [%]
with positive coefficients

if ,=2k—4)!/(k—1)!(k—2)!. It turns out also that the singularities of ﬁg are
sufficiently mild so that all divisors in an,,l define n-canonical differential
forms on J% without poles on the resolution of Jz’ Thus if |[nK|,;, denotes the
linear system of birationally holomorphic forms, we have

12
ne, (1 -’F) i‘ .
Since 4 is ample on Satake’s compactification .7, the sections of LY" on ./,
define a birational morphism to P". Therefore if k=12, |¢,K 7 |y, # ¢, and if
k>12, [nc K 4 |y defines a birational map for n>0.

The idea of this proof owes a great deal to E. Freitag and Y.-S.Tai,
although most of the links to their work are not apparent. First and foremost,
it was Freitag who saw beyond the classical picture according to which
geometrically natural moduli spaces all seemed to be unirational, although
their “higher level” variants were of general type: a picture largely based on
the heavily studied case of .#,, the moduli space of elliptic curves. Freitag
showed that the moduli space </, of principally polarized abelian varieties is
not unirational for g=1(8), g=17 [4], and for 24|g [S]. Tai then showed that,
in fact, o/, is of general type for all g=9 ([17] to be published). He introduced
2 important new techniques: the first was the proof that the singularities of .o/,
“didn’t matter”, except for the one along the 1* boundary component .o/, _,.
In particular, Tai and, independently, Reid [15] found an important hy-
pothesis on the action of a finite group G on C" which implies that n-canonical
differential forms on C'/G have no poles on the resolution of C"/G. We use this
criterion again here. Secondly, by means of the Hirzebruch Proportionality
theorem, Tai proved that if g is large enough, there are Siegel modular forms
of weight n(g), vanishing at o/, _, to order m(g) with m(g)/n(g) arbitrarily large.
Subsequent to this, E. Freitag and one of the authors discussed at length how
these techniques could be extended to .#,. They sought to use mixed holo-
morphic tensors on ./, i.e., differential forms which are not exterior forms, or
symmetric forms, but sections of the full tensor power (Q;,g)®", so as to
produce from theta series n-canonical differential forms on .#,. This still looks
quite hopeful. But what led directly to the present paper was the discovery of a
particular holomorphic tensor on .o/, which defines a map from the ring of

Inc K 7, lie = (eff. div.) +
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Siegel modular forms vanishing at ./, ; to sufficiently large order to the
pluricanonical ring of .#,. (It is still not clear whether or not all Siegel
modular forms with this vanishing at .o/, , do not, by some fluke, also vanish
on the locus of Jacobians, in which case this map is zero.) But the forms
defined by this map must at least vanish on a certain divisor D' <./, :

,_Jlocus of curves C with a line bundle L such that}.
ho(L)=2, i°(Q:® L H)=1

If g is odd, the D above is one of the components of D'. In this roundabout
way, Freitag’s techniques pointed directly to the method of the present proof!

This paper suggests that there is much interest in a systematic investigation
of the relations between the fundamental classes of the many subvarieties of
M, defined by geometric conditions, with the hope of establishing a calculus of
such cycles. Such a study was in fact first undertaken by Steven Diaz, who is
investigating the global geometry of the locus in ﬁg of curves with abnormal
Weierstrass points; his work has been extremely valuable in developing the
techniques of this paper. Hopefully, a more complete picture of the geometry
of A, will emerge from such investigations; a great deal of work remains to be
done. Another important question is whether .#, actually carries non-zero
holomorphic exterior p-forms for some p. The analogous theory for ./, sug-
gests that this might happen for p=g, 2g—1 or 3g—3 (cf. Anderson [1],
Stillman [16]).

The paper is organized as follows. In §1, we use the Reid-Tai criterion to
prove that n-canonical forms on the open set Ji;’ parametrizing curves without
automorphisms automatically are holomorphic on a resolution of ./Z,. In §2,
we compute K5 . In §3 and §6, we calculate the class of Dy, using a com-
pactification of the Hurwitz moduli scheme of k-fold coverings, developed in
§4, and using counts of the number of pencils of certain types on a generic
curve of genus g, due to Griffiths and Harris, developed in § 5.

In order to indicate the significance of this result we would like to point

out the following easy result:
Proposition. Assume for some g that the Kodaira dimension of M, is at least 0.
Then if C is a generic curve of genus g (i.e. the corresponding point [Cle 4,
lies in no subvariety defined over Q), and F is an algebraic surface containing C
on which C moves in a non-trivial linear system, then F is birational to C x P!,

Proof. The Kodaira dimension being at least 0 means that .#, carries a n-
canonical differential a(x) (dx, A ... /\dx3g,3)®" with no poles on a compact
smooth model of .#,. This implies that .#, is not “uniruled”, i.e. there is no
dominant rational map

Pl x W34 4.
Therefore the images of all non-constant maps

P1_>j/g
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lie on subvarieties of .#, defined over Q. Therefore, given Ce|C| on F, a
pencil in |C| defines a map from P' to M, through [C], which must be
constant, i.e. all C'€|C| are isomorphic to C. Since C has no automorphism,

this means that F is birational to C xP!. Q.E.D.

Corollary. If g is odd, g=23, then a generic curve of genus g does not occur in a
non-trivial linear system on any non-ruled surface.

§ 1. Pluri-canonical Forms on .Z

If V" is any quasi-projective variety, by k-canonical forms on V we understand
holomorphic tensors w given on the open set V., of smooth points of V' by

w=a(x,...,x)dx, A...ndx,)®*
such that for one and hence all desingularizations
. VoV

of ¥V, w extends to a holomorphic tensor of this type on all of V. Pluri-
canonical forms? refers to k-canonical forms for all k. If V' is smooth, then
oy (nK) is the sheaf of n-canonical forms on V.

As in the introduction, ﬁg stands for the coarse moduli space of stable
curves of genus g: it is a normal projective variety. Related to ./, we
introduce the following further varieties:

M, A ,=desingularization of ./,

open set of smooth
pts. of 4, B

N C

,reg

[

o

open set of curves C

xn

w/o automorphisms

The purpose of this section is to prove the following theorem:

Theorem 1. If g=4, then for all n, every n-canonical form on M, extends to an
n-canonical form on M,. More precisely:

I(M, 0.7, (nK)=T(M,, 0z (nK)).

Proof. Recall that locally .#, can be described as follows: let C be a stable
curve of genus g and let

n: €483

2 There is a general confusion of terminology for referring to these and other tensor forms

which are not exterior forms. We suggest k-canonical forms as a good phrase to distinguish these
from exterior k-forms or symmetric k-forms
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be its local universal deformation space. Aut(C) is a finite group which
operates on % and 4°¢~°. Then a neighborhood of the point [C]e.Z, defined
by C is isomorphic as analytic space to

43%=3/Aut (C).

Moreover the action of a finite group on a smooth space can always be made
linear in suitable coordinates, hence if T;, , is the tangent space to 4°¢~3 at 0,

4% 73/Aut (C)=neigh. of 0 in [T, ,/Aut(C)].

On the other hand, T, , is the space of infinitesimal deformations of C which
is well known to be
Ext' (Qf, o¢)

where Q¢ is the sheaf of Kihler differentials on C. By Serre duality,
Ext' (QL, o)) = HO(Q} ® wo)*
where .. is the dualizing sheaf on C3. Thus finally
(neigh. of [C] in .#,)=(neigh. of 0 in H°(Q¢ ® we)*/Aut(C)).

Note that in this description, the open set of points on the left which are in
jig is equal to the open set of points on the right where Aut(C) acts freely.
We have therefore particular cases of the problem:

V' a vector space of dimension d

Gc<GL(V) a finite group

Vo<V open set where G acts freely

When do n-canonical forms on V,/G extend holomorphically to a resolu-
tion V/G of V/G?

The following criterion is due independently to M.Reid [15] and Y.-S.Tai
[17]:

Reid-Tai Criterion: In the above situation, for all geG, let g be conjugate to

where { is a primitive m™ root of 1, and 0<a,<m. If for all g and (,

3 If C is smooth, w.=QL. But at double points given by xy=0, QL is generated by dx, dy mod

one relation xdy+ydx=0, and has the torsion submodule C-(xdy), while w. is free on one

d dy
generator given by the differentials o on y=0, td on x=0
X y
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then any n-canonical form on V,/G extends holomorphically to V/~G.

In fact, we need a slight generalization of the Reid-Tai criterion. This says

that for any G-action, certain n-canonical forms w extend to V/~6, namely those
which are holomorphic on V,/G and, for all geG for which ) a/m<1 (for

some () - call these bad g’s - w is also holomorphic on the divisors Ec V/~G
mapping onto
Im({xeV|gx=x}->V/G).

Equivalently, we must assume w to be holomorphic on the resolution of some
open set UcV/G, where U contains V,/G and U contains the image in V/G of
the generic point n, of {xeV|gx=x}, for all badg. We will give a proof in
appendix 1 to this section.

Our main task is therefore to investigate, case-by-case, what are the eigen-
values of an automorphism ¢ of a stable curve C acting on H*(Q:®w.). We
take the case of a smooth C first.

Proposition. Let C be a smooth curve over C, and let ¢ be an automorphism of
C of order n. Let { be any primitive n'™ root of 1, and let the action ¢ on
H°(o-(2K))* be given by

a,
g - 0
where 0<a;<n.
. G343
0 4
Then either
3g-3
Z (a/m=1

i=1

or else (C, ) is one of the following cases:
i) genus C=0
i) genus C=1
iii) genus C=2, n=2, ¢ is the hyperelliptic involution

iv) genus C=2, C is a double cover of an elliptic curve and ¢ is the
associated involution

v) genus C=3, C is hyperelliptic and ¢ is the hyperelliptic involution.

Proof. Let C, be the quotient of C by ¢, let g, be the genus of C, and let
Py, ..., Pye C, be the branch points of the cover

n: C-C,.

Let m;=order of branching of = over P i.e,, there are n/m; points Q, ,€ C over
P and n is given locally at each Q,, by the m™ root of a suitable local
parameter at P.
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Consider the family of cyclic branched coverings
n': C'—>C,

which you get by varying the moduli of C, and varying the branch points
P.e C,. The dimension of this family is 3g,—3+ . This defines a subvariety
Wc M, of codimension 3(g—g,)—f containing C such that all C'eW admit
automorphisms ¢’ deforming ¢. On the other hand, if the local deformation
space of C is p: €8, S a germ of smooth (3 g— 3)-dimensional manifold, then
¢ acts naturally on ¢ and S:

o

Dl lp

S S
¢,

In suitable coordinates on S, ¢, acts linearly. The subvariety W of .4, is just
the image of the fixed point set of ¢, on S. Therefore, the dimension of W is
the dimension of the subspace of T, = H(¢(2K)) fixed by ¢, i.e., the number
of a; equal to 0. This proves:

#{ila;=0}=3g,—3+p,
#{ila; 21} =3(g—g0)— .
Therefore

Z (a;/n)z

i=

83 3(g—8o)—P
—

But by Hurwitz’s formula:

]

2g—2=nQg,—+ Y —(m,—1)
i—1 M

Let’s now assume Y (a,/n) <1, hence in particular

n>3(g—go)— B

Combining this with Hurwitz’s formula, you easily check:

2 2n-2 b 2 1
- -1 l———).
3> n &0 )+i§1( 3n m,-) *)
Note that as n=2, m; =2,
2 1_1
- ——2->0
3n m— 6

hence (*) implies immediately that g, <1.
Moreover, the m, cannot be chosen as arbitrary divisors of n because of the
following:
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Lemma. Let M =l.c.m. (m,). For all primes p dividing M, let p"|M, p"*' ¥ M, and let
I={ilp"|m}.

Then I has at least 2 elements in it, and if p=2, I consists of an even number of
i’s. Moreover, if g,=0, n=M.

Proof. The covering C of C, is defined by a surjective homomorphism:
n (Co—1{P,.... B} »Z/nZ.

This factors through H,(C,—{P, ..., B}) because Z/nZ is abelian. Let ¢; be a
small loop around P. Then H,(C,—{P,...,B}) is the direct sum of H,(C,)
and @ Ze, modulo the one relation Y e;=0. Let ¢; be mapped to g,eZ/nZ. It’s
easy to see that m; is exactly the order of ;. But

a) ) &=0inZ/nZ
i=1

and
b) if g,=0, hence H,(C,)=(0), {&;} generate Z/nZ.
With the notation in the lemma, if m=M/p

8
Y me;=0 and me,=0 if i¢l.
i=1

Therefore 4#1=2. And if p=2, meg, is in the subgroup Z/2Z of Z/nZ, hence # 1
is even. Also, if g, =0, then M =n by (b).

In particular, this shows that =0 or =2, and if n=2, then § is even.
Using these restrictions on the m;, a lengthy but straightforward calculation
allows one to list all the solutions to (x). The result is:

a) go=1, f=0

b) go=1, n=F=2, all m;=2

c) go=0,n=2=2,4,6o0r8, all m;=2

d) g,=0, f=2, any n

e) g,=0, f=3 with one of the following triples (m,,m,,m,):

(2,4k,4k) n=4k
2,2k, k), k odd  n=2k
(3,3k,3k) n=3k

(3,3k,k), 34k n=3k
(4,4k, k), k odd, S<k<13
4,4k, 2k), k=3,5,7
4,8k, 8k), k=1,2

(5,5k, 5k), k=1,2

(5,5k, k), k=6,7,8
(1,7,7)
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f) g,=0, B=4 with one of the following quadruples (m,,m,, m,,m,):

2,2, k, k), k=35, n=2k
(2,2,2k,2k), k=2,3, n=2k
(3,3,3,3), n=3
(2,6,3,3), n=>6.

The Proposition asserts that a), b), ¢) and d) are in fact the only cases where
Y. a/n<1. In cases e) and f) we need to look more closely and evaluate the

a;s.
For (f), we can describe the curves C which occur as follows:
for (2,2,k, k), k odd, C and ¢ are
=" =1(x*~a)
d(x,y)=({x, — ), ¢, a primitive k™ root of 1
for (2,2,2k,2k), C and ¢ are
yr=x(x*—1)(x*—a)

P, 1) =(Gex, Gud) =G
for (3,3,3,3), Cis

y2=(x*—1)(x*—a) again
but ¢ is

d(x,y)=({5x,), {5 a primitive 3™ root of 1,
for (2,6,3,3), C is the non-hyperelliptic curve of genus 3
¥ =(x2=1)(x*—a)

¢(X, Y) :( —X, C3y)'
From this description, one calculates the a;’s in this table:

(m;,m,,my,m,) (a;/n)

(2,2,3,3) (0/6,2/6,4/6)

(2,2,4,4) (0/4,2/4,2/4)

(2,2,5,5) (’1%3 Tlﬁa TZ()’ 1467 lii’ T%* T%» ’186v 1%))
(2,2,6,6) 660506 0)

(3,3,3,3) (0/3,1/3,2/3)

(2,6,3,3) (0/6,1/6,2/6,3/6,4/6,4/6)

which confirms the Proposition in this case. (Note that the {, and {; used to
describe ¢ may be any primitive k™ or 3™ root of 1, hence one must not

merely check
Ya/m=1
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but also check that for all je{l,...,n—1} relatively prime to n,

zresn(j : ai)/n_Z_ 1

where res, (k) is the residue in {0, 1,...,n—1} of k mod n.)

For (e), a similar check could be carried out, but because of its tediousness
and the possibility of error, it seemed easier and much more convincing to
write a computer program to calculate ) a,/n one at a time for all cyclic covers
of P! with 3 branch points. This is reproduced in appendix 2 where a table of
the minimum values of ) (a,/n) for each g <18 is also given. On the other hand,
the computer only checks finitely many cases and the 1* 4 types in (e) are
infinite families. These are the curves

yr=xk—1, d(x,y)=(x, —y), k odd,
yi=x(x**=1), o061 =X ()

ys____x(xk_l), ¢(x:y):(Ckx’ C3k.V)
V=xPk=1),  d(x, 1) =((x, i)

for which the a; are readily worked out explicitly. We omit this.
Using this analysis as a building block, we look next at automorphism of
singular stable curves:

Theorem 2. Let C be a stable (possibly singular ) curve of arithmetic genus g and
let ¢ be an automorphism of C of order n. Let { be any primitive n™ root of 1
and let the action of ¢ on H°(QL® w) be given by

a, 0
g -
. , where 0Za;<n.
0 ) Cl39-3
g
We assume g = 4.
Then either 363
Y a/n=1

i=1

or else (C, ¢) belongs to one of the following cases:
(i) C=C,uC, wheregenus(C,)=g—1,

C, is either elliptic or rational with one node, C;nC,={P}, n=2 and
¢|c, =identity
¢ |, =inverse with respect to origin P
(i) C=C,uC, as above, but C, is elliptic with j(C,)=0, n=6 and
Olc, =identity

¢lc,=one of the two automorphisms of C, of order 6 fixing P.
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(iii) C=C,uC, as above, but C, is elliptic with j(C,)=123% n=4 and
¢\, =identity
¢|c,=one of the two automorphisms of C, of order 4 fixing P

Proof. Note that we have proved the theorem for smooth curves C. Also note
that the set of exceptions (i), (il) and (iii) forms a closed set in the moduli space

M,. Therefore we can prove the theorem by induction on the number of
double points PeC, checking for each (C, ¢) that either

a) Y(a/m)=1 or

b) (C, ¢) has a deformation (C’, ¢’) with fewer double points.

This is because in any family ¥ —S with connected base and with an
automorphism ¢: €—% over S of order n, the eigenvalues of ¢ on HO(Qés
®wy,) vary continuously and are n'™ roots of 1, hence are constant.

Note next Q ® w. has the following local description: at smooth points
PeC with local coordinate x, it is an invertible sheaf with generator dx®?; at
ordinary double points PeC, if C is given locally by x-y=0, it is generated by

the differentials:
w, =dx®?%/x,

wz:d}’@z/y
subject to the relation

YO, =X,
Thus
_ydx®?  xdy®?

X y

yw,

generates a submodule of dimension 1 over k (because x(yw,)=0 and y(yw,)
=y(xw,)=0), and mod this we have the direct sum of the sheaves of quadratic
differentials on the 2 branches at P, with simple poles at P. This gives rise to
the exact sequence:

0— @ (tOQ,)—»Qé@COCH@aQ(ZKCm—l—z%)—%o

double pts.
PeC

where C, are the normalizations of the components of C, and for each «, the
BeC, are those points of C, whose image in C are double points of C.
Therefore:
0— @ (tory) > H(Qr®@w)—>@H (e, 2K, +) B))—0.
v a ;

The first step is to analyze the eigenvalues of ¢ on @(tory). Say P is a
double point of C and {BR¢$P,¢p%P....,¢"™ ' P} are distinct, ¢™ P =B, where m|n.
Then ¢™ acts on tor, and if this action is trivial, take ee(tor,) and consider the
element ee H°(QL ® w) given by

(¢ if Q=¢'P
ee@tory) eQ“{o it Q¢(PAP.... 4"~ P},
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Then ¢e=e. Thus dually, e defines a deformation of C to which ¢ lifts and in
which the double points ¢'P disappear. By induction on the number of double
points, this case is taken care of. Next suppose ¢™ acts non-trivially on (torp).
We then calculate all the eigenvalues of ¢ on

(torp) @ ... D(Or ym-1p).

Let { be a primitive n'® root of 1. We must have

pme={""e, 1§/<£.
m

Let
m-—1
= ¥ {2
Then .
¢(e — Z ¢z+1
i i-1(pig)

=C~a Z Cia(¢ié)+c{m~1)a.gmt’.é

= C_a . ea
provided m(a+1)=0(mod n), i.e., a= —I(modn/m). Therefore

4+ ¢ —-nt
¢ m T

are the eigenvalues of ¢ on
(torp) ® ... D(tOr ym-1p).
The corresponding part of the sum ) a,/n works out to be

LN VIO S Lty
n m n 2

In particular, if m>3, it follows that ) a,/n>1 already. If Z(ai/n)< 1, it follows
that either

a) ¢ fixes all double points PeC or

b) ¢ fixes all but one pair {P,¢ P} which are interchanged, and n=6.

Moreover, if C has ¢ double points, the torsion eigenvalues contribute at
least

o/n, resp.o/n+1/2
to Y a,/n, in case a), resp. b).
The second step is to analyze the action of ¢ on the set of components of
C. We shall prove that if for any o, ¢ C,+ C, then either Y a;/n=1 or (C, )
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has a deformation with fewer double points. To see this, consider that the
image C, of C, in C looks like:

(@ C,=P', ¢, ——-|——'\'"‘\<'-

.

(e) C, elliptic, C, ’—-’LT

(f) If g,=genus(C,), and 6,= # {pts. K,eC, mapping to double pts. of C},
then

3g,—3+0,22.

As in the analysis of double points, suppose C,¢C,,...,¢"™ ' C, are distinct
and ¢™ C,=C,. Look at the action of ¢ on

m—1
W:_—— k@)HO(0¢"Ca(2K(¢"Ca)+217}))'
The same calculation given for double points shows that if
k=dimH (o (2K, + Y F))

and if the eigenvalues of ¢™ here are (™!, ..., {™’* then the eigenvalues of ¢ on
W are

G, isisk osj<t,
m

hence W gives a contribution to ) (a,/n) at least equal to

m—1
ko——.
2

Therefore if Zai/n<1, either k=0 or k=1 and m=2. In cases a), b), k=0, in
cases c), d), ), k=1 and in case f), k=2. On the other hand, in cases c), d), e), if
any double point moves, it also gives a contribution of 1/2 to Zai/n, hence
together with the contribution from W, ) a,/n=1. But if all double points are
fixed, ¢(C,) must be the second component through all double points P where
C, meets another component of C, i, C=C,u¢(C,). In this case, one sees
immediately that g<3. Turning to case a), at least one of the three double
points on C, must be fixed, call it B, hence ¢(C,) must be the second
component of C through F,. Therefore ¢ interchanges these 2 components and
¢? fixes C,. But ¢? also fixes all double points, hence ¢? is an automorphism
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of C,=P' with 3 fixed points, hence ¢*|. =identity. At B, let x-y=0 be a
local equation of C. Then ¢2|Ca=identity implies that ¢ acts by:

P*(x)=y,
*(y)=x.

But then ¢ fixes the torsion differential yd x®?2/x (or alternately, one can argue
that ¢ lifts to the universal deformation xy=t of F, by ¢*x=y, ¢*y=x, ¢*t
=t). Therefore (C, ¢) has a deformation in which F, disappears. Finally, in case
(b), the double point of C, must move, hence the other double point of C on
C, does not move, and the whole of C will be nothing but C,u¢(C,). Then g
=2 which was excluded.

This reduces us to the case where ¢ fixes every component of C. But then
every component C, contributes to Y (a,/n) the eigenvalues of ¢ on

HO(OCQ(ZKCQ, + sz))

In most cases, by the Proposition, the eigenvalues of ¢ on H(¢(_(2K,)) already
give us ) (a;/n)= 1. In particular, it follows that for all o, one of the following is
true:

a) ¢/, is the identity,

b) C,=P!,

c) C, is elliptic,

d) C, is hyperelliptic of genus 2 or 3, ¢|., =hyperelliptic involution or

e) C, has genus 2, and is a double cover of an elliptic curve with ¢|.,
=sheet interchange.

We can now argue that ¢ fixes all double points of C too. This goes as
follows: note that ¢2 fixes all double points of C, hence ¢* fixes all pairs
consisting of a double point of C and a branch of C at P ie, all F in all C,.
Since in case (b), P! has at least three B’s on it, ¢*|. =identity in this case.
Moreover in case (), ¢|., either has a fixed point, hence has order <6, or is a
translation. And if it is a translation, then </)4|Cu is still a translation and also
fixes the points P, on C,, ie., ¢*|. =identity. Therefore in all cases the order of
¢ oneach C, is 1, 2, 3, 4 or 6. Now suppose ¢ moves a double point. This can
happen in 2 ways:

.....

or
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In the first case, torp@tor,, contributes at least 1/242/n; to ) a,/n where n,
=order of ¢|c,. If n <4, we are done. If n, =6, then C, is elliptic with j(C,)
=0. Then we get an extra term from the action of ¢ on

HO(OC, (2KCI))CH0(0C1(2KC1 +ZI73))

If dz is the translation-invariant differential on C,, then dz®? generates
2(2K,) and ¢ acts by z,+—{,z,. Thus we have a term of 1/3 and

1/24+2/64+1/3>1.

In the second case, if n, =Icm (order of ¢ on C,, C,), then again tor,@tor,p
contributes at least 1/242/n; to Y a/n. If n; <4, we are done. If n; =6, then
one of the C,, say C,, is again elliptic with j(C,)=0. If n, =6, we conclude as
before. And if n, >6, the order of ¢ on C, must be 4. But PeC, satisfies
¢P+P. ¢$*P=P so C, cannot be P' (because the map z—»]/—;lz on P! has
no points of order exactly 2). Thus C, must be elliptic with j(C,)= 12 Then
dz®2eH%(»(2K,)) contributes 1/2 to Y a;/n and we are done. This completes
the proof that ¢ fixes all double points of C.

We now go back to the list a)-e) and enumerate the possible components
that C can have.

Case a). Any C, with ¢|._=identity.

Case b). C,=P'. In suitable coordinates on C,, ¢|._is the map z—(z. But all
FBeC, are either fixed by ¢ or of order 2. ¢ has only 2 fixed points and there
are at least 3 B’s on C,. Thus at least one of the F, call it P, has order 2. But
¢ has a point of order exactly 2 only if ¢ itself has order 2: ¢(z)= —z. Now P,
and ¢ P, are mapped to the same double point P of C and because ¢ is the
identity on C,, we see that (C,¢) near P is given by xy=0, ¢*x=y, ¢*y=x.
As above, this means that (C, ¢) can be deformed to eliminate P, so this case is
taken care of.

Case c). C, 1s elliptic.

Case c1). ¢|¢, 1s a translation. Since d)zl’l;:}}, for all f, ¢|-, has order 2 and
¢*=identity. Then as in case (b), the double points of C which are images of
these F; can be deformed away and this case is taken care of.

Case c2). ¢|, fixes 0eC, and has order 2, ie, it is the inverse in the group
structure on C,. As ¢?|. =identity, we are through as above if ¢ F,+F, for
some f. Therefore we may assume all F; are points of order 2. Now for any 2
points P, P,eC, of order 2,

H(oc (R +P)
contains one even function, namely 1, and one odd function, in fact one with a
simple pole at each P. Thus
H(cc, Ke, + 3 B))
contributes eigenvalues

0,1/2,...,1/2)
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to Y a,/n. Thus if there are 3 or 4 B’s, we are through, and we are left with 2
cases for Cy:

Z -7 P
Coq — k P fixed, C, contributes 0 to > a,/n
elliptic

Z V-1
Co - P, P, fixed, C, contributes 1/2 to Y a,/n.
elliptic / P, 2

or

Case c3). ¢, fixes 0eC, and has order 3. Then j(«)=0 and each F, is a fixed
point. There are 3 of these. If 2 or 3 of these occur as F;, we are done by
considering the eigenvalues of ¢ on Ho(oca(2Ka[+P1 +P,)). In fact, if dz is the
translation-invariant differential and P, =0, then locally the 2 sections here
look like

dz®2 zdz®2

Under z+— {,z, these give a contribution 3+3% to Y a;/n. This leaves the case of
one B, or C, looking like:

Z 2;32 P
Co “"_"’__t_— P fixed, C, contributes 1/3 to Y a,/n.

elliptic

Case c4). ¢|c, fixes 0eC, and has order 4. Then Jj(C)=123, ¢ has 2 fixed
points 0=F, and P, and ¢?=inverse has 2 more fixed points P, and ¢ P,. Thus
(B} could consist in (B}, (PR}, (B.P¢B), (P.R.PyoP). (PP} is
impossible because C, must meet the rest of C somewhere). The eigenvalues on
H®(oc (2K, + PB)) are respectively (1/2), (1/2,1/4), (1/2,1/4,3/4) in the first 3
cases, so the only cases where ) a,/n<1 could occur are the first 2 cases:

Z - C‘ z =]
Ca P fixed, C, contributes 1/2 to Y a,/n
eliptic

or

Cy - P, P, fixed, C, contributes 3/4 to Y a;/n
eliptc /P P,
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Case c¢5). ¢|c, fixes 0eC, and has order 6. Then j(C,)=0, ¢ has only 0=F, as
fixed point, but ¢* has 2 further fixed points P, ¢ P,. The set {B} is either {R}
or {R,P,¢P} and the eigenvalues for these are (3), (3,% 4. (In fact,

dz®?eH%o¢ (2K() is transformed under zi{z by®Cz3; and a basis of
. d

H(or (2K¢ + B+ P +¢P,) looks locally like dz®2, “* and z2dz®2) The

only case to consider is therefore z

zZr=82 p i
Co { P fixed, C, contributes 1/3 to Y a,/n.
elliptic

Case d). C, is hyperelliptic of genus 2 or 3, ¢|. =hyperelliptic involution. The
set {F} must consist in at least one fixed point of ¢, i.e, a Weierstrass point of
C, and possibly further Weierstrass points or pairs B, ¢ P. But the dimension of
the (—1)-eigenspace of ¢ on H’(¢(2K.+) B)) is always =2 if g=3 and P, is
Weierstrass point. And it is 1 if g=2 and {F} consists in a single Weierstrass
point, =2 if g=2 and there are further P. So the only case not eliminated is

P
Co /%‘ C, of genus 2, P fixed, C, contributes 1/2 to ) a;/n.

Case ¢). C of genus 2, double cover of elliptic curve, ¢ =sheet interchange. If
P is a fixed point of ¢, then the dimension of the (— 1)-eigenspace of ¢ on
H®(o(2K+P)) is 2, giving (3,3) to {a;/n}. So this case is eliminated.

We are left with a problem of patching together the few curves of genus 1
and 2 above with a lot of C_/s where ¢ acts identically. In each curve so
obtained, we must add up all the contributions to ) a,/n. One notes that the
following lead to Y a,/n>1:

=]

@ - identity 1for C

i) Cgenus 2
) Cs 3 for P

1
E eliptic 5 for C

i1) Cgenus 2
) Co $or3for E

E,
elliptic

iii) elliptic foriforE, E,




40 J. Harris and D. Mumford

. P E elliptic
1v) ) (

%forEOr 3 for E
\. SforP =zLforP

¢- dentity

Excluding cases where g <3, it’s easy to see that we are left with “the elliptic
tails™:
P
@ = dentity

E elliptic

Finally, if ¢|; has order 3, one finds that E contributes 1/3, P 2/3 so this gives
Ya/n=1too. QE.D.

By Reid-Tai’s criter~ion, it now follows that an n-canonical form w on ﬁ;
is holomorphic on .#, provided it is holomorphic on the resolution of a
neighborhood of the following 3 points in ./,:

a) the generic curve C=C,uC,, C,nC,={P}, C; of genus g—1, C,
elliptic,

b) the generic curve C=C,uC,, C,nC,={P}, C, of genus g—1, C,
elliptic with j(C,)=0,

c) the generic curve C=C,uC,, C,nC,={P}, C, of genus g1, C,
elliptic with j(C,)=123,

In fact, we now take any smooth curve C,; without automorphisms and a
point PeC, and consider the curve in .//7g parametrizing the stable curves
C,uC,, where C;,nC,={P} and C, is any elliptic curve or is a rational
curve with node. We shall show that any w holomorphic on ./Z? is also
holomorphic on the resolution of a neighborhood of this curve.

To do this, let C, be the curve obtained from C, by making P into an
ordinary cusp ReC,, ie.,

0C0=k+m,2,’c.

Consider the universal deformation space:
€ —A%%3

of C,. Since any deformation of C, induces a deformation of a neighborhood
of B, A% fibres over 47 the base space of the universal deformation of a
cusp. More precisely, there are coordinates t,,f,,t;,...,t;, 5 on 4%~ and
coordinates X, y,t,,...,13, 3 on % near K, such that

i) C,is given by y?=x3, t,=0, | x|, |y|<¢, near B,
i1) more generally, € is given by

yr=x3+t, x4+, x|, |yl <e
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Outside of the codimension 2 set V(t,t,) (ie, t, =t,=0) € is a family of stable
curves of genus g. Moreover, the fibres of & are all irreducible curves which
either have one cusp, one node, or are smooth. Considering

scheme of triples s,, s,, ¢,
3g-3
Isom s, -3(%,%) = S1,8,€4°877,

¢:C, ——— C,, an isomorphism

we see that because C, has no automorphisms, all nearby curves in the family
% have no automorphisms and occur only once in the family. Therefore we
have a holomorphic map

fr A3 V(i t)— ﬁgo

which is injective, and therefore an isomorphism of 4%~ —V(t,,t,) with an
open subset of E///go. We want to study the singularity of f at V(t,,t,). To do
this, we want to convert €/4%¢~3 into a family of stable curves.

Let

S—A3-3
be the normalization of the blow up of the ideal (¢3,t2). We shall show that f

extends to an isomorphism f of § with a suitable open set in M. S is covered
by 2 charts:

t2 t3

S, with coordinates t,, t,, —, —;,
12 t2
. : 13

S, with coordinates t, t,, PR
1 1

Let p,: S,—S, be the normalization of S, in the 6-cyclic covering u,=1}'°.
Then $, is smooth with coordinates u,,u,,t,...,t5, 5, p; being given by
ty=u, uj,
ty=u$,
(@3/1)=uj.
Moreover, the group g, of 6™ roots of 1 acts on S, by
(uy, )= (P uy, Cuy)

so that S, =S, /us. Let p,: S,—S, be the normalization of S, in the 4-cyclic
covering u; =t;'*. Then S, is smooth with coordinates u;,u,,t5,....t5,_3 P,
being given by
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Ly =uj,
6
t,=u,uy,
ty/ty =u,u,

Moreover, the group p, of 4* roots of 1 acts on S, by

(Ml,uz)H(Cul,Czuz)
so that S,=5,/u,.
Now pull the family € — 43¢-3 back to S, and S,. Over S, the family is
given near B, by

yi=x+u uix+us.

Let %, be the normalization of the blow-up of € x 4:.-+S; in the ideal (x,u3).
It is covered by the 2 charts

%, Vi=x3+ux'+1, where X =x/u3, y=y/u3

@1y X'y =uy, where x"=u,x/y, |X"[,|y"[<e, y'=y/x

2\2 2,\3
(note that: y"'?=x (1 +u, (Eg) + (u_l) )
x x

va (u3/x)
T (L+u, (u3/x)? +(u3/x)?)

2

2

. u

so that x”, y" are integrally dependent on x, u,, — when
X

22

u
<é&.
X

In particular, the fibre of 4, over points where u, =0 looks like:

... Onginal curve

(?1,0

Elliptic curve
yZ: x3+ ugx + 1

Moreover, %, is a smooth variety, fibred in stable curves over §,. The same
works for the pull-back of 4 to §,, which is given near B, by

2 __ 3 4 6
yi=x+uix+u,uj.

Let %, be the normalization of the blow-up of & xmgg,_;)gz in the ideal (x, u?).
It is covered by the 2 charts:
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%,.q: VP=xP+x +u, where y=y/ui, xX'=x/uj,

Xu
%, X'y =u;, where x"="—1 yuzﬁ’ X)L 1y] <&
2y2 2\3
u u
(note that y"? =x (1 + (i) +u, (_1) )
X X
"2 u%/x

T +(u/x)* +u,(u?/x)?

so that x", y" are integrally dependent on x, u,, u/x when |u?/x| <a.>

Thus €, has the same form as %,, except that the elliptic “tail” is now:
yr=x>+x+u,.

_ It follows that the map f extends to holomorphic maps fi: S]Hﬁg, fo:
§,— M, in the diagram:

I
|
|
l
|
i
1
|
l
I
I
3

3|

3g-3
(47 vit, )] .

But the action of u4 on S, lifts to an action on &, :
Y= (X, By,
(", )= (X" ")
and the action of u, on S, lifts to an action on %,:
(X', Y= (X, 0y,

) X (x//’ y’/)H(Cx/l’ yl().
Thus f}, f, factor through

f~ 1 S— ,/7g.
Examining the fibres, we see that f is injective, which proves:

Lemma. S is isomorphic to a neighborhood in e/7lg of the curve parametrizing the

set of stable curves: b

Co E

where E is an arbitrary elliptic curve or rational curve.
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It now follows from this lemma that any holomorphic tensor on .#,;
a) restricts to 4% 73 —V(t,t,)

b) extends holomorphically to 43¢~ since V(t,,t,) has codimension 2
¢) pulls back holomorphically to a resolution of S, hence

d) extends holomorphically to a resolution of ﬁg over all points made up
of a smooth curve C, without automorphisms joined at one point to an
elliptic curve or nodal rational curve.

Together with the Reid-Tai criterion, this completes the proof of Theo-
rem 1.

Appendix 1 to §1

Reid-Tai’s Criterion. Let V be a vector space of dimension v, G GL(V) a finite
group. For all geG of order n, let the eigenvalues of g be (*, ..., (%, where { is a
primitive n'® root of 1 and 0<a;<n. Moreover, let VO <V be the open set where
G acts freely, and let  be an m-canonical differential on V°/G. Then w extends
holomorphically to a resolution V/G of V/G if:
for all geG such that Y a/n<1 for some choice of {, w is holomorphic along
all divisors E =V /G mapping onto the image in V /G of the fixed point set V.

Proof. We first reduce the result to_the special case G cyclic. In fact, let p:
V V]G be the normalization of V/G in the function field C(V). Then o is
holomorphic on VG if w has no poles on any divisor EcV]G. But over each
divisor E, the covering V—»V/G has a cyclic ramification subgroup, ie., for all
components E, of p~'E, there is a cyclic subgroup H =G fixing E, identically
such that in an H-stable Zariski-open subset U, V meeting E,p factors

e o~
U, > U/H "";‘Ee V/G.

In particular, w is regular on E if pfw is regular on E,. But if the criterion
holds for G, it also holds for H, hence w is regular on U,/H, hence w is regular
on E.

Now assume G is cyclic, geG is a generator and that X,,..., X, are
coordinates such that g* X;={*X,. Then G is contained in the torus G, of all
diagonal automorphisms of ¥, and we may assume that the resolution V/G is
G} -equivariant. Now V]G is a smooth equivariant partial compactification of

the torus G%/G. By the theory of torus embeddings, each divisor E of V/~G
—(G%/G), hence each component E of V]G —V°/G, determines a monomor-
phism:
2. G,—GY/G
such that
a) if X* is a character of G./G such that X*o4 vanishes to order 1 at
Oeém, then X” is a local equation almost everywhere for E,

b) the function field C(E) of E is generated by the restrictions of the
characters X* such that X%A=1.
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¢) lim A(t) (a)eE for all aeG.,/G.

t—=0

The homomorphisms 4 may be described by

*(X)=t", 1Zigv
where

a a
v L )ELV+ T 4—)
o tezr+ 2 (2,5
and if 4 is associated to Ec V/~G, then /,20, 1<i=sw.
Now let
o=() ¢, X)dX A...ndX)®"

a0

be the given m-canonical differential. Write

dX ax, \®m
w=() c,X**m) (———'/\.../\ ”) ,
a;ﬂ Xl X

e=(1,.... 1).

v

Let Y;=X", 1<i<v, be a basis of the character group of G%/G such that Y, o1
vanishes to order 1 at t=0, Y;oA=1, 2<i<v. Then

dy,
- e A
Y, "

4%, _ consty X1 0 10X
= St. e N,
Y, Oy, X

hence w is holomorphic along E if and only if
¢, ¥0=X**tm =y Y’ where r,2m.
But 7, is just the order of vanishing of X**™ o 1 at t=0, i.e,,
r=<a+me (l,,....0)).

But then as o, =0, ¢,=0, we get

rzm (Z ).
Now
{;=k;+ka,/n, some k kL.
Note that
(gk)* Xi: Cka,Xi= Vnk.+ka,Xizcn(,Xi'
Let
nf;=afmodn), 0=a;<n
so that
(gk)*Xi:é/a;Xi‘
If

Ya/n=1,

it follows that

YlzYzL,
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hence r,zm as required. We are also done if ;=1 for any i. Now assume

!

Z(ﬁ<1 and 7,<1, all i. Then g* is one of the “bad” elements of G, so that by
n

the assumption, w is holomorphic on those E’s over the fixed point set of V&,
But
VeI ={(X,,...., X )| X;+0=4a;=0}
={(X,,.... X)X, #0=>/,€Z}
={(X,,....,X )| X;#0=7/,=0}.

By property (c) above, E maps onto V¢ so we are done for this E
too. Q.E.D.

Appendix 2 to §1

The following BASIC program which was run on the second author’s Apple 11
looks one at a time at all cyclic covers of P! branched in 0, 1, 0. These are all
given by

Y =xx—1).

We may assume, permuting the branch points if necessary, that

The program calculates the genus g which by Hurwitz’ formula is:

n—(n, a)——(n,zb)—(n,a+b)+1.

g—_—

It can be checked that n<4g+2. If H%¢(2K)) is decomposed into eigen-

spaces V,, 0<i<n, under ¢: (x,y)—(x,e?""y), then the program calculates
3g-3
e()=dim ¥V, and for all j, 1<jsn—1, (j,n)=1, it calculates Z a; for the

1
automorphism ¢’: this is the variable z. The max and min over all j are called
za, zb, and the max and min of ) a;/n for each g for curves studied so far are
kept in the arrays min(g), max(g).

JLIST

1 G0=18: REM GO IS THE MAXIMUM GENUS WHICH WILL
BE CONSIDERED

10 DIM E(500): DIM MIN(100): DIM MAX(100)

20 FOR G=2TO GO

30 MIN(G)= 1000000
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35
40
100

105
110
115
120
130
150
160
170
180
190

192
193
200
210

215
230
245

250

255
256
260
270
280
290

295
298
299
300
320
330
340
500
510
520
600
610
620
630

MAX(G)=0

NEXT G

FOR N=3 TO (4xG0)+2: REM N IS THE ORDER OF THE
CYCLIC COVER

REM WE LOOK AT THE N-TH ROOT OF (X##A)x((X — 1)*+B)
FOR A=1 TO INT(N/3)

X=N:Y=A: GOSUB 1000: DI =X

IF (D1 <A) THEN GOTO 510: REM WE WANT A TO DIVIDE N
FOR B=A TO INT(N — A)/2)

X=DI1: Y=B: GOSUB 1000

IF X>1 THEN GOTO 500: REM WE WANT G.C.D. (A, B)=1
X=N:Y=B: GOSUB 1000: D2=X

X=N:Y=A+B: GOSUB 1000: D3=X
G=(N-DI1-D2-D3)2+1: REM G IS THE GENUS

OF THE COVER

IF G <2 THEN GOTO 500

IF G>G0 THEN GOTO 500

FORI=1TO N—1
E(I)=INT((I+A —2xD1)/N) + INT((IxB —2xD2)/N)
+INT((—I#(A +B)—2+D3)/N)+3

IF E(I)<0 THEN E(I)=0

NEXT I

REM E(I) IS THE DIMENSION OF THE I-TH EIGENSPACE
IN THE QUADRATIC DIFFERENTIALS

FOR J=1TO N—1: REM WE LOOK AT THE J-TH POWER
OF THE AUTOMORPHISM

X=N:Y=J: GOSUB 1000

IF X>1 GOTO 320: REM WE WANT G.C.D. (N, J)=1

Z=0

FOR I=1TO N—1

K =J+]— N«INT(J*I/N)

Z=Z+K=+E(l): REM Z IS WHAT WE WROTE ABOVE AS
THE SUM OF ASUBI

NEXT 1

IF J>1 GOTO 300

ZA=Z:ZB=Z: GOTO 320

IF (ZA<Z) THEN ZA=Z: IF (ZB>Z) THEN ZB=Z

NEXT J

IF (ZB/N)<MIN(G) THEN MIN(G)=ZB/N

IF (ZA/N)>MAX(G)THEN MAX(G)=ZA/N

NEXT B

NEXT A

NEXT N

FOR G=2TO GO

PRINT G; “MIN="; MIN(G); “MAX ="; MAX(G)

NEXT G

STOP
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1000 REM THIS SUBROUTINE STARTS WITH TWO INTEGERS X, Y
AND CHANGES X TO THEIR G.C.D.

1005 IF Y<=X GOTO 1020

1010 Z=X:X=Y:Y=2Z

1020 IF Y=0 THEN RETURN

1030 Z=X— Y+INT(X/Y)

1040 X=Y:Y=2

1050 GOTO 1020

The program gave the following output; where the first number on each
line is the genus, the second the min of ) a;/n, the third the max of ) a,/n:

MIN=12MAX=1.38
MIN =2.35714285 M AX =3.64285715
MIN =3.55555556 M AX =5.44444444
MIN =4.77272727 MAX =17.22727273
MIN=6 MAX =9
MIN =7.23333333 MAX =10.7666667
MIN =8.47058824 MAX =12.5294118
9 MIN=9.71052632 MAX =14.2894737
10 MIN=10.952381 MAX =16.047619
11 MIN=12.1956522 MAX =17.8043478
12 MIN=13.44 MAX =19.56
13 MIN=14.6851852 MAX =21.3148148
14 MIN=159310345 MAX =23.0689655
15 MIN=17.1774194 M AX =24.8225806
16 MIN=18.4242424 MAX =26.5757576
17 MIN=19.6714286 MAX =28.3285714
18 MIN=209189189 MAX =30.0810811

0 1NN AW

Break in 630

The regular growth of min ) a/n and max ) a;/n indicates that there is
some simple proposition at work, but we have not investigated this. All we
care about here is that min Zai/ng 1.

§2. The Canonical Divisor Class on ./,

As in the previous section, J?;’ is the open set of {/73 parametrizing curves
without automorphisms. The components of .#,—./4, of codimension 2 or
more are simply the components of the singular locus of ./Z,. But ./, — .4 has
one component of codimension 1: namely, the locus 4, of curves with “elliptic
tails” encountered in the previous section. We shall first calculate the canoni-
cal divisor K 4 on the open set MY, and afterwards, indicate how to modify
the calculation to give the canonical divisor K 4 on the full open set of
smooth points of .#,.




On the Kodaira Dimension of the Moduli Space of Curves 49

As before, let
n: 60— My
be the universal family of stable, automorphism-free curves. We follow the
technique in [13], pp.99-102 and apply Grothendieck’s relative Riemann-
Roch theorem to the morphism =n. For all coherent sheaves & on (6;),
ch(n, F)=n,(ch(F) T(2.4) in A)RQ.
We wish to apply this for

1
F = Q%/J{®w%/(ﬂ'

In this case,
n*%‘;Tjg, Rln*ﬁz(O)

because the cotangent space to JZS at every point x is canonically isomorphic
to H(C,, Q¢ ®@wc)=Hn"'(x), #Q@s,-1 ), and because H'(C,, Q¢ ®wc)
=(0). Therefore

K go=[ch(n, 7)],.
We now follow closely the calculations of [13], pp. 99-102:
K.ﬂg =7Z*(Ch(:97) : T(Qé/m)h

=n, ((1 +c1(97)+cl(e2?")2 _62(37)). (1_Cn(;)l)+Cl(91)2142rc2(§21)))1

(6’1(97)2 cy(F)¢,(QY) 61(91)2+02(Ql))
=T, .

_— Z) —
7 ¥ 2 + 12

Moreover
Q= Lng @i
where [ is the ideal of the singular locus, hence
Cl(Qé’/(ﬂ)ZQ(w)v
¢ (F) =2c¢(w).

Cz(qus/Jt) =[sing 6],
c,(#) =[sing%].

Therefore
2 S (g
* K=, (2cl(w)2—[5ing(€]—cl(w)2+c‘(w) 4‘15 ng ])
13 ,o 11 '
- i <.
12n*(cl(w) ) 12”*([Smg D

On the other hand, let
A=cy (M g 4)

be the so-called Hodge divisor class on .#. Let

6=mn,([Sing €])
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be the divisor class of singular curves ,/:/7;) —M,. Then we proved in [13] that
T (cy(w)?)=124—0.

Combining this with (*) and recalling that Pic(//?go) is torsion-free ([13], p. 102)
we have proven.

Theorem 2. On the smooth variety M, K , =13—20.

Does this continue to hold on the bigger open set ﬁg‘mg of all smooth
points? The answer depends on how A and ¢ are defined on .%, .. Recall
from [13] that to deal with the problems posed by curves with automorphisms,
one has 2 approaches:

a) one can introduce the group of line bundles on the moduli functor, ie.,
for all flat proper families n: C— S of stable curves, a line bundle L(n) on §
and for all Cartesian diagrams

f

G ———=C,
e 7,

Sy — =5,

9

between such families, an isomorphism
L(r,)=g*L(n,)

with obvious compatibility requirements. We call this Picrun(ﬁg)

b) one can introduce the locally closed subscheme H, of a suitable Hilbert
scheme parametrizing stable curves in a fixed projective space P*~'. With H,,
one has

p: Z,— H,: a universal family of curves

(PGL(v) acting on H,).

Then one considers the group Pic(H,)?®*® of isomorphism classes of line
bundles on H, invariant under PG L(v).

As shown in [13], Picg,,(#,)= Pic(H,)"*"" and Pic(.4,) itself is a subgroup
of these of finite index. Moreover, Pic,,(-#,) is torsion free, so the convenient
way to relate these groups is to think of them all as lattices in the same Q-

vector space
Pic(.4)®Q = Pic;,,,(4)®Q = Pic(H )" ®Q.

In the big group Pic(H,)"*™", we define i to be c,(p,w,y) and d to be the
class of the divisor on H, of singular curves. Now if L is a line bundle on H,
with PG L(v) acting equivariantly on it, then for every curve C with automor-
phism ¢ of order n, ¢ is induced by ¢’ePGL(v) fixing the point [C]eH,
defined by C. Then ¢ acts on the fibre L., of the line bundle by an n™ root
of 1. If all these roots of 1 are trivial, L descends to a line bundle on
ﬁngg/PGL(v). For example, if C is
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c, E

C, of genus g—1, E elliptic, let g: C— C be defined by g|., =id., g|y= —1. For

a line bundle L to descend to Pic(.#, ,.,), we only need that this g acts by +1
on L.
As an example, take the Hodge line bundle

L,=4/¢ P*(wzg/ng)-

g acts on A*H°(w.) by —1, hence L, and the Hodge divisor class

A=c;(A¥p, wyy) do not descend to .4, .., but the square of the bundle, or twice

the divisor class do. Thus the divisor class A lies in

L Pic( A, ,.,).

g, Teg
Next, if L; is the line bundle on H, defined by the divisor of irreducible
singular curves, and Ly, 1Si< [%] are the line bundles on H, defined by the

divisors of curves with double points separating them into pieces of genus i,
g —i, then the line bundle L; of all singular curves breaks up

5
Ls= & L
i=0
The fibre of L;, over a point [C] is
Q:) Az(mp/;;zi)*

where P runs over all double points of C of type i (i.e., non-separating double
points for i=0, separating with pieces of genus i, g—i for i=1). One checks
that L;,L;,,....L all descend to ./ and are, in fact, the line bundles

> Horgr2) g reg
defined by the divisors 4,, 4,, ...,A[g]c M, .., of singular curves of various
2

types. But the automorphism g of the curve C with elliptic tail acts by (—1) on
the fibre of L, over [C]: hence L§? descends to .#, ., and is the line bundle
defined by the divisor 4, .4, ., of curves with elliptic tails. Thus in terms of
divisor classes on ./, .,

8,=34,; é6,=4,, i+l
5:A0+%A1+(A2+...+A[g]).
2

Note incidentally that L,®L, also descends to ./, hence 4

g,reg’

+314, €Pic(A, ..). On the other hand, the equality of divisor classes on H g

g.reg
Cl(p*(Qé/H(@wz/H)) =131-26
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is proven by exactly the same proof used to prove the same equality in
Pic(.#]). The last step is the claim:

Lemma. K(./ﬂx. reg) — C1 (P*(Qé/n®wzm)) —0;.

Proof. If f:Z,— M is the canonical map, then on the open set f~'(.#), there
is a canonical isomorphism:

o f*(ng;”ﬂg)—z’ Aag*3p*(Qé/H®wZ/H)|f-l./ﬂg'

If 41<=H, is the divisor of curves with elliptic tails, a priori « has a zero or
pole on 4 of some order 7, and on all of f~!(4, .,)

f*(fo; %), A3g-3P*(Qé/H®(UZ/H) (£4%)

are isomorphic. To compute ¢, let C=C,UE be a curve with elliptic tail such
that C, has no automorphisms, j(E)+ 0,123, co. Let (4#~?) be the base space
of the universal deformation of C, with coordinates ¢,,¢,, ..., t3, 3 where the
automorphisms g: C— C acts by

gt =—-t,, g*t=t, 2=is3g-3.

(t,=0 being the locus of singular curves). Then ﬁg near [C] is just
AX¥73/{e, g}, which is the polycylinder (42%~3) with coordinates s,=t?, s,
=ty .., S3, 3=t3, 3. Then ds; A...Ads,, 5 is a local basis of Q%3 while
Q3 is locally the same as A% 3p (Q}y®@w,y): thus di, A... adty, 4 is a
local basis of the latter. But

dsy A ..ondsy, 3=2t,(dt; A ... Adty, )

hence the map from Q33 to A% 3p (Q} ,®w,y) has a simple zero along
the locus ¢, =0. This proves that

f*(Q%g_ ) =A% 317*(9%/17@“’2/11) (—=ADlr-1aty rep)

Taking chern classes, this proves the lemma.
This proves:

grreg

Theorem 2 bis. On the smooth variety M,

,reg?

Ko =134—-26,-36,—26,—...—26 4
¢ 3]

13424334, —24,— ...~ 24 4-.
[z]

§3. The Class of the Divisor D,, I

For the rest of this article, we assume that the genus g under consideration is
odd, and let
g=2k—1.
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As in the Introduction, we introduce as the fundamental point of this proof the
divisor:

Dyc 4,

D, ={locus of curves C which are k-fold covers of P'}.
Thus if g=3, k=2, D,c ./, is the hyperelliptic locus. And if g=5, k=3, D,
< .M is the trigonal locus. It is well known that dim D, =3g—4, hence D, is a
divisor. (This can be checked by the usual dimension count, considering the

number of branch points for a generic covering n: C—P'.) The purpose of this
section is to prove*:

Theorem 3. For all g=2k—1, there is a rational number a, such that on M :
[D]=a,4.

Corollary. If D,c .4, is the closure of D,, then there are also integers n,,,
0=1=[g/2] such that on 4,

’ 4]
[D)=a(A+3[4,]) +:Z . [4,].

The Corollary follows because [D,]—a,(A+3[4,]) is an integral divisor class

on M, ., trivial on the open set ./, .., hence is an integral combination of
the components 4, of M, —.4,.

To prove the theorem, we shall apply Porteous’ formula ([2] or [9]) and
the Riemann-Roch theorem again. As above, let

n: Gy — My
be the universal family of curves. Let

G =F, X go-- X 406,  (n factors).
g b4

Let
p;: 6" —%,  be the i projection,

m,: 60" — .M  be the canonical map.
Let

46"
be the (i, j)'* diagonal, and let
K,ePic(4,"")
stand for the divisor class

p;k(cl(gflgg/mg))-
We are interested in the Zariski-closed subset Z < %,"* defined by:

Z={(P, ..., R)C *h° (0C (i P,.)) gz}.

*  See note at end of article.
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D, is, by definition, n,(Z)<= .#,. For simplicity in what follows, we drop the g
and 0 in €.°*. To compute Z, consider

k
Aj,k+1)
=1

0
R p*o%unl (
J

and

=

Rlp*0<gk+l (

J

Aj.k+l)
where
p: (g’k+1__}(gk

is the projection onto the 1% k factors. Since €* is an integral scheme and for
k

generic P,...,B, H° (()C (Z R)) consists only in constants, the 0™ direct
1

image above is just ogu.
Consider the exact sequence on %,°** '

O"’O{gk+14’0(gk+l(ZAj’k+1)_)0gk+1(ZAj’k+1)/0(€k+l'_)0.
Taking higher direct images, we find:

Oﬂp*oﬁgkﬂ(ZAj‘k*_])/O(g;ﬁ1—“a—>Rlp*owu14’R1p*0<gk+1(zA}-‘k+1)—’0

loc. free rkk loc. free rkg

Since the 2 locally free sheaves, after ®k(z), ze6*, give
H%(o(LB)/o0) " H'(¢()

with kernel H%(¢(3_P))/C, it follows that
Z={ze¥"rka(z)<k—1}.
By Porteous’ formula, this implies
[Z]=¢y i s (R Pyoges i (LA 4 1))

Here [Z] will be the class of Z counted with some multiplicity: since the result
we seek is just that [D,]€Q- 4, this does not matter**. Since p, cqu-1(3.4; ;4 1)

=0(gk’
[Z] =Cq_k+ 1(—Progis 1(2Aj,k+ V)
By Grothendieck’s Riemann-Roch:
[Z]=polyn. in ch,(p,oq.+ ‘(ZAj,k+ D)

=polyn. in p,(ch(ogr+ (34 44 1) Td( Qi1 41));
=polyn. in classes of the form

k
p*(polyn. in ) [4;,,,]and Kk+1)'
=1

Jj=

** In fact, it is not hard to see that the multiplicity is one
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To see what this can be, note the easy identities:
(4,4 1] [0 11=14;, k411 P*[4;,,;,]
[Aj,k+1]2= _[Aj,k+1] 'P*(Kj)
[Aj,k+ 1 Ky =[Aj,k+ 1] 'P*(Kj)
Pi([4; 4111 P*(@)=a, any acA(**")
p*(Ki+1)=th(7r1*(Ké/,ﬂ)).

The second of these is because the self-intersection of 4; ., ; is ¢, of its normal
bundle, and the normal bundle is the restriction to 4;,,, of p¥Qg ,. The last
comes from the Cartesian diagram

ck«l
V \

¢ \ ck
] /

It follows that
(Z]=polyn. in [4;, ;,Ts, [K;T's, 1, «(K%,.4))-

Now [D,] is not =, 4([Z]). Indeed 7, ,([Z])=0 because if a curve has one ) P,
moving in a pencil, it of course has oo! such cycles. To chop [Z] down in
dimension, ask that the first point P, in the cycle ) P, be a member of a fixed
canonical divisor. This gives us

(2g=2)(k— D! [D]=m, ,([Z]-K))
Therefore

[D,J=polyn. in m, , (polyn.in [4; ;. Ts, [K,Ts, nf(n, ,(K’).

Now factor m,:
GG G D E M,

and take images of the above polynomial one at a time. Using the previous
identities, it is clear that under each projection

Py €€ !

D¢y carries any polyn. in [4; ;. Ts, [K;]'s and n}‘(nL*(K")) into a polynomial
of the same type. Finally, projecting to .# itself we deduce

[D,]=polyn. in n,  (K’)s.
But [D,] is a divisor, so this just means

[D,]=multiple of 7, ,(K?).
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By [13], however,
n, (K*)=124. QED.

It should be pointed out that this argument establishes more generally that

for any integers k,a,,...,a,22g"*' and g=2k+n—2a, the divisor D,, in
M, defined as the closure of 7

DM:{Ce/ﬂg

ddivisor D=Xa;p,+D,eC,
h°(0¢(D) 22

is similarly linearly equivalent to a linear combination of 1 and the [4,].

Indeed, Diaz has used this set-up to explicitly calculate the coefficient of 4 in

the expression for the class of the divisor D, ; ,_ i of curves with a Weierstrass

pomt p with h°(C,0.((g—1)p))=2; he finds that in A, this coefficient equals
g’(3g—D(g—1)2. ok

§ 4. Parametrization of D,

It is not obvious which stable curves are in the closure of D,, especially which
reducible stable curves. To have a way to enumerate the points of D, as well as
to determine the tangent plane to smooth branches of D,, we introduce a new
moduli space, which will be a compactification of what is usually called the
Hurwitz scheme. Recall that the Hurwitz scheme in its simplest form para-
metrizes the family of k-sheeted coverings of P! with b ordinary branch points:

moduli space of the data

n: C—P' of degree k
H ,= P, ...,BeP! distinct
C smooth curve, & with one ordinary branch
point over each P, otherwise unbranched

(It is usual to treat the {P} as a cycle ) P, but for our purposes we wish to
order them.) By the usual theory (see [6]), H, , is itself a finite étale cover of
the space of sequences {P}:

H, ,— [P UAU]/PGL(Z);(P’)”‘3—S

i<j

where S= U 4;)v U pi'({0, 1, c0}) (normalizing B,_,=0, B, , =1, P,=o0). By

Hurwitz’s formula the genus g of C is given by

2g—2=-2k+b
and we have a diagram

*** See note at end of article




On the Kodaira Dimension of the Moduli Space of Curves 57

Heb

N

1,b-3
(P )°7-5S1 mg

In particular, if g=2k—1, D,=0(H, ;). We want to compactify H, , in such a
way that o extends to a morphism

o: H,— M,

We do this by means of the theory of F. Knudsen [10] of b-pointed curves
with fine structure. Knudsen has introduced a smooth projective compactifi-

cation
Ro[(PyY—*-5]

which as a moduli space can be described as follows:

i) a stable b-pointed curve is a reduced, connected curve C with at most
ordinary double points, plus b smooth distinct points P, ..., BeC such that
every smooth rational component E of C contains at least 3 points which are
either P’s or double points of C

i) P = set of b-pointed stable curves C with p,(C)=0
*" | up to isomorphism

iii) the open dense set (P')* =3 —S is the set of (C, P, ..., B) in B, where C is
irreducible.

In fact, Knudsen describes P, as an explicit blow-up of (P')’~3 along an
ideal sheaf with support S.

We next describe a functor that will be coarsely represented by the sought-
for scheme H, ,:

Definition. #, , is the functor which associates to a scheme S the set of
isomorphism classes of the following data:

i) a stable b-pointed curve (D; P, ..., B) of genus 0 over S,

ii) an admissible covering n: C— D.

By an admissible covering, we mean that C/S itself is a proper flat family of
reduced connected curves with at most ordinary double points, that = is étale
except at unique smooth points Q,: S— C, one over each P.: S— D, where it
has ordinary branching (i.e, n: C— D is analytically just u=x?% x coordinate
on C over S, u coordinate on D over S), and except over the double points of
D/S. For each seS and each point x of C, over a double point y of a fibre D,
C; has an ordinary double point and locally C, D and = are described by:

C: xy=a, aco,, X,y generate », .
D: uv=a?, u, v generate », 5,
mu =xP v=y°F

for some p. (This definition generalizes Beauville’s admissible double coverings,
used to compactify the space of double coverings of a curve of genus g.)




58 J. Harris and D. Mumford

Theorem 4. The functor #, , is coarsely represented by a scheme H, , finite over
P, i.e., there is a morphism

Hp— Hy

bijective on C-valued points, which is universal for morphisms from #,, to
schemes. Moreover, H, , represents #, , on the open set of coverings m: C—D
such that C has no automorphism a: C— C with moa=m except the identity.

Proof. The functor #, , and hence the scheme H, ,, if it exists, both lie over B,
so the problem is local over P,. Therefore we may cover B, by suitable open
sets and make the construction separately over each. Take a point [D,]€eR,. It
may happen that every component of D, has at least one of the b-points P. on
it. But if not, choose further points B, ,,..., PeD, so we have one P, in each
component and in some neighborhood U <P, of [D,], choose smooth disjoint
sections of the universal curve & — B, through these points. (This is possible
because there are birational morphisms 2 — P! x B, which over [D,] take any
one of the components of & isomorphically to P!, collapsing the rest to points;
and P' x B, has a section through any point of P! x [D,] - see Knudsen [10].)
Choose U small enough so that for all [D]eU, the sections P,..., P meet
every component of D. Moreover, choose U’s well enough so we may find a
local coordinate t; on the fibres of & over U, t;=0 on the section P: U— 2 to
1 order. Then for all [D]eU, if n: C—D is any admissible cover,

oc (Z n“Pi) is ample on C. For some n, o (nZn“lP,.) is very ample for all
1 1

n: C—D. B
Next define a “rigidified” version of # , over U:

Y, =Tfunctor of families of admissible coverings
n: C—D, [D]eU plus orderings of n~'(P):

P y,....,B ,_,€C, the points over P eD, P, | ramified,
B, ...,B ,_,€C, the points over FeD, B, , ramified,
B, ...,B, €C, the points over B, €D
B,,...,B ,eC, the points over PeD
plus a choice of square root
Vt€ip oo 1Sish.
Note that by changing these choices in the obvious way, the finite group
G=(Z2LxZX, )P x(Z)"

acts on ", where X,=permutations of ¢ letters. Via this action J#,_ ,(Spec C)
> A5, (Spec C)/G. We shall show that #", is representable. To do this, note
that the projection

n: C—D
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and the choice of t;€mp_p, t¢mp_p, defines isomorphisms:

epe—ep plV/11">CIIVET] i 1<i<h
or
Spc—epp— CL[t]] if j>1ori>b.

Therefore, if N is large enough, we get an injection:

1

HO (C, oc (nin—lp))_}ck(l‘/-#l)c
1

(a0

if, near B,

f is expanded:

N
f=Y ap "+
k=0

or
2N+1

f=Y @724 if j=1,i<bh.
k=0

In other words, for each admissible n: C-— D, we get canonically both a
subspace V < CHN¥*D* and an embedding

CcP(V).

The dimension of V is given by the Riemann-Roch theorem on C as nkc—g
+1. Reversing this process, let G be the Grassmannian of (nkc—g+1)-
dimensional subspaces of C*V*1)< let ¥"—»G be the universal vector bundle,
and let H be the Hilbert scheme of P(¥") over G of curves in P(¥") with
Hilbert polynomial nkcX —g+1. By the given ordering of the coordinates in
CN+1)e we get maps:

V. Sp. of series

N

Aij VeV —— 8 % g etk WC[[ti]]/(tfv+l)
via k=0 mu[n.

coord
aK

hence over a suitable open subset of G, we get canonical embeddings
;50 Spec CL[t 11/} H)—P(V).

(Replace t, by /1, if j=1, i<h.) Let H, = H be the locally closed subscheme of
points z where ¢;; exist and Im¢;; is a subscheme of the curve C, in P(¥7)
defined by z. Let H,c H, be the locally closed subset of connected reduced
curves C, with at most ordinary double points with Im¢;; being disjoint

smooth points P, ; of C., with C, embedded by a complete linear system and

b
with o ()= o, (2IIZB,+nZEj). Let Hy;—H,xU be the Hilbert scheme
1

rest

representing morphisms n: C,— D, [D]eU, and let H,cH; be the locally
closed set where = is finite of degree k over each component and
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¢/( '
N 7

Spec C [[tilll(ti

Canonical
map image P, D

commutes (modify this for ¢,,,...,¢, in the obvious way). Then H, will
represent A", !

It follows that H,/G coarsely represents the open subfunctor of %, , of :
C— D with [D]eU, and represents it where G acts freely. But a fixed point of
geG means a covering n: C— D such that there is an isomorphism:

N\

which permutes the finite sets n=~'(Q,) and/or acts by I/E*"V?i at the
ramified points P, ,. Glueing together the schemes H,/G over various open sets
Uc P, we construct H, ,.

It is clear that the morphism H, ,—F, is finite to one. To see that it is
finite, we check that the functor J?jc , satisfies the weak valuative criterion for

properness, hence H, , is proper over C. This means that given

C

n: C—>D

over the field C((t)), then taking a suitable root t'" of t, n extends to a family
of admissible coverings:
n,: 6,9,

over the ring C[[t'"]]. In fact, by Knudsen’s results, P, is complete, hence
Dc2,, 2, a b-pointed stable curve over C[[t]]. Let ¥, be the partial normali-
zation of 2, in the fraction field of C defined by

o4, =(functions integral over o, generically in o).

%, may be ramified over one of the components of the fibre (2,), over t=0.
But replacing t by t'/", by Abhyankar’s lemma, this no longer happens. This
gives us ¥,— 2, which, by the purity of the branch locus, is ramified only over
the sections P: Speck[[t]]-—> 2, and the singular points of the fibres of 2,. 1
claim that %, must be an admissible covering. There are 2 points to check:
what happens over an ordinary double point of (2,), which lifts to the generic
fibre (2,),, and what happens over those that don’t. In the first case, Z, has the

local equation
u-v=0

and €, is a covering of the smooth branch u=0 plus a covering of the smooth
branch v=0. So if (%,), has p-fold branching on the curve u=v=0 on the surface
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u=0 and on the curve u=v=0 on the surface v=0, ¥, must do the same. In
the second case, 2, has the local equation

u-v=s" (s=tM

for some m, ie., 9, has a singularity of type A4,,_,. The universal cover of 9,,
ramified only at the origin, is then

Thus €, must be given by

x-y=xK x‘f=u, y=v

for some factorization k/=m, and this is admissible. Q.E.D.

The scheme H, , maps on the one hand to F, by considering only D in the
cover n: C— D, and on the other hand to .#, by considering only C:

Hip
Pb TT}g

(C is not necessarily stable, but one may contract unnecessary smooth rational
components with only 1 or 2 double points, obtaining a stable curve - see
Knudsen [10].) If g=2k—1, it is clear that the divisor Bkcﬁg is the image of
the morphism H, ,— ./,.

We want to discuss the local structure of H, ,. More precisely, what family
pro-represents the infinitesimal deformations of a particular admissible cover-
ing n: C—D? Let {Q;},<;<4 be the double points of D and let n~'(Q,)
={Qi.1,---» Qi) Say the covering m is ramified with order p(i, j) at Q, ;. Now
let

D ——— Spec T Ilt,...t, Il
\_/

Pi

be the universal deformation of the b-pointed curve D. If u;, v; are coordinates
at Q,eD so that D is given by u;v,=0, then if the ¢; are suitably chosen, we may
assume that & is given locally near Q; by the equation

uv,=t;

[ it

In order to lift the covering n: C— D to a covering n: ¥— &2, Grothendieck’s
theory ([8] or [14]) tells us that we must merely give € locally near all non-
¢tale points of n: C— D. Over each of the b sections P of 2/C[[t,,...,t,_31],
let s; be a function on 2 vanishing to 1% order on the image of P. Then near
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P, the covering n: ¥ — 2 is given by adjoining ]/sil At each Q
must define € by

ij» however, we
X V=t
and 7 by
— P ) — P, ))
u=xi0, v =yrd

In order to do this, ¢; must equal t/*”. The universal way to do this is to take
our parameter space to be:

Spec oy, e pys
where

o[n:C_.D]:C[[th vy 3ty g e by e td r(d)]]/(tp'(i’j)_tn all i,j).

Over this base, we have now defined a covering n: ¥ — 2. The complete local
rings of the scheme H, , are, as usual, the rings of invariants of ¢, ._, under
the finite group of automorphisms a: C— C such that noa=n.

Unfortunately, some of the rings o, ._p are rather messy, esp. not in-
tegrally closed. Suppose, however, that for all double points Q,eD, there is at
most one Q€ C over Q; such that p(i, j)> 1. Let it be the point Q, ;. Then

O[n:C—»D]:C[[tl,h s la sty ""tb—~3]]

and if, furthermore, C has no automorphisms over D, ﬁk' , 18 smooth at the
point defined by n: C— D. For further applications it seems that the normali-
zation of H, , is probably more useful than H, , itself. Note that the integral
closure of o, c_,p; is @ semi-local ring whose local rings are all regular.

As an application of the surjective map

— i = = g=2k—1

Ho== DSl pgtok—2
we can describe set-theoretically at least part of D, fairly easily. The first part
of the following theorem can be proven easily without use of H, ,, but the
second is harder:

Theorem 5. Let C be a stable curve of genus g=2k—1, [C]EL%g the correspond-
ing point. Then

a) if C is irreducible, [C]eD, if and only if there exists a torsion-free rank 1
sheaf & on C such that

h(F)z2
X(F)=2—k.
b) if C=C,uC,, C, irreducible, C,nC,={p}, then [CleD, if and only if
there are torsion-free rank 1 sheaves & on C;, %, on C, and an integer ¢ such

that:
hW(F)z2, h(F)=2,

WFE(=p)zl,  h(FH(=p)2],
HF)+(F)=3—k+L.

N
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Proof. We first prove (a). By the theory of the compactification of Pic(C), the
space of pairs (C, %), C irreducible, & torsion-free rank 1 is proper over the
moduli space of such C’s, and the conditions in (a) define a closed subset of
this space. Therefore the set of irreducible C such that such an & exists is
closed in the space of such C’s. Moreover, if C is smooth and [C]eD,, let n:
C— P! be the given covering of degree k, # =7n* »(1). Then

WF)=degn—g+1=k—(2k—1)+1=2—k.

This proves that the C’s satisfying the conditions in (a) contains the set of
irreducible C’s such that [C]eD,. Conversely, let C satisfy the conditions of
(a). We will check that [C] lifts to a point of H, ,, hence [Clelm(H, ,— .4,)
=D,. To see this, let C' be the desingularization of C. We shall embed C’ in a
curve C” with ordinary double points so that collapsing rational curves of C”
we get back to C and we construct at the same time an admissible covering

n: C"—P, P a b-pointed stable rational curve.

We start by choosing s, s,el'(¥) and letting &' <% be the subsheaf generat-
ed by s,,s,. Let A4 be the set of double points of C. At each zed, &£ is
isomorphic either to ¢, - or to #, .. Call these subsets A,,4,cA4. Let C* be
the partial desingularization of C obtained by separating the branches of C at
the ze A, only. Then there is an invertible sheaf #* on C* such that if

c—L cx—*2 ¢

are canonical maps, #' =g, (#*). The function s,/s, defines a morphism
n*: C*—P!
hence

n=n*of: C' —>P.
Note that

# A, +deg(n)=# A4, +deg(n*)
=4 A4,+deg(F*)
=H#A,+1(F*)+p,(C*) -1
=1(F)+(#A,+p,(CY)) -1
WF)+p,(C)—1
F)+2k -2
k.

A

Now n: C”— P will be built up starting from n: C'—P*, Let ScP' be

a) the multiple branch points of n

b) the images of the points z, ;, z, ;€C’" over the double points z;,e C

c) the images of k — # A, —deg(n) further generic points w,eC".

Then P is the original P! henceforth called (P'),, with a “tail” P! glued at
each point of S.
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Firstly, if xe(P'), is a multiple branch point, let z~'(x)= ) n,y,. For each i
add to C’' a copy of P! glued to C’ at y, and mapped to the tail at x by a
generic map P'— P! of degree n,, with n,-fold branching at y;:

Examples: n,=2, ny=1, ny=3

Yy
|
Y.
2 N
c
J
tail P' (P,

Secondly, if xe(P'), is the image of z, ; and z, ; (this happens if z,€4,), let n be
ramified to order ¢, at z, ;,/, at z, ;. Then add one copy of P' to C’ meeting
C’ at z, ; and z, ;, and lying over the tail at x with degree ¢, +/, by a generic
map P'— P! ramified to order ¢, at z, ;, £, at z,

Example: ¢, =2, {,=1

1
P,

(At other points of C" in n~!(x), add further P's as in the 1% step.) Thirdly, if
x1, X,€(PY)y, X, %x, are the images of z, ; and z, , (this happens if z;e4,), let ©
be ramified to order ¢, at z, ;,, ¢, at z,; again. This time, however, add 3
copies of P! to C’, copy A4 over the tail at x,, copy B over the tail at x, and
copy C over (P?), as follows:
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Copy C of P'

Other tails

¢,=1, £,=2is illustrated. Note that copy C goes isomorphically to (P'),, copy
B goes to the tail at x; with degree 7, + 1, generic except for /,-fold ramifi-
cation at z, ;, copy C goes to the tail at x, with degree 7, + 1, generic except
for /,-fold ramification at z, ;. Both copy 4 and B meet copy C at their
remaining (unramified) point over x, (resp. x,). Finally, more P'’s are joined to
copy C to cover all the other tails added to (P'),. Fourthly, at the k—# 4,
—degn generic points x added to S, the following “plumbing fixture” is
thrown in to soup up the degree of © to k:

f / / ['\ Copy B of p'

i
/s NN o,
TN

Other tails

Thus degn P's are added over the tail at x, all but one isomorphic to it, one
of degree 2 over it. To the new point over x introduced by this last P!, a copy
B of P! isomorphic to (P'), is joined, and to it further P"’s over the other tails.

After some reflection, the reader will see that the resulting C” is an
admissible cover of P of degree k, and arithmetic genus g=2k — 1, which blows
down to the original C when the extra P"s are collapsed to points. This
completes the proof of part (a).

To check part (b), let D be the locus of [CJ's satisfying the conditions of
parts (a) or (b). We show first that D¥ is closed in the open set of ,/_//—g of curves

with at most 2 components, meeting at most once, hence in this open set, D,
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=D}, and second that points of D} lift to H, , hence D,=D. (The latter will
use almost the same construction to that we just gave.) It is clear that the locus
of curves satisfying (b) is closed in the locus of curves C,uC,, C,nC,={p}.
Thus D} is a constructible subset of .#,. Let %/SpecR be a family of stable
curves over a valuation ring whose generic member C is smooth and in D,
and whose special member C® is of the form C{¥u CY, C{¥n CY'={p}, C\¥
irreducible. Let %, be the invertible sheaf on C™ of degree k with h°(%)=2.
Then #, extends to a torsion-free, reflexive, rank 1 sheaf on 4 in an infinite
number of ways parametrized by an integer k. If %#/% is one of these, then
F(—kC?)=F(+kCY) are the others. Now the local ring é,_, is isomorphic to

Cllx,y, t])/(x y—1t")

for some n, where tR is the maximal ideal of R and (x,t)=ideal of C{*, (y, 1)
=ideal of C{). Then the group Pic(Spec ¢4, ,—{m}) is cyclic of order n, being
given by the restrictions to the punctured spectrum Spec ¢, , —{»} of the ideal
sheaves (x, t*), 0<k<n—1. If # is isomorphic, as invertible sheaf on Spec 2%.,,
—{m} to (x,t%), then Z(k C') is invertible at p. Replacing & by this, we may
as well assume that & itself is invertible at p, hence so are all the sheaves in
the sequence

W F(=nCO), F F(nCY), F2nCO), ...

Restricting # to C'”, we get a pair of torsion free, rank 1 sheaves &%, on C\*,
F, on CY), invertible at p and “glued” there to give a sheaf on C'©. Restrict-
ing the above twists of %, we get the pairs & (kp), %#,(—kp), glued to a sheaf
F, on C9. By upper semi-continuity of h° it follows that h°(#)=2. Fix
k, >k, by the hypothesis

R kp)Z2 if k2k,,
R(Fkp)z1 i kzk,.

Then h°(%, ) 22 implies h°(F,(—k,p)) =1 and h°(£, ) =2 implies h°(F,(—k,p)) = 2.
If # =% (k,p), F =F,(—k,p), {=k,—k,, we see that &/, F, and ¢/ satisfy
the conditions of part (b) so that [C®]eD¥.

For the second part, we start with C=C, U C,, %, %,, and ¢ satisfying (b).
Take 2 sections in %, one a section of %, (—7/p), spanning a subsheaf %/, and
2 sections in %,, one a section of #,(—¢p), spanning %, and let their ratios
define morphisms of the desingularizations C{®” of C{*:

ny: CP P! of degree k,, ramified to order 7, at p
ny: CP— P! of degree k,, ramified to order ¢, at p.

If it happens that ¢/, =/,, we can join them into an admissible cover by
identifying p in C{*, C{":
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Example: £, =/,=2,n=4

~__ Extra P'tomake
cover admissable

(P)2

Otherwise, we need an extra P! to join them:

Example. £, =3,/,=2,n=5

In cover

0y’
Cz

In base

(P, (P,

67

If /,>/,, add a P! to the cover of degree 7, over the link P' in the base
ramified to order /, at the point P in C{*' and to order /, at the point
peC"’. At this point, the covering is “filled in”, exactly as in the case of an
irreducible C. To make it admissible, extra P!’s are needed at multiple branch
points of 7, and n,. To join the two points of C™' (resp. C}Y') over double
points of C{” (resp. CY"), linking P''s are needed. Finally the degree of the
whole cover must be augmented to k. Thus for example, in the case /;, =/,=2,

k =k,=3, k=5, one would add P"’s as follows:
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Example:

"tuil" (P1]2

All a;, b, c;, d are P"s. In general, k, —¢, P"’s (like b,) are added to C{? to
extend its other points over g across (P'),, and k,—¢, P"’s (like b,) are added
to C% to extend its other points over g across (P1),.

The main point to be checked is that k is large enough to accommodate all
these curves. Thus if

A;=set of double points of C!” where & is not invertible,
to carry out our constructions, we need

(ky—=¢)+(k,—¢,)+max(/,,/,)+ %A, + #A4,
sheets, so this number must be <k. But, in fact, as above,
kit 4 4,= 1) +p(C)~ 1.
Moreover, since one of the sections of %, used to define x; vanishes to order at
least Z, it follows that
{ SULALF, T
=i+ (F) = F).
Thus if £, 27,:

(ky =€)+ (ky = £) +max(¢y, £) + 4 A, + 4 A, = 1(F)) + 1(F3) £, +p,(C*) 2
S UF) (T~ +2k—3
=QB—k+()—¢(+2k-3
=k. Q.E.D.

Working this out more explicitly, we can draw a series of Corollaries from
this theorem:

Corollary 1. Let Int A, be the locus of irreducible curves C with one double point
p. Writing these curves as the quotient of a curve C’ of genus g—1 by identifying
2 distinct points p,, p,, we have:

(IntAO)ijk={(C',p1 ,D3)

3 a line bundle L on C' of degree k
st ()22, h°(L(—p,—p,)21 |
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The map (C',py,p,)—C’ carries all components of this intersection onto M, _,.

Proof. This comes from part (a) of the theorem. The condition above comes
from the case where & is invertible. The other possibility is that # ~,. Such
an & is the image of a line bundle M on C’ of degree k—1 such that
h°(M)=2. Let L=M(p,) and the condition above is satisfied.

Corollary 2. Let Int 4, | be the locus of curves of the type

P

¢, C,

where C, is smooth of genus g—1, and C, is P! with 0, oo identified. Describing
these curves by the pair (C,, p), we have:

(Int4,, l)mﬁk :{(Czap)

3 a line bundle L on C, of degree k
s.t. h%(L)=22, h%(L(—2p))=1

Proof. We use part (b) of the theorem. For %, to exist, it is necessary and
sufficient that y(#,), ¢ satisfy:

{=1y(F)22 or (22,(F)2C.
But this means that &, is a line bundle on C, such that either

deg 7, <k, hO(F,) 22, hO(Fy(—(p) 2 1. (22
or
deg 7, <k — 1, h°(F,) 22, hO(F,(~p) 2 L.

All of these imply the existence of %, such that
deg #, =k, h°(F,) 22, h°(F,(—2p) = 1.
For the next Corollary, we define:

M,y =moduli space of pairs (C,p), C smooth of genus g, peC
Sy.z g =subset of 4, , of pairs C,p such that there exists a line bundle L on C
of degree k with h°(L)=2, h°(L(—/p))=1.

Corollary 3. If 1=g,<k—1 and g,=g—g,, let Int A, be the locus of curves C
=C,uC, where C,,C, are smooth with genus g,,g, and C,nC,={p}. Note
that:

Intd, =M, %M, .

Then
(Int4,)nD,= U (Sky. 2ks —gropy X Mgy, 1)
2L <k Sminck.g1)
Y U ('//lgx. 1 x Skz, 2k2~gz,g1)'

52'2*—1§kz§min<k,gz>
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Proof. We apply (b). Note that as the C; are smooth, the %, are line bundles.
Let k;=deg #,. Now k,,k, and / satisfy:

(ky+1—g)+(k,+1—g)=x(F)+x(F)=3—k+/(
hence
ki+k,=1—k+/+(g,+8,)
=k+¢

Now part (b) of Theorem 5 asserts that

(%) (Int4,)nD,= U (Sky.e.00 X Skat,g)-
with kit ke
But note that:
) if2k—£—-12g, 8, , , =M, ,
1) S 2 e SSkit,e41,e
For (1), see [7]; for (ii), if L has degree k and puts (C,p) in S, , ,, then L(p)
has degree k+ 1 and puts (C,p) in S, ;4 , Now if k,,k,,/ satisfy

ki+k,=k+¢,
note that:
either 2k, —/—12g,, or 2k,—/—12g,.
If not,
g, =2k—¢, i=1,2
hence

2k—1=g, +g,22k, +2k,—2¢0=2k
a contradiction.
Therefore, in the union in (*), one of the 2 factors is always .4, , or 4, ;.
But if
2k, —(—1>g,,

then if we replace k, by k,+1 and 7 by / +1, then

Sk;.t’,gl x Skz,f,gz :'///gx, L X Skz,t’.gz

< 81-1xskz+1,¢’,gz+]

=804 1,00 X Skat 1, ga+ 1
Thus in the union in (*), we need only consider the terms with
2ky =0 —1=g,,2k,—{ =g,
or 2k, —4=g.,2k,—{ —1=g,.

This is exactly the Corollary.
Note that in the special cases g, =1 or 2, the Corollary reduces to:

(IntAl)r\D_k=/”1,1 XSk,Z,g—l’
(IntAz)mD_kz(Sz,z,z XMy _3,1) My 1 XSy 5.5-2)
U(%z,lxsk—l,l,rZ)'
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Only in these two cases do we have components of Int Aglmﬁk consisting
entirely of curves with automorphisms: viz. #, ;xS§,,, ; and S,,,
x M, _, , (the latter means a curve C; of genus 2 meeting a curve C, of genus
g—2 at a point p, where peC, is a Weierstrass point).

Corollary 2 plus the case g, =1 combine to say:

Corollary 4.

(locus of curves C,u C,, C, smooth of genus g—1

D=, , xS .
C, smooth or singular of genus 1,C,n C,={p} )r\ k 117k 21

§5. Counting Pencils on the Generic Curve

We need to refine the results in Corollaries 1 and 3 of § 4 by determining the
intersection multiplicities in the intersections D,nInt4;, and we will need to
count the intersections of these cycles with the curves in 4; obtained by
varying the double points used to get a singular stable curve in 4,. In order to
do both, we need two fundamental results counting pencils on the generic
curve of genus g, which are essentially but not completely contained in [7].
The results are:

Theorem A. For all g=1 and all d such that

%+1§d§g+L

let
g!

Then for almost all pairs (C,p), C a curve of genus g, peC, there is a finite
number a(d, g) of line bundles L on C of degree d such that

(*) h°(L)22,h°(L(—2d—g—1)p) = 1.

Moreover, for each L, h°(L)=2, L is generated by H°(L), and H°(L) defines a
covering
n: C—P!

of degree d with all ordinary branch points except for one (2d —g— 1)-fold branch
point at p, all lying over distinct points of P'.

Theorem B. For all g=1 and all d such that

g
g 1<d<
yTisd=e

let

b(d,g)=(2d—g—1)(2d—g)(2d—g+l)m.
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Then for almost all curves C of genus g, there is a finite number b(d, g) of pairs
(L,p), L a line bundle on C of degree d and points pe C such that

(*+) ho(L)z2, h°(L(—(2d—g)p)z 1.

Moreover, for each L, h°(L)=2, L is generated by H°(L) and H°(L) defines a
covering
n: CoP!

of degree d with all ordinary branch points and, if 2d —g=3, one (2d —g)-fold
branch point, all lying over distinct points of P!.

Proof. Theorem A follows directly from results of [7]. To see this, note first
that if C is a general curve, peC a general point, then by a naive dimension
count there will exist no map

n: C-P!,

ramified at p, whose branch divisor B on P! is supported on fewer than 3g+1
points; or any such map n of degree d —k with a (2d —g—1—k)-fold branch
point at p for k>0; or any such map of degree d with a (2d —g —1)-fold branch
point at p such that

hO(C, m* opi(1))=3.

Thus, if (C, p) is general, any line bundle L of degree d on C satisfying (*) must
satisfy as well the rest of the conditions of the theorem. It then remains only to
count the number of points of intersection in the d'" symmetric product C, of
C of the cycles
Ci={DIh°(C,oc(D))22}
and
X24#-1={D|D—(2d—g—1)p=0}.

This is readily done: the class of the cycle C} is found to be

0g~d+1 x0g~d

“4Tg—dr 1) (g—d)!

1

where x is the class of the divisor X,={D|D—p=0} and 0 the pullback from
the Jacobian of C of the class of the f-divisor. By Poincaré’s formula, the
intersection numbers

capa__ 8!
= =

and hence the intersection number

(cq-x*""#"")=a(d, g).
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Finally, in [7] it is shown that if (C,p) is general, then C} is reduced, and
C) intersects X ;"‘g -! transversely in exactly a(d,g) points, proving Theorem
A3

The proof of Theorem B, by contrast, requires a little more care. As in the
first case, naive dimension counts show us that, for general C, no line bundle L
of degree d on C can satisfy (xx) and violate any of the remaining conditions.
The problem is thus reduced to computing the intersection number in C, of
the cycle C} with the diagonal

A**~¢={D|D—(2d—g)p=0 for some peC}

and showing that this intersection is transverse.
The intersection number is readily computed. The class of C} is as before;
and for p+g=g—d+1 the degree of the pullback, via the diagonal map

4: CxC,_y4—C,
(p, E)—E+(Q2d—g)p

of the class x?- 67 is given by

g!
(g—p)!

(cf. [11, 2]). Combining these yields the intersection number

A*(x? %) = (2d—g)’p+(2d—g)q

(Cq-4*"7%)=b(d, g).

It remains to check that for general C this intersection is transverse. To
begin with, we may identify the tangent spaces involved as follows:

i) At any point DeC,, we have natural identifications
Tp(Cy)=T'(oc(D)/ec)
and
Tl;k(cd) =F(KC/KC( —D)),

with the pairing of tangent and cotangent spaces given by the residue.

i) If D=m-p+q,+...4+4q,_,, With p,q,...,q,_, all distinct, then 4™ is
smooth at D with tangent space equal to the subspace of I'(e(D)/e):

Tp(4™) = Annihilator[I'(K-((m—1) p—D)/K -(—D))]

and

iii) The tangent space to C! at D with h%(C,s(D))=2 is given as the
annihilator of the image of the map

Ho=T°ly

* In point of fact, the statement made in [7] is that C} intersects the cycle Xp N OXp
transversely for p,,..., P24_g 1 general points of C; but the argument applies equally in this case




74 J. Harris and D. Mumford

where
Ho: H(C, o(D)®H(C, K ((— D)~ H(C, K,)

is multiplication, and

r: H(C,K.)—~H°(C,K./K(—D))

is evaluation at D.

Statements i) and iii) are standard (cf. [2]), and ii) is elementary. Combin-
ing them, we see that a divisor D on C, whose associated line bundle L =¢.(D)
satisfies the conditions of Theorem B, is a transverse point of intersection of
C; and 4??~¢ if and only if

H°(C,K (—2D+(2d—g—1)p))=0.
To see that this in fact holds, let D be such a divisor, and
n: CoP!
be the corresponding map; let
R,=Q2d—g-1)p+q,+...+4q5, _,

be the ramification divisor of n. Let # be the versal deformation space for the
map 7, and let #' < be the subvariety of s of maps with a (2d —g)-fold
branch point over n(p). Then the tangent space to # at « is given by

T(#)=H"(C,n)
where # is the normal sheaf of n, defined by the exact sequence
0— 00— 7*0p,—> n—0,
and the differential of the map
¢ A > M,
is given by the coboundary map
H(C,n)—H'(C,0,)

in this sequence. Finally, we may identify the tangent space to #’ at n with
the subspace of T,(#)=H°(C,n) of sections of # vanishing in a neighborhood
of p, ie., the sections of #':

0— 0c—— n*0p(—(m—1)p)—n'—0.

Now, we observe that since 7 is a point in a general fiber of ¢| ., by Sard’s
theorem the differential ¢, restricted to T,(J#), must be surjective. This means
that the map d below is surjective:

d

HO(n) H'(6) > H' (1* 0, (—(m—1) P)) —— 0.
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But 0p: = 0p:i(2) and ¥ opi(1) =o (D), hence

(0)=H'(¢c(2D—(m—1) P))
=H%K(—2D+(m—1) P))*,
as required.
Using Theorems A and B, we can work out the intersection multiplicities
in (Int4,)nD,:

Theorem 6. a) In the notation of Corollary 1, A, and D, intersect generically
transversely:
3 L on C' of degree k

(IntAo)~5k={(C”p“p2) ho(L)2 2, h®(L(—p, —p)) 21

}w. mult. one

b) In the notation of Corollary 3, if g, =3

(IntAgl)-D_kz Y atk; +8,—k+1,85) St 2k, —g1 0 X My, 1
8L <k Smin(k 1)

+ Z a(k2+g1_k+1’gl)’ﬂg1,lXskz,Zkz-gz,gz'
%ékzgmin(k,gz}

This is still true for g, =1 and 2 if the intersection is taken, not in ﬁg, but in the
universal deformation space of a curve in Int4, (nb. Intd, and Intd, have

divisors in the singular locus of M,, so the intersection product is not well-
defined ).

Proof of a). In the set-theoretic intersection Int 4, D,, there is an open dense
set consisting of those C=C'/(p, ~p,) for which

0) C’ has no automorphisms

i) there is a unique line bundle L on C' of degree k with h®(L)=2,
hO(L(=p,—p,) 2 1.

ii) for this L, h°(L)=2 and H°(L) generates L

iii) if =: C'>P! is the covering of degree k defined by H°(L), then n has
only ordinary branch points g, and n(q;), n(p;) are all distinct points of P*.

In fact, by Theorem B, for almost all C" of genus g—1=2k—2, there are
b(k,2k—2) pairs (L,q) of line bundles L such that degL=k, h%L)=2 and
points ge C’ such that

h(L(—29)z 1.
Each distinct L, defines a covering m,: C'—>P’, hence a curve
LcC'xC
L={(x, y)lmx=my}.

Since almost all (p,,p,)eC’ x C' are on a unique curve [; if they are on any of
them, this proves i), ii) and iii).

Now for such C=C'/(p, ~p,), [C] is the image of a unique point of ﬁk’,,,
namely the admissible cover n: C"'— P of degree k:
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Copy A of P1,
degree 2 over tail

k-2 copies of p!
isomorphic to tail

1 ) 1
(P )o X X, tail P

More precisely, if Z, is the permutation group on b letters, X, acts on H, , by
permuting the labelling of the branch points {x;} and this covering is the
unique point of H, ,/Z, over [C]. Note that this admissible covering has an
automorphism ¢ of order 2, however:

¢=id, on C’

@l i1 pr =automorphism fixing ¢, interchanging the two branch points x,, x,
on the tail

®lcopy 4 =automorphism fixing p,, p,, interchanging the two ramified points.

However, C” has no automorphisms over P fixing all the points of ramifi-
cation. Therefore, if z is the point of H, , representing n: C"—P, z is a smooth
point but if ceZ, is the permutation interchanging x,, x, and fixing the other
branch points, it follows that ¢z=z. In fact, ¢ fixes the smooth divisor 4= H, ,
of all admissible coverings like n: C'—P where P=(P'),u(tailP') but where
X3,...,X, are allowed to vary in (P'),, and C’ varies accordingly. There is a set
ty,...,t,_5 of local coordinates on ﬁk, , near z such that at all points of n~'(g),
the universal family
b4

¢ — = P

N/

H k.b
has local equations
xy=t,,
t, =0 is the local equation of 4, and
a*(t))=—t,

g¥(t)= t 2<Zi<b-3.

i
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Then ¢2,t,,...,t, 5 are local coordinates on ﬁk‘b/{e,a_} near the image of z.
Now consider the local analytic curve y: 4,—H, ,/{e,0} given by t}=s,

t,=...=t,_;=0. Consider the diagram:
_ A _
k,b’ze"’s - D,
Q
7 Mg
¢
Y Int 4,

We shall check that the curve Aoy in /Zg is transverse to Int4, at the point
[C]. This implies that the divisor A*(Int4,) on H, ,/{e,0o} is 4 with multi-
plicity one, hence D, and Int 4, meet transversely. To see that Aoy: 4— .4, is
transverse to 4,, consider the restriction of ¢ to t,= ..=t,_;=0. It is a family
of curves with only ordinary double points:

over t, =0. Moreover, €,, as a surface, is smooth because its local equation is
xy=t,. It follows that on €,

(ED=—2(E)=...=(E{_)=—1
Blowing down the E’s, we get a family of stable curves

¢,

dt]
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with the same curves when ¢, 0, and with fibre C over t; =0. Since E, blows
down to an ordinary surface double point, %, has equation xy=t] at the
image of E,. But ,/4, is just the pull-back to 4, of the family of curves over
4, given by the morphism Aoy: As—nﬁg. Thus it is induced by a family

C3

4

N

where %, has local equation x-y=s at the image of E, and is again smooth.
This means that % restricts to the universal deformation of the singular point of
C, hence is a curve on ./#, transverse to the locus 4, of singular curves.

Proof of b). The situation is similar with the two sums, so let’s take a
sufficiently general point [Cle€S, .4 _,, . X#,,  and compute the intersec-
tion multiplicity here. Now C=C,uC,, C, of genus g,, C, of genus g,,
C,nC,={p}. Since by Theorem B for almost all C, of genus g,, there are
b(k,,g,) pairs (L, p) such that deg L, =k, h°(L;)=2, h°(L,(—(2k; —g)p) =1,
and since for almost all C,, the points p are distinct, it follows that for almost
all (C,p)€S,, 24, —g.c,» there is a unique L, of degree k, with ho(Ly)22,
h°(L,(—(2k,—g,)p))= 1. Moreover, for this L,, h°(L,)=2 and H°(L,) defines a
covering
n,: C,—~(P'),

with general branching except for a (2k, —g,)-fold branch point at p. As for
(C,,p), this is a general point of .#,, ,, hence by Theorem A for all k, it has
exactly a(k,, g,) line bundles L, of degree k, with

ho(Ly) 22,  ho(L(=Q2k,—g,—1)p)H=L.
Moreover, for all of these, h°(L,)=2 and H°(L,) defines
n,: C,—(P'),

with general branching except for a (2k,—g,)-fold branch point at p. In
particular, there are no line bundles L at all of degree k, with h°(L,)=2,
h°(L,(—(2k—g,)p))=1. A little reflection shows that the only ways to lift C to
a point of H, , are to use the admissible coverings defined by L, on C, of
degree k, and L, on C, of degree k, where both have /-fold branching at p
and £/ =2k, —g,=2k,—g,—1:

Example. (=2,
k,=4,
k,=3,

k=5.
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QA -

(P"), (P,
Here the degree of n is k and over (P'), we have C, of degree k, and k—k,
copies of P! mapping isomorphically to (P'),; and over (P'),, we have C, of
degree k, and k—k, copies of P! mapping isomorphically to (P?),.

In order to do this, we must choose k, by the equation:

2k,—g,—1=2k, —g,,

Le.,
1—
kz—k1+g2+ g1
2
-—k1+g2+ gl_gz
2
=k, +g,—k+1

Now, whereas L, is unique, there are a(k,,g,) choices for LZ, so this gives
exactly a(k,,g,) points of H, »/Z, over [CleD,. Thus D, is a divisor with
a(k,,g,) branches at [C], and what the theorem says is that each of these
branches meets Int4, transversely. Assuming to begin with that g, =3, the
argument is similar to case (a) except simpler because the covering n: C"—>P

=(P'),u(P"), has no automorphisms. Thus H, , is smooth at the point z
representing this covering and z is not fixed by any oeX,. If we embed

n: C"—P in a one-dimensional family of admissible coverings, we get

6, — - o p

N,/

€, is x-y=t,

P is u-v="t,

where locally near p

T 1S u:x’,v=y5.
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Thus %, is a smooth surface. All the extra rational curves in the fibre of &,
over t=0 are curves E with (E?)= — 1. Blowing these down, we get a family of
stable curves

€,—4,

where €, is still smooth and the fibre over t=0 is C. Therefore this family
defines a curve in ﬁg transverse to 4, at [C].

Now in case g, =1 or 2, there is the extra complication that C may have
automorphisms. Rather than working on the coarse moduli space, it is more
convenient to use the same argument to analyze the intersection of the 2
divisors Int 4, and D, in the universal deformation 43¢~3 of C. The universal

81
deformation of n: C”"—P gives us a family

¢ — - »p

db-3
plus a uniformization
Ab_s—"D_kCA3g73
of the branch of D, near [C] defined by n: C"—P. Restricting this defor-
mation to a one-dimensional family as above, we get a curve on 4°~* mapped

to a curve in 433 transverse to the boundary component. Hence these
divisors meet transversely in 43873,

§ 6. The Class of the Divisor D, II

In this section we finally compute the divisor class of D, in Pic(,/ili—g’,eg) as a
combination of 4,6,,...,d,_;. We start with the relation

Dy=ai—bydy—b,0,—...—by_,5,_,

proved in §3, but with unknown constants a,b;, and we determine the con-

stants by restricting this relation to suitable curves in ./,.

To describe the general method, suppose D is any divisor on /I7g, ie., a
combination of codimension 1 subvarieties, but not necessarily a Cartier di-
visor (=one with a single local equation feC(.#,)* everywhere). Assume

D=al—bydy—...—b,_,6,_,
in Pic(.4, ). Let S be a smooth projective curve, let
n: €S
be a family of stable curves of genus g, and let
y: SoM,

be the induced morphism. Then first of all if y(S)d¢Supp(D) we can define the
divisor y*D in a canonical way (even though y(S) may meet
Sing(.#,) " Supp D). From general principles, we can apply the homomorphism:
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Pic( M, ,.p)~ Pic;y,(A,)

to o4, ... (D)and “evaluate” the image on the family n: S, to get a line
bundle on S. But even more, for every seS, let

LAY R

be the universal deformation of the curve C, which is the fibre of n over s.
Then the morphism y factors:

(neigh of) A3e-3 ya
seS Y1 Y2 g

9%(D) is a divisor on A3¢~3 hence a Cartier divisor (as 43¢~3 is smooth), and
we then pull it back by y, as Cartier divisor:

P*(D)=y1(2 D).

On the other hand, y*(4) is defined directly as c, of the line bundle A*n, wy/s,
and y*d, are defined directly too as in Knudsen [10]. That is to say, if y(S)¢
4;, y*; is represented by the Cartier divisor y*4; (i+1) or 3y*4, (i=1). And if
7(S)= 4; and the curves C; have exactly one double point x, of type i, then y*4,
is ¢, of the line boundle:

s —AH(Qc, ®k(x)*.

For our first family, choose general curves C,, C, of genera a<k—1 and
2k —1—o respectively. Choose peC, a general point and let S,=C, x{p}<C,
x C,; denote by S, the diagonal A= C, x C,; and let

n: T-C,

be the curve over C, obtained by identifying S, and S, in C; xC,uC;xC,
over C,. This is, the family whose fiber over qeC, is the reducible curve
obtained by identifying ge C, with peC,.

The degrees of the divisors A and o, on T are readily calculated: first of all,
we see that m, wy,, is the trivial bundle (H°(C,, wc)®H(C,, 0c,)®oc,, $0
that deg A=0. Clearly, degd,=0 on T for i#a; and since the normal space to
4, in M,, _, at the point T, is the tensor product T,(C,)®T,(C,), we have

deg o, =deg(N, ;4 ®er)
= deg(Nsl/c, « ;O Ns, ¢, )
=2-2a.

It remains to calculate the degree of the divisor D, on T. By § 4, Theorem 5,
Corollary 3, set-theoretically

s 0—1
For some t,0§l§—2

D,nC,=]qeC,|3 line bundle L on C, of degree o —i
with hO(L)2 2, hO(L(— (o —2i) @) = |
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which by Theorem B consists in b(ax—i,a) points. But by Theorem 6, the
multiplicity of each point in a(k—i, 2k— 1 —a). (Note that for generic C,, the
divisor S, _; ,_,;, on .4, , and the curve {(C,,q)lqeC,} on ./, , must meet
transversely.) Therefore

a—1

_ 2
dege, D= ) bla—i,a)a(k—i,2k—1—a)
i=0

(—2i—1) (@ —2i)? (@—2i+1)

5 al(2k—1—a)!
‘];ﬂ —i)il(k—i)! (k—a+i)!

_1 2! (2k—1—a)!

2 = ka2 D207 20 )

(The last equality coming from the fact that the sum is unaltered under the
substitution iwa—i.) Now, writing

(a—=2i—1) (@ —=2i)* (a—2i+1)
=[k—i)—(k—a+i)]x[(a—i)(a—i—1)(a—i—2)=3(a—i)(a—i—1)i
+3—i)ii— 1) —i(i—1) (i —2)+3(a—i)(a—i—1)—3i(i—1)],

0 [ o BT T iy
#(5) G -G G0
(OO 00
S () Gl () O
_1)i§0 [3 (a:Z) (2::1-1_—1&) _3 (c;c:22) (2::i1——loc)
SO (0 )]

B I

this sum becomes

a(a—l

||Mg

) k=2 k-3 k—4
ala—1) T, (2k=3 2k—3
2 () 6]
2k—4)! 2k—3)!
= —6a(a—1)(a~2)‘,i!w_—;)j+6“(“_l)ﬁ
2k —4)!

=6d(d—1)(2k—l—a)m.
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We conclude, then, that

_degD,

3) b“"za—z
_3o2k—1-0)  (2k—4)!
N k (k—1)!(k=2)!

for a=2.
Note that if we choose to vary the point peC, and fix g to be a general
point of C,, the resulting family n: T— C, has intersection numbers
deg A=0,
degd; =0, i%o,
dego,=2—-2(2k—1—o0),

=—-2Q2k—2—-0)
and, as before,
a+1
2
degD,= ) a(a—i+1,0)-bk—i,2k—1—0a)
i=0
a+1

al(2k—1—a)!
a—i+ ) ilk—i) (k+i—a—1)

>
_i=0(
Setting f=o+ 1, this is

(B ek=p)
=01 0! G+ i

F(o—20) (= 20+ 1) (@—2i +2).

(B=2i—1)(B—=20)*(B—2i+1)

2k—p Lk
== 6B @k—p=1) e
=6a(2k—a—1)(2k—“—2)%'

As before, then, we conclude that

degD,  3aQRk—a—1) (2k-4)!

b= k=)~ k (k— 1) (k—2)!
The difference here is that this formula is now established as well for a=1,
Le.,
6(k—1 2k —4)!
@ p, k=1 (k=4

kK k=1 (k=20

Our second family of curves lies entirely in 4, consisting of a fixed curve
C, of genus g—1, plus a variable elliptic curve E attached at a constant point
of C,. To construct it, let 7, : X >B be a map from a smooth surface X to a
curve B, whose fibers are all stable curves of genus 1; let S; =X be a section of
the map. On the other hand, let C, be a general curve of genus g—1, peC, a
general point, and S, =B x {p} =B x C,. Finally, we let

n: U—»B
be the curve over B obtained by identifying S, =X and S,=Bx C,.




84 J. Harris and D. Mumford

To compute the degrees of the various divisors 4,8,, D, on U, note that if
we set
d= —deg Ns, x

then the degree of the j-function associated to =, is just 12d; accordingly

deg d,=12d,
degA=degn, wy;,

=deg(n1)*wx/,,
:d’
and
degd, = deg(Ns,/x®st/B «Cs)
=deg Ns, x
=—d.

Of course, deg 6,=0 for «=2. On the other hand, we see from Corollary 4, §4,
that U is disjoint from D,, since C,, being general, possesses no line bundles L
of degree k—1 with h°(L)=2 and only finitely many of degree k; and p, being
a general point of C,, will not be a branch point of any of the associated
coverings n: C,—P'. We conclude, then, immediately

a-degiA—b,degd,—b, degd, =0,
ie.,

(5) a—12by+b, =0.

For our last family, take C a general curve of genus 2k—2, peC a general
point. Let S, and S, be the proper transforms of the diagonal 4 and the cross-

section C x {p} in the blow-up CxC of CxC at the point (p,p). S; and S,
being disjoint, we may identify them in € x C over C to obtain a family

d=51

] 1] ] exdels

—~
CxC

W—"— C of stable curves of genus g over C.
For this family, we have clearly
degd, =1,
degd, =0, oa>1
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and

degd, =deg(NS,/m‘®st/m)
=2-2Q2k-2)—-1)—1
=4—4k.

We also have the sequence
0—H°(C, W) Q02T Wy e 00

where the right-hand map is given by taking the residue at S,, from which we
conclude that
deg A=c,;m, wy,=0.

(k=D e
(k—=1)!(k)!
bundles L of degree k with h°(L)=2, each of which will have a unique section
zero at p; and none of these sections will have a multiple zero. There are thus
2k-2)!

(k—1)!(k)!
these L’s. By Theorem 6a, these points occur with multiplicity one in the
divisor induced by D, on C, i.e.,

Finally, since C and peC are general, C will possess exactly

a total of (k—1) points qeC such that h°(L(—p—gq))=1 for one of

= (2k=2)!
dege D=1 o)1
and we conclude that
_ (2k—2)!
4(k=Dbo—b, =} 6)

Since from (4) we have

6(k—1) (2k—4)!
kK (k=)!(k=2)"

b,=
this yields

1 ((2k—-2)!+6(k—1) (2k—4)! )

" 4(k—1) \k!(k—2)! k  (k—=1)!(k—2)!
L Qk=4! S,

=2 k!(k_z)!(z(zk 3)+6)

(k-4

T (k—1)1(k—=2)!

and applying the relation (5), we have in turn
a=12b,—b,
_ (12 6(k—1) (2k—4)! )
B ko (k—1)!(k—2)!

L6 (k-4
= (6+%) k=Dik=2)"
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All in all, then, the coefficients appearing in the expression (1) are

a=6(k+1)c,
bo=kc, b,=30(2k—a—1)c
where
k=4
Trk—r
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Oblatum 3-XI-1981

Added in Proof
Since this article was written, 2 improvements have been made in Theorem 3. John Harer has
proven that Pic(M?) is infinite cyclic, hence any divisor D on M satisfies

[D]=a-4, a€Q.

Secondly George Kempf has been able to carry through the calculation of the a, of Theorem 3 via
Porteous’ formula, confirming that

a,=6(Q2k—4)! (k+1)/k! (k—2)!.




