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The explicit linearization of the Korteweg—de Vries equation [10, 18] and the Toda 

lattice equations [10, 12, 22] led to a theory relating periodic second order (differential 

and difference) operators to hyperelliptic curves with branch points given by the periodic 

and antiperiodic spectrum of the original operator. As a result the periodic second order 

operators with a given spectrum form a torus (except for a lower dimensional submanifold) 

which is the Jacobi variety of the defining curve. Krichever [15, 16, 17], motivated by further 

examples in the work of Zaharov-Shabat [30], showed how curves with certain properties lead 
to commuting differential operators reconfirming forgotten work by Burchnell and Chaundy 

[6]. Inspired by Krichever's ideas, Mumford [24] establishes then a dictionary between 

commutative rings of (differential and difference) operators and algebraic curves using 

purely algebraic methods. As an example, the Hill's operator whose spectrum consists 

of a finite number of non-degenerate bands leads to a finite number of independent 

differential operators commuting with the original Hill's operator and this commutative 

ring defines a curve of finite genus. However, the generic Hill's operator has an infinite 

number of bands and must be analyzed in terms of a hyperelliptic curve of infinite genus; 

see McKean and Trubowitz [21]. These analytical techniques have not yet been extended 

to higher order differential operators so that the correspondence between differential 

operators and curves, generically of infinite genus, is far from being understood. In view 

of this, it is important to discuss in detail the correspondence between periodic difference 
operators and algebraic curves (of finite genus). In the second order case, the periodic 

difference operators are good approximations of the periodic differential operators and 

(1) Research for this paper was partially supported by NSF Grant No. MCS-75-05576 A01. 
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the corresponding curves are also hyperelliptic (see McKean and van Moerbeke [20]). 

Hopefully periodic differential operators will lead to infinite genus versions of the curves 

suggested by the difference operators. 

In this work, we show that every so-called regular periodic difference operator of any 

order and not necessarily symmetric leads to a spectral curve 7? of a given type and a 

"regular" point on its Jacobi variety Jac (R) and vice-versa. The regularity is a condition 

on the "symbol" of the difference operator, which in turn provides information about the 

infinite points of the spectral curve. Except for a finite number of translates of the theta-

divisor, every point of Jac (n) is regular. As a consequence, the isospectral class of regular 

difference operators C of a given order with a given h-spectrum for all Floquet multipliers h 

parametrizes the regular points of Jac (R). This is the content of § 2. 

How does a linear flow on Jac (n) translate in terms of an isospectral deformation 

of the difference operators C? It translates into a system of ordinary differential equations, 

given by Lax-type commutation relations on the original difference operator: C = [C, 

where A+ is the upper-triangular part of some operator A, constructed as follows: the linear 

flow above picks out a specific meromorphic function on R, which is holomorphic on the affine 

part: this function then maps into the difference operator A. However there is more to it: 

these flows all derive from Hamiltonians and a symplectic structure reminiscent of the 

Kostant-Kirillov method of orbits for the group of upper-triangular matrices; for this 

method, see Kostant [14] and Abraham-Marsden [1]. It can be summarized as follows: 

the usual Bruhat decomposition of SL(n, 11) leads to a natural symplectic structure on the 

orbits in 11* in sl(n, R)* under the action of the triangular subgroup N; this fact does not ap-

ply as such because of the periodic and not necessarily symmetric nature of the difference 

operators, but it is nevertheless suggestive. The result is that the coefficients of the 

algebraic expressions for n can be regarded as Hamiltonians (depending on the difference 

operator C) in involution for the symplectic structure above; they lead to Hamiltonian 

flows, each of which is linearizable on Jac (n); moreover all linear flows on Jac (n) derive 

from such Hamiltonians. Its proper group-theoretiinterpretcal ation relates to the Kac-

Moody extension of sl(n, R), which will be developed, also for other classical groups, in a 

forthcoming paper by Adler and van Moerbeke [3]. For relations of this symplectic 

structure with the Gelfand—Dikii [8] symplectic structure and its group theoretical 

content, consult Adler [2]. All these considerations specialized to hyperelliptic curves leads 

then to the explicit linearization of the periodic Toda lattice equations. 

In § 3, we deal with a number of interesting special cases. Whenever the curve n comes 

from a symmetric difference operator, it carries a natural involution, which, in turn, defines 

a linear subvariety of Jac (7), called the Prym variety of n. Then the manifold of 

isospectral symmetric operators coincides with Prym (n) and all linear isospectral de- 
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formations are generated by meromorphic functions on n, holomorphic on the affine part, 

as above, and moreover invariant under the involution. A similar statement holds for 

curves 7? defined by self-adjoint operators. 

The entries of the difference operators can be regarded as Abelian functions on the 

Jacobi variety of the corresponding curve; then, using classical formulas (see Fay [11]), 

the entries can be expressed as quotients of theta functions (§ 5). Most of the results sketched 

above relate to periodic difference operators; its periodic nature is responsible for the 

division properties of the curve, as will be explained in § 2; in the Toda hyperelliptic case 

the latter amounts to the existence of two points P and Q on the curve, such that some 

integer multiple of Q—P vanishes on Jac (R). When the division properties do not hold and 

for a somewhat more restricted class of divisors, the associated difference operators are 

merely almost periodic. It remains an interesting open question to characterize those 

almost periodic difference operators which lead to finite genus curves; this is unknown 

even for the second order difference (and differential) operator case. Results close to those 

in paragraphs 2, 3 and 5 have been obtained by Krichever [16]. 

The relation between difference operators and curves (special curves) have been 

extended by Mumford [26] to a connection between two-dimensional difference operators 

and algebraic surfaces (spectral surface). As pointed out for one-dimensional operators, its 

"symbol" is a zero-dimensional difference operator and it defines the non-affine part of 

the curve; in the same way, in two dimensions, the "symbol" will be one-dimensional 

and the "symbol of the symbol" zero-dimensional; they lead to the non-affine behaviour 

of the spectral surface, which is crucial in the study of the Picard variety for the spectral 

surface (analogous to the Jacobi variety for curves). In fact, unlike for spectral curves, the 

spectral surface has trivial Picard variety, so that generic periodic two-dimensional 

difference operators do not admit isospectral deformations; for a fairly elementary exposi-

tion of Mumford's result, see P. van Moerbeke [23]. 

The first author thanks Professor P. Deligne for many helpful conversations, espe-

cially with regard to § 4. 
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§ 1. Introduction 

Let f be an infinite column vector f = (... f_i, 1,, f „ ...)T  . Let D operate on f as the 

shift _Mc = f k±i. Consider the difference operator C defined by 

1 In 	Z., u n+ k In+ 	( 	Cn,n+k Dk), 	CiJ  EC; 
k= - M' 	 k=- M'  

— 

C acts on f as an infinite band matrix (co) acting on f, zero outside the band — 	< i — j <1:11/; 

C is said to have support [ — 	M]. Assume C to be periodic of period N, i.e. ci±N, ;_f_N  = co; 

this amounts to the commutation relation CS—SC, where S = DN. Let (M, N) = n and 

(M', N)= n'; let Mot = M 	=M' and No = N , 	=N. 

A difference operator C will be called regular, if the n quantities 

at = CI, i+MC 	H-2M • • • C i-E(Nr-1)M , 	1 i < n 

are all different from zero and different from each other and the same for the n' quantities 

	

t--2M' • • • C 	-1)M' , 	M', 

They involve only boundary elements, i.e., elements on the outer diagonals. Note that 

62+7, = 	and o'i'+h, = (4. 

A square matrix Ch  of order N will be used throughout this paper. It is constructed 

as follows: if N -------  M +M' consider the square matrix of order N taken from C, having c11  for 

upper left corner and c„ for lower right corner, put the upper-left and lower-right 

triangular corners (see Figure 1) respectively in the upper-right and lower-left corner of 

the square block after multiplication by h-1  and h. In general, we write: 

+co 

(Ch)i,7 = 	hk  • Ci,J+kN 

In fact Ch  contains all the information contained in C. Also observe that Ch  D, = (CD), 

for any two difference operators C and D. The determinant of C h — Z1 is readily seen to be a 

polynomial expression in z, h and h-1, which has the form 

F(h, h 1, z) u det (Ch —z/) 

= 	+ A,(z)hm-1  + + Am(z) + A„,,+,(z)h--1  + ...+ Am+,,,h-m‘ =0, 

where 

	

N 	 n 

A, = ( -1)m(N-m) H Ck, k + M = 	 n 6  i + 0, 

	

k =1 	 i=1 
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x h 

Figure 1 

	

N' 	 n' 

	

A m+ = (— Ovr(N-31' ) ri 	= - 1)-(N--)FI a; ÷ 0 

	

k=1 	 i-1 
and 

AM(z) = (-1)N iv 

Further information about the polynomials At(z) is contained in Lemma 1, § 2. 
For later use, we introduce some geometrical notations. Let 7? be an algebraic curve 

of genus g. We will allow 7? to be singular and even reducible, but we will always require 
7? to be connected and reduced, i.e., no nilpotents in its structure sheaf. We also require 

that its singular points will be locally isomorphic to singular points of plane curves. In 

the singular case, the genus g will be the "arithmetic genus" of n, i.e., dim H1(00 or 
dim H°(con) where oh, are the 1-forms n  on with poles only at singular points P of n and 
at those points 

rest'  (M) = 0 all I E Op, n. 	 (0) 
Branches y 

of 77 at P 

At each singular point P, there is a 1-form n  with "highest poles at P", i.e., every other 
1-form n' satisfying (0) equals /27, for some / E (:)„.n  (cf. Serre [28]). Let Jac (n) be the 
Jacobian variety of 	(the generalized Jacobian [27, 28], if 7? is singular). We will be 
interested in positive divisors 	on 	of degree g which are sufficiently generic. If n is 
smooth, a positive divisor is just 1'21_1  vi, v i  E n. In the singular case, P is given by such 

7 — 792907 Acta mathematica 143. Imprime le 28 Septembre 1979 
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an expression and if k of the vi's equal a singular point P, then in addition to P occurring  

in V with multiplicities k, we must also give a k-dimensional space of "allowable" poles at 

P, i.e., a module MP(V) over OF., such that 

0/%7? C  MP(V) c(n) 

with C(V) being  the field of meromorphic functions on 7 and such that 

dim Mp(V)/(:),,,, = k. 

A general divisor V is an expression E +v„ plus for all singular points, a finitely generated 

Op,rmodule MP(V) C(n) such that if P occurs with multiplicity k in V, then 

k= dim (Mp+ Op/Op)— dim (Mr + OviMp)• 

For every such V, we define the space of functions with poles at V as: 

C(V) = {f E C( n) I (f) + V ,> 01. 

Here if 7? is singular, then at every singular point P, (f)+V-0 at P means /EMp(V). 

We define the space of differentials with zeroes at V as 

S2( — V) = {meromorphic differentials n on n I (n) > V}. 

Here at singular points P, (71),>-v means that for all fEMp(V) 

res., (M) = 0;  
Branches y 
of R at P 

the Riemann—Roch theorem tells us as usual that 

dim Z(V) — dim f2( — V) = deg  V — g  +1. 

Now let V be a positive divisor of degree g. V is general if dim C(V) =1, i.e., 

dim 12( — V) = 0. V will be called regular with regard to two infinite sequences of smooth 

points {P,}„, and 
	

(1) 

dim .C(V + Pi —  Qi I=O 
i-1 

(1) 	 k 1 
i =1 

=0, 	k = 0 

= — Po — P-1 —  ••• — Pk+1 

moreover / Qi = Qi, k > 0 
i =0 	0 

	

=0 	k = — 1 

for k < — 1 

= Q-1 (2-2 • • • Qic+i_for k< -2. 
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§ 2. The correspondence between difference operators and curves 

THEOREM 1. There is a one-to-one correspondence between the two sets of data: 

(a) a regular difference operator C of support [—IV', M] and period N, modulo con-

jugation by diagonal periodic operators. 

(b) a curve R, (n + n') points on n, a divisor V on 7 and two functions h, z on 7 subject 

to several conditions. 7? may be singular, but always has genus: 

g
(N —1)(M+ M')—(n+n')+2 

2 

The (n +n') points P1, ..., Pn  and Q1, 	are smooth and have a definite ordering. We 

define Pi(resp Q 2) for all iEZ by Pi+n —P (iesp Qi±„=Q 2). V has degree g and is regular for 

these sequences. The functions h and z have zeroes and poles as follows: 

n' 
(h)= — 	Pi + 1\r; 	Qi  

and 
71.  

(z) = M1 Pi — Mi Qi + a positive divisor not containing the Pt's and Qi's. 
i=i 	i=i 

Finally, 	(resp. zN.V.) should take on distinct values at the Pt's (resp. the Qi's). 

Remark. The condition that V be regular reduces in this instance to the vanishing of 

a finite number of determinants involving differentials. 

Proof. We first give the entire proof of this theorem, assuming for (a) (b) that 
F(h, h 1, z) defines a non-singular curve in C* x C and for (b) (a) that n is non-singular. 

After we add a few words on the modifications necessary to deal with the singular case. 

First we show that (a) implies (b). The eigenvalues z and h such that 

Cf = zi and Sf = hl 	 (1) 
satisfy 

M 

en, n+ k In+k =  zfn, 1<n‹N 
	

(2) 
k= - M' 

with 
fn+k = hain+k-aN 
	

(3) 

where a is the integer such that aN <n+k<(a+1)N. So, (2) can be rewritten 

M 

leln-Fk-aN=1<n<N 
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or, what is the same 
enf = z/ 

where 
	

Therefore the eigenvalues (z, h) of (1) satisfy 

det (C„—z/) = F(h, 	z) = 0, 	 (4) 

which determines an algebraic curve over C;  vice versa, any couple (z, h) satisfying  this 

algebraic relation provides a couple of eigenvalues for (1). Since Ao  and AM+M. in (4) are 

nonzero, the function h has its poles or zeros only at z= o. Therefore F(h, h 1, z) with 

z, h and h-1EC, defines the affine part A, of an algebraic curve n. The equation 

G(h, z) =01(h, h--1, z) 

shows that n is an /V+ /W-sheeted covering  of C. 

We now turn to the behaviour of the curve at the boundary. For this, we need to 

analyze the coefficients A,(z) of hm-i in F very closely: 

LEMMA 1. The functions A 5(z) are polynomials in z of degree k, satisfying 

kip 
 
	 0<i'‹M 

and 
Nj 

	

lcm+m. • < 	0<j<./11' 

with equality if and only if the right hand side is an integer, i.e., when j =0, M1, 2M1, 	n11 = 

M in the first case and when j =0, Mi, 2111i, ..., nMi= M' in the second case. For j = aM1,  

0 a n, the coefficient of 
Z Jic 	Z 

	

k • M-1 	ocN, h(n — a) M, 

in F(h, h--1, z) = 0 is the symmetric polynomial of degree n — a in a, defined as 

	

rc, = 	 fl ai, 0<oc<n. 

Likewise, for j = a.M , 0 < a <n', the coefficient of 

	

z 	h- m,+; zo,Ni h-(n.-cc)M1  

is the symmetric polynomial of degree n' — a in a:, defined in a similar way as above. 
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Proof. It proceeds by induction. Let T 1  be a typical term of det (C5  — z/) = 0, containing 

hi and consider how many times it appears in the determinant of Ch —ZI. Clearly To  = ( — z)N. 

A term T1  of maximal degree in g is formed by picking one of the entries (N —k,+1, k2), 

i.e., C N-k.+1.1V+kzh with 1 < k, M andk1 M +1 and keeping the largest possible 

number of entries on the diagonal of C, — z/. This choice excludes the entries (k,, k2) and 

(N —k,+1, N —k1+1) of the diagonal and forces one to take the elements of the upper 

outer-diagonal. Since every column must have a representation in T1, take the entry 

(N —k1+1— M, N —k1+ 1) of the upper outer-diagonal, which excludes the entry 

(N — k1+1 — M, N —k1+1— M) of the diagonal. More generally, if T1  contains the entry 

(N —k1+1—iM, N — k1+1 — (i —1)M), it does not contain the entry (N —k1+1— iM, 

N — k1  +1 — iM) of the diagonal, as long as 1 <i i0, where i, is the largest i such that 

N —k1+1—iM k2. Two cases must now be distinguished: (a) if N — k1  + 1—io M =k, the 

process is terminated and at least io  + 1 number of elements of the diagonal have been 

excluded and the degree of z in T1  is bounded above by 

N — 1 = N 1 
[N — k,— k2 + 1] ;  

M 

(b) if N —k1+1—i,M>k,, the elements (k2, k2) and (N —k1+1—i,M, N — k1+1 — i,M) 

of the diagonal must be excluded, so that the degree of z in T1  is bounded above by 

N — i,— 2 = N 2 
E

N — —  k, + 11 

In either case, these estimates will be maximal provided k1+k2  assumes its largest 

possible value M +1, so that the degree k,,,,_, of z in T1  is bounded by N — N/M. 

The rest of the argument goes by induction: if km_,<N(M — j)/M, then k,„,_,_, 

N(M —j — 1)/M; this is done using the same method as above; pick the entry (N —k,+1, k2) 

in det (C, z/) containing h which does not appear yet in T1;  this excludes a number of 

diagonal entries, bounded below by N IM , so that the degree 	of z in T1+1 is bounded 

above by 
Nj _N 

M M •  

It remains to establish the second part of Lemma 1. Whenever Nj/M is an integer, this 

estimate is exact: k,=NEM. It is done by exhibiting the term of exact degree Nj/M in 
z and M —j in h. Consider the expression denoted by r,  in C; let a1  be the expression obtained 

in the same fashion in C„. A factor C,±„,,, ,±(6,+i)m  yields an h in 8, as soon as i + ocM 

kN <i+ (a+ 1)M for some integer k. Therefore 61  will be of degree 
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gocE Z; 0 < <N, —1 such that i + aM lcN <1 + (a +1) M for some integer lc} = M1  

in h. But di  can be completed to a term in det (C5 — z/) by multiplying a, by the maximal 

possible elements of the diagonal. Every factor C,+„m,,,(„+„),,, in a-, excludes exactly one 

diagonal element, because the integers {i + aM 10 < a < 	1} are all different modulo N. 

Therefore det (C5 — z/) contains a term of degree N 	(n 1)N, in z and M1  in h. All 

possible such terms are obtained by making a sum over the index i from 1 to n. 

Moreover every term in det (Ch  —z/) of degree 13M1  (1 <13 <n) in h and (n - fl)N, in z 

is obtained in a similar way from considering a ... clip  and the corresponding combination 

0,13  in Ch  and to complete it with diagonal elements of Ch —ZI to form a term in 

det (C, — z/). This finishes the proof of Lemma 1. 

We now turn to the behaviour of the curve at the boundary: the lemma implies 

that there are n distinct points P1, P, covering z = co, where h= 00 and n' other points 

Q,, 	covering z= 00, where h =O. To check this fact, define a local parameter t near 

each point Pi  as follows 

1 
z = t-"s' and h= 	+ ..., where Cr' = —

a,
. (5) 

Near each point Qi, define another local parameter t such that 

z = t-mi and h= C;tN; + ..., where C; M1= a; . 

A typical term of F =0 containing V" (0 < j <M) looks like 

zihm-1  with 0 i kJ< —
Nj 

• 
M 

expressed in the local parameter t it appears as t-m'i-N'("; the exponent satisfies 

M,i +N,(n— j) < NiM with equality if and only if i =k J  with j=ocM,, a = 0, 1, ..., n. There- 

fore F can be expressed near (z, h)—(00, 00) as 

n 

— 1 T„ ZaN' h(n—  m' + lower order terms. 
«-o 

Then 
n—a  

z-31F(h,11-',z)= 	(— irr„ (z - 	+ lower order terms 
a=0 

= 11 I  a 	—1 I + lower order terms, 
Z 

which implies that hmiz-N1 assumes n distinct values 1/a,+0. Therefore the point at (z, h) = 

(00, 00) separates into n distinct points P1, ...,P„. 
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The same analysis can now be applied to the point (z, h)—(co, 0); there the upshot is 

that hmizNi assumes n'  distinct values a: +0 and therefore the point at (z, h)=(co, 0) separates 

into n/ distinct points Q1, 	Q„.. Let Qi correspond to a:. It follows that 

n' 

(h)= 	Pi -  Ni Qt 

and 
n' 

(z) = 	 111i Pi + (a positive divisor on no). 
-1 

(6) 

We are now in a position to compute the genus of 7? from Hurwicz's formula. 

Relation (6) implies at once that the ramification index of R„,,--n\no  equals 

V°, = n(/1/1— 1) ± 	— 1); 

whereas the ramification index V, of no  is given by the number of zeros of the different 

A = Gh'  (h, z) or what is the same, by the number of poles of A. Near the point Pi, A behaves as 

A = constant ( 0) x hm" 
d
—
h
n (a 	— 21') + lower order terms 

= constant (+ 0) x hm'  ak M1 1-1 —6i  ZN' ZN1  hill' -1  + lower order terms 
k= 	i#k 1. 

= constant ( 0) x 1 z(n-1)Ar + lower order terms 

= constant (+ 0) x t 	 + lower order terms, 

and, using a similar argument, near Qi  

O = constant ( +0) x t-Ni + lower order terms. 
Therefore 

V, = N(111 +111') 
and 

-1-- Vco  
g=

V0 
	(111+ M')+1—

(N —1)(M+111')— (n+ n')± 2 
2 	 2 

The eigenvectors f common to C and S can be regarded as column vectors of mero-

morphic functions; using the normalization . o =1,  f = 	/2> 131 •••1 	h)T. Since f satisfies 

(Ch —z1)1 = 0, 

fic  can be expressed as follows 

lk— ALk 	k 
 fi  . 	

LI

ANk I 1 < 	N 
Ai.s 	A2,1 	

A 	i, 
N,.  
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where Ass s = ( -1)2+1  x (i, j)th minor of Ch  - z/. In particular 

f 	h _ 	h  
lc  6W,N 6̀ k,N 

which expresses each fk  as a rational function in z and h. In order to find the divisor V on 

n, it is important to investigate the nature of the poles and zeros of these functions on Roo. 

LEMMA 2. The meromorphic functions f k  satisfy the following conditions:at infinity, 

If 0<i<n-1, aEZ 

(i) at Pk, order (fk +7+i) ,>- - a, with equality if i = 0 
/k 

+n«+t)  
(ii) at Qk, order (fk  	?.-- a, with equality if i = 0. 

ik 

Proof. In order to investigate the poles at P= UPS, consider the new set of coordinates 

oc 	h-m' and /3 = z6 hY 

with yN1+611111- -1 with N1> b i 0. (It is always possible to find two such integers y and 

a, since N1  and M1  are relatively prime.) These coordinates are most convenient:because 

near a point P„ a and 13 behave as follows. 

a = ai + 

	

= constant ( +0) t 0(t2). 	 (7) 

The meromorphic functions a and 13 can also be regarded as the eigenvalues of the com-

muting operators A =CN'S-m' and B=C6  SY with entries as, and b„ respectively. In fact 

A is a lower triangular difference operator (i.e., as, =0, for i < j), whereas B is a strictly 

lower triangular difference operator, whose first non-zero subdiagonal is'at -n (i.e., 

b, =0 for i -n <j). Moreover akk  =ak, because akk  is obtained from C and S as 

Ck,k+MDMCk,k+MDM  • • • Ck,k+MDM  S MI  = crk  13°; 

therefore A has an n-periodic diagonal with entries ak  +0 different from one another. The 

fact that A and B commute induces relations between the ass's and b„'s. The first one 

expresses that akk a = k-Fn,k-Fn which is the same as a k= a k-Fn•  From (7), 13 itself can be used 

as a local parameter near Pm; let a admit the following Taylor expansion in 13 near Pm  

a= as  j{  with oc, = 
-o 
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Express the fact that Bf -4/ and AI= af starting with /0: 

• •• + b0. -n-2f-n-2 + b0, -n-1 -n-1 + b0, -ni-n = 

• • • + b_1.-n-2 f-n-2 + b-1. -71-1 /-n-1 
	 =flf, 

••• b_2. -n-2 f-n-2 	 = /3/-2 

etc. 

+ao. -n4-1 i-n+1 + • 

+a-1. -n-Flf-n+1 + • • 

+ C6-2 , -n+lt-n-f-1 + • • 

and 

••• +a0,-nt-n 

• • • a-1, -re t-n 

• • • a-2, -n f-n 

• • • + a-n+1. -n /-n +al f-n+1  

• • + a0,-2 /-2 +ao,-1/-1+ an = (ao + 	+ oc2t62  + ...)fo 

• +a-1,-2/-2 + 6n-1 I-1 	 = (aco + ocii3  + a2fl2  + ...) 

• + C/n-2/-2 	 = (OCO + alfl + a218'2  + • • • ) /-2 

= (oco + 00+ cc2162 + ...)t-n+1 

—(0e0 + 00+062/32 +...)L 

This is in fact a finite system of equations, because multiplication by VI  shifts all the 

indices by — N. First consider the point Pn, where oco  —an. The result of this lemma will be 

established in this case; the extension to the other points Pi will then be straightforward. 

Step 1 

In the proof of this lemma, the following statement will be used at several occasions: 

fix kEZ, k 1; if at Pn  

order (i-,("ni 	Vi >n 
-an 

then the same inequality holds for i ;:=1. 

Suppose the contrary; then the second system of equations leads to an homogeneous 

triangular system of n-1 equations in n —1 unknowns fT, 1 	 where 

/-(an+0_  1(lci ) Dicy 
p +lower order terms with lc, <k, 

1--an 

to wit, 
i -1 

i(kj ) 	 i(ki)  a_i,_;!_ 	0Srn-i —  nil  -2 =0, l< i< n-1.  
5-n-1 

Its only solution is given by f(k))  =0 (1 ‹j‹n —1), since its determinant equals 

n-1 

11 (an-i an) 0. 
i =1 
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Step 2 

Next, we show that at Pn  

order (-7 7̀1+") 1 for i 1, 
J-an 

with equality if i =n. 
In view of Step 1, it suffices to show the statement for i ›n. Suppose the contrary; 

then for some y 
1-(an+y)_  + lower order terms, 

with k 0 and y n and with C) +0. Then 13/_(„n±y) fiL is of order —k 4 1:and the yth 

equation of the first system tells you that for some yl  

order ( ( -:n ) = — k +1, yi -;-> 2n 
f-an 

and by induction 

( order 1-,("114-')  — — k+ i for some yi , -.- (i + 1)n with i?:- 1. 
/-an 

In particular for i =N1-1, we find some yi .. --N so that 

order ( , f-("n+'))  — — k+N —1 

This is a contradiction, because for k.,>-N, 

order (/-(an+k) 	order -(an+  k- N) h_1 > k N  

	

/- an 	 I - an 

To show the equality in Step 2, when i=n, notice that for k.,>--1 

Order (1-(") = order (1-i("+i)n-k) + order (f-i(") ) > 2. i+l)n-k  
/ -an 	/ 	 -(a+l)n 	 1 -an 

But in order to satisfy the anth equation of the first system (which is analogous to the first 
one of the same system), you must have 

order (f-(a+1)n) —1 

f-an 
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Step 3 
It is now straightforward to extend Steps 1 and 2 to the other points P,. More 

specifically, at the point P„_, (where cio =a,,,), divide both systems by the function f_,. 

Then the systems so obtained are the same as the ones above, in which 	is replaced by 

f _k-i 
g-k— i 

so that at P,,_, 

order (11,(6'n+i+3))> 1 for j 1 with equality if j= n. 
t-(.n+i) 

By multiplication of the numerator and denominator with the same power of h, one 

observes that the result holds for any a E Z. Therefore at Pk, letting k =n — i, 0 5 j< n —1 

.4+ 	. order 	13" = order /-[-(t3+2)n-ki+(n_h]  

fk 	 f--(-n+i) 

+1  = order (f-E-(3+2)n+1+(n-l)] 	13 
+ 	order (/-[-(a+1)n+ii 

1-(-0+2)+0 	a=1 	1-t-an+i7 

> 1—  (13 +1)= — 16 

with equality if j =O. 

A similar analysis can be made near the points Q1, ..., Q„., by considering the new 

coordinates 
a' =zI ihM1 and f3= za by  

where y'N'i —o'.1111=1. Near a point Qi, a and ft behave as follows 

a' = + 0(t) 

= constant ( 0) t 0(t2); 

the operators 	and C6'SY' are both upper triangular with eigenvalues a' and 9' and 

with a nonzero diagonal in the first case and with a nonzero n'th subdiagonal (above the 

main diagonal) in the second case. This establishes the result of Lemma 2. 

Define now V to be the minimal positive divisor on 7? such that (1) 

k 	k-1 

(fk) 	 Pi+ > Qi  for all k E Z. 
1=1 	i=0 

(1) Recall the convention in the footnote of § 1. 
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It is finite, since it suffices to consider the functions /1, ..., 	only. Note that, by Lemma 2, 

in the kth inequality above, the 2 divisors have equal orders at Pk  and at Qk. 

LEMMA 3. 72 is a divisor of order g. 

Proof. In a first step, one shows that every function f in 

L = {I meromorphic with (f) + V any linear combination of 

Pi  and Q, with coefficients in Z} 

can be expressed as a linear combination of functions I,. Let L1  be the linear span of the 

functions fk  and define the ring 

R = C[h, h-1, z]l F(h, 	z); 

/? contains z and h. The space L1  is an R-module, because hi ll,— f„,„ and z/k  = (C/),. 

Moreover L1  R, because fec, = ha and z = zfo  = (Cf),. If L1  L, then there is a maximal 

ideal m in R such that 
L1  viL; 

a maximal ideal m in R is naturally associated with a point p E 7? (i.e., R\ UPi\ UQ,) 
such that 

m = {g E Rig(p) =0}. 

In fact V — 	0; because if not, all functions in L1  would vanish at p; but this is a 

contradiction, since the functions h and h-1  have no common zeros on n and they both 

belong to L1. Therefore every function /k  would be such that 

k 	k-1 

(ik)+ (D — P)% 	Pi+ Qi VkEZ. 
i =1 	i=0 

This contradicts the fact that 7. is minimal. Therefore L =L1. Choose integers k1  and le, 

such that ki  + k2+ order (V) >2g — 2. In this next step, the dimension of 

C(E) —= 	Pi +k  Qi+V) 
i=0 

will be counted in two different ways: on the one hand using the Rieman-Roth theorem (1) 

dim C( E) = k1+k2+ order (V) — g +1 	 (11) 

(1) Since order (E) > 2g — 2, dim SI( — E) = 0. 
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and on the other hand in a direct way to be explained below. Any function q in C( E) can 

be expressed as a linear combination 92= 	_ k, al,. To prove this, let q  have a pole of 

maximal order (1), say 13, among the points P, and let P, be the one with maximal index. 

Then subtract from 92 an appropriate multiple of fflo_D+,; the latter belongs to the space 

C(E), since n(9 —1) + j < lc,. The new function obtained in this way belongs to C(E — Pk,). 

The same procedure can now be repeated over and over again until you get a function 

v = [99— some linear combination of fk  ( — k,< k <1c1)] E C(V) L. 

Since L =L1, ip is a linear combination of the functions fk  EL„; but no k *0 can occur; indeed 

considering the form fk  with I kl maximal which occurs and considering the pole at Pk (if 

k> 0) or at Qk  (if k < 0), we find v c((7). Therefore v = constant = constant x fo. This 

shows that 9) = al, where the summation ranges from — k2  to k1. But every fi  ( — k,< j <1c1) 

is in C(E) and they are independent. Therefore, this second count yields 

dim C(E) = ki+k,+ 1. 	 (12) 

Comparing (11) and (12) leads to the conclusion that 

order (V) = g. 

LEMMA 4. 72 is a regular divisor. 

Proof . Firstly, one shows that 7 is general. Consider an integer lc, such that k1> g — 2; 

then 
ki  

dim C + Pi) = 1c1+ 1 
j=1 

because 
ki  

order (V + Pi) = k, + g> 2g — 2. 

Then 

dim C(V + 	j + 1 for 1 
i=i 

because .C(P + 	Pi) is strictly larger than C(V-k=i  Pi), because f,+, belongs to the 

first space and not to the second. Therefore letting the index j go down by one lowers the 

dimension by at least one unit. It follows that 

1 *--:•" dim C(V) 

This is to say that 	is general. 

(I) Here this statement must be understood as follows: 99 has a pole of order at at Pk  if the actual 

order of pole at Pk  is p +y where y is the number of times Pk  occurs in V. 
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It remains to be shown that 	is regular. To do this, it suffices to show that 

k 

dim C( V+ Pi- Qi)= 0 for 1 „>- 0. 
i=i 	i=o 

For k =0, we have that 
dim C(V) = 1  

and 
C(V-Q1)C(V) 

since the function /0  =1 belongs to the second space, but not the first. For the induction 

step note that 

	

k+1 	k k 	k 

dim C(V 	P i  - Qi) < dim C(V+ Pi- Qi) + 1 = 1 

	

i=1 	i=o 	 i=1 	i=0 

(because dim C(E) increases by at most one when you allow one further pole). Since /,,, 

belongs to C(V+IW P  Ea  0Q2)  but not to C(17+ZI2- 13,-Z`_toi  Qi), we also have:that 

k+1 	k+1 

dim C(V+ Pi- Qi) = 0. 
i=1 	i=0 

This ends the proof that (a) implies (b). The converse statement (that (b) implies (a)) 

derives from the following observation. 

From the Riemann-Roch theorem, from the fact that allowing one extra pole 

increases dim C by at most one, and from the regularity of V (in that order) one has 

	

k 	k-1 1 	 k-1 	k-1 

	

l< dim C(P+ Pi- 	dim C(V+ Pi -- 0+1=1. 
i=1 	i=o 	 i=1 	i=o 

Let fk  be the unique element of Z(V+Z`_iP 	Qi ) up to scalars. It is clear that h 

is the unique function in C(Y1 Pi - Z1_701  Qi). Normalize fk  such that hf = f k+, for:every 

k E Z. 

LEMMA 5. If 
r 	s-1 

IEC(D+ Pi-  Qi) i=1 

then f is a linear combination of f k  (s -<k<r). 

with r s, r, sEZ 

Proof. If r =8, the result is trivial. Suppose r>s; then, since 

S-1 

(1,-)% -2Pi+ Qi= E 1 	0 
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and since no meromorphic function has a divisor E +Pr, the function f r  has a pole at Pr  

of exact order equal to 

(# of P. appearing in /3,) + (# of P, appearing in V). 

The function / has at Pr  a pole of order, at worst, the integer given above. Therefore for 

some constant cr  
r-1 	s-1 

t — Cr if EC(D+ Pi — Qi  . 
i=1 	i=o 

The same argument can now be applied over and over again so as to find constants c, 

such that 
r 	 r-1 	s-1 \ 

Ckik ET+  Pi- 
k=s 	 i-1 

This implies that 

ckik= 0 
k-s 

which establishes Lemma 5. 

The rest of the proof is now straightforward. Consider any meromorphic function u, 

holomorphic on no. Then, for K and K' large enough 

k+ K 	k-K' 

UlkE .C(V 	Pi — 	Qi) 
i=i 	i-o 

admits an expansion as above. In particular, 

M 	M'-1 
(z)co= 	Pi — 	Qi 

-o 
so that 

Zik = L. ek,k+i i 
i = -M' 

with Ck ,k+m and ck.k_m•*0. Moreover, the difference operator C= (c11) is regular by the last 

hypothesis of (b). C is periodic as a result of the normalization hfk  =/k±N. The functions 

1, (0 k 	— 1) are defined up to some nonzero multiplicative constant. Such a change of 

basis, due to multiplying fk  with some nonzero constant, amounts to conjugating C 

with a diagonal operator of period N. 
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As promised at the start of the proof, we want to add a few words on the modifications 

necessary to deal with the singular case. In general, we can always define no  to be the 

affine scheme given by F(h, h-1, z) =0. Since, near h= 00, F can be re-written: 

z'F =11 cri  , 	+ lower order terms, 
z 11 

it follows that even if F is reducible, F can have no multiple factors as long as the a, 

remain distinct. Then as above we get a reduced algebraic curve fl with n smooth points 

over h= 00, n' smooth points over h =0. Next, this n, although possibly reducible, is at 

least connected. To see this, note by the constructions already given that any polynomial 

F subject to the restrictions of Lemma 1 arises from an operator C. Thus for generic choices 

of C, is certainly irreducible. If you approximate an arbitrary C by a sequence C, whose 

curves ni  are irreducible, n appears as the limit of the n z's. Thus must be connected. 

In the singular case, the genus g of 7? is to be interpreted as the arithmetic genus, i.e., 

g = dim H1( O) = dim S2, and 2g - 2 is the degree of the divisor of any differential (n). Then 

the calculation of g by Hurwicz's formula can be interpreted as calculating the degree of 

the divisor of (dz), and as such works in all cases. Next, in the definition of the divisor V, 

we must be careful what we mean at singular points P: at each such P, the "multiplicity" 

of is given more precisely by a module 111 AV). In our case, we define Mr(V) to be the 

Or-module generated by the functions fk. Thus the space L in the proof of Lemma 3 is 

by definition 

L =  U MP(V)1 
PE Ro 

and the rest of the argument goes through without change. For instance, the Riemann- 

Roch theorem is valid over any such singular 	so the dimension counts all work as 

before. 	 Q.E.D. 

Note that in the correspondence of the theorem, the spectrum of the operators C„ 

determines the curve R, together with the points -1)1, •••, -11), Q1, • • Qn' and the functions 

z and it on it. The divisor 7 plays the role of the auxiliary parameters which must be given 

in addition to the spectrum in order to fully recover the operator C. If 71 is non-singular, 

the set of all regular V's is given by a Zariski-open subset of the Jacobian Jac (n) of n. 

When 	is singular, however, one must distinguish between those operators C which 

correspond to divisiors 	which are principal (i.e., for all singular points P, the module 

MP(V) has one generator) and those C corresponding to non-principal V. The first set is 

again parametrized by a Zariski-open subset of the so-called generalized Jacobian, Jac (n), 
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an algebraic group which is an extension of an abelian variety part, and a part isomorphic 
to Cr' x (C*)772  (cf. Serre [28]). The second set is harder to parametrize: it corresponds to a 

Zariski-open set in the boundary of the compactified Jacobian. Jac (R) (cf. DeSouza [7], 
Altman-Kleiman [4, 5]). It can be shown that the operator-theoretic meaning of this distinc-

tion is that is principal if and only if for those h for which Ch has a multiple eigenvalue, 

the minimal polynomial of C, is still its characteristic polynomial (see Mumford [25]). 

For use later, we will say that C is of principal type if the divisor V is principal. (Note 

that this always holds if fl is non-singular.) 

Besides the divisor and the points Pi, Qi, the curve 7? has various other elements 

of structure on it which are important for later analysis. One of these is the holomorphic 

differential form 

	

dz 	dh  
= aF= aF*  

	

h
ah 	

h
ez 

Clearly, when 7? is non-singular, OFlah and a Flaz have no common zeroes on no, so C has 

neither zeroes nor poles in nu. When 7? is singular, the same thing holds if we interpret 

zeroes and poles in the sense described in the introduction. Otherwise put, C is a generator 
on no  of the sheaf of 1-forms 12 satisfying, for all P E no: 

resy  (f • n) = 0, all f 
Branches 
of n at P 

LEMMA 7. If oc= NM,- M1-1, oc' =NMI- M1-1, then 

	

n 	 n' 

	

= 	-Pi + oc' 	Qi• 

	

=1 	i=1 

Proof. To study the order of zero or pole of C at P„ we use the expansion 

z'F(h,h-1, z)= N 	- 1) + 	lower order terms , 

	

i=1 	z 

described above. Since at P1, in terms of a local parameter t, 

	

z = t-mi +..., 	h = 	+ 

we calculate from this formula that: 

aF 

	

Oh
= (constant) • 	• 	hm'-1+ lower order poles 

= (constant) • t-m' N÷N1+ lower order poles. 

8 — 792907 Acta mathematica 143. Imprime le 28 Septembre 1979 
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Substituting into the formula for C, one checks that has an cc-fold zero at P, as required. 

The proof for the Q 2's is similar. 

LEMMA 8. The following inequality holds: 

(AnC)co % 

Proof. Consider the minor All  obtained by removing the first row and the first column 

from C„ — z/. The computation of All  follows the same argument as in Lemma 1, § 1; 

the only difference is that all the terms involving a, in det (C5  — z/) are absent. Therefore, 

the leading terms in 011  will be 

n-1 
( — 1 r eN‘-lh(n-l-a)1/11  = Z-1  II (cr t hmi — ZN1) 

a-0 	 i-2 

where fc, denotes the symmetric polynomial of degree cc in (a2, ..., an) (instead of a1, ..., an  

as in Lemma 1). From the expression for the leading term one reads off that 6.11  will have 

a pole of order M1(N-1) at worst if h-mizNi =a, (i.e., at PO and .21/1(N— 1)— 1 at worst 

if h-m' =a„ i +1 (i.e., at Pi  with i+1). An analogous statement can be made about the 

points Q i.  

PR or o SI TI 0 N 1. Every regular difference operator leads to 2N regular divisors DP and 

(1 ‹i 	of degree g (where —VV)) having the property that for 1<i, j < N: 

V? +V2) - 2 Pk+ 2 Qk of i>i 
k=3 	k=l+i 

j-1 

VP + DP + 	k 2 Qk if 2<j 
k=i+1 	k=i 

V1) 	- Pi —  Qi if i= 1 

is the divisor of some meromorphic differential cow  Then 

Moreover, 
wiz =  A71• 

	

k 	k-1 

(lk) =V1 ) -V 	Pi+ Q. 

	

i=i 	i-o 

Proof. Since Pr = V is general 

0 <. dim C(V—PN —QN) < dim C(V)— 1 < O. 
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Therefore by the Riemann—Roch theorem 

dim SI( — +PN+QN) = 1. 

Let wismi  be the unique differential, up to some multiplicative constant such that 

(0)  NN) %V PN — Q N. 

This differential has poles at PN  and QN, otherwise (WNN) 	— PN or 	—Q, which 

would contradict the fact that V is general. Define the positive divisor vr such that 

(CO NN) 	P N QN+VV) 
	

(13) 

and the meromorphic differential 

COkN 	WNN • 

These differentials enjoy the property that 

k k -1 

(wzN) %Dr 	Pi+ L, Qz 
	 (14) 

i =0 	i =1 

and they are the only ones with this property. Define the positive divisor DV° such that 

k k -1 

(C°hN) =D(1 ) 	Pi 
z=0 	-1 

From (13), it follows also Vr is general and since WIN  satisfying (14) is unique, Vik)  is 
also general. Therefore we may define wk, to be the only differential such that 

(C° kk) % Mc)  Pk Qk 

and nk)  such that 

(COkk) Vl ) Pk Qk nic)  • 

So far we have defined the last column and the diagonal of S2 = (coo). The remaining 
differentials (D i, are defined such that 

C° iN 

coNJ CNN 

The next step is to show that co =A i i up to some multiplicative constant, to begin with 
for i =N. By the uniqueness it suffices to prove that 

(ANN) ViN)-PN-QN. 
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Any regular divisor vi) can be approximated by regular divisors in no. The corresponding 

operators also approach the original one. Therefore it is legitimate to assume Pr in no 

By Lemma 8, 
(ANNO co % — PN QN• 

	 (15) 

the zeros of ANN '," on no  come from zeros of ANN, since g  never vanishes on no  (by Lemma 7). 

Since 
ANi 	Aii  

i= 	h —  A l 1 < i< N, ANN w   

since AN A never has any poles on no  and since every point of V(IN)  appears as a pole of 

some f i , the minor ANN  vanishes at each of the points of VIN); 

combined with (15), leads to 
(A.)0 % V1 N), 

(ANNO % 	—PN—QN. 

To show this statement for 1 i <N —1, shift the matrix C h — ZI up i levels and to the left i 

steps (1) and call (N), ..., 	h) its eigenvector. Then 

k+ 	k + i-1 
k+' 

fk ) 
 

= lk+i f 11 	and (n),=m,+0-vp- 	Pi+ 	Q. 

Clearly the shifted operator is also regular, leads to the same curve and defines the points 

Pi  and Q in the shifted order P;+1, • ••, 1322, Pi, 	Pi  and Q1+1  •••, Q., Q1, ...,Q,. The functions 

fi,i)  define a regular divisor of order g, which from the relation above must be V. 

Therefore assuming again that by some small deformation DV)  is in no, 

(Aii)o% 

% — Pi — Qi 

(A 	% V
(
li) — Pi —Qi. 

Therefore 	=0),i. This establishes the fact that A%-  = 

To show that every divisor VP is regular, consider the transposed difference operator 

CT. It leads to the same curve and the eigenvector is given by 

AkN -1 = Akk  h-1 =  Nk  
1 k 	h 

ANN 
  

ANk 	WNN 

(1) The diagonal entries of the new matrix are then (ei„.i„ — z, 	CNN  — z, en  — z, 	— z). 

But, since 

it follows that 
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with divisor 
k 	k-1 

	

(10=M)  -DP 	 F5; 
1 	0 

hence V. 	and therefore every n)  (1 	is regular. 

This last part of the above proof may be rephrased as asserting that if in the cor-

respondence of Theorem 1, the 2 sets of data: 

{R, {P; }, 	z, h, (̀71N)} and C 

correspond to each other, then the modified data 

{V, {QJ}, {13 2},z,h-',Vr} and CT  

also correspond to each other. 

Also note that the definition of V as the least positive divisor such that 

k k -1 

(fk)+V% - 2 P 	Qi 
i=1 	i =0 

shows immediately that the set of divisors VP)  (k EZ) have no common points; the same 

holds for the divisors nk)  (k E Z). 

Finally, in case n is singular, we must make the definition of MT) more precise: (1) 

U2 = set of points where (co NN) > V(?) -PN-QN, 

and if P is a singular point in this set, then 

Mp(Vr) = module of meromorphic functions f such that for all 

gEMp(M)), (f • g • (o„,)r 0 at P. 

It follows that: 

= module of g such that for all fEMp(Dr), (f • g • wNN) > 0 at P. 

So the relation between VV)  , Vr is symmetric and we still write this 

	

(WNN) = VI ) + 	— PN — QN• 

(1) In the language of coherent sheaves, 

0(V2 )) =  Horn  (0(V )), n(PN+QN))* 

In checking the above proof for the singular case, one must use Serre duality for n. For torsion 

free sheaves j, it says 

Exti  (j, f1) = 0, i > 0 

Hi(j) dual to H1 i  (Horn (j, a)). 
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§ 3. Symmetric and self-adjoint difference operators with examples 

There are two interesting special cases of difference operators: the symmetric and 

self-adjoint difference operators. They both lead to curves with involutions and to divisors 

with special properties. This is the topic of this chapter. At the end of it some examples 

will be discussed with applications to inverse spectral problems. 

THEOREM 2. There is a one-to-one correspondence between the following sets of data: 

(1) a regular, symmetric difference operator C of support [— M, M] of period N, modulo 

conjugation by periodic diagonal operators, with entries + 1. 

(2) a curve n possibly singular of genus 

g =M(N-1)—n-F1 

with ordered smooth points P1, 	.P„ and Q1, 	Q,,, two meromorphic functions h and z 

with the properties given in theorem 1 with N1= Ni and M1= M1 and a regular divisor V. 

Moreover, 7? has an involution r such that hr =h-1, zz = z, -r(Pk) =Qk  and V has the property that 

V ±nr — P. —  Q. 

is the divisor of some differential w on n. 

Proof. This theorem results from combining Theorem 1 with the last remark of the 

previous section. We are simply dealing in (1) with a regular difference operator C mod 

conjugation by periodic diagonal A, such that CT  =A • C• A-1. In fact, any such C is 

conjugate to a symmetric C' and this C' is unique up to conjugation by a A with entries +1. 

In (2), we are dealing with data {n, {Pi }, 	z, h, t3} such that n has an automorphism 

carrying this data to {n, {Q,}, {PJ, z, 

It is useful to see more explicitly how r arises. In fact, since C is symmetric, the 

algebraic equation 
F (h, h 1, z) = det (Ch —z/) 

is symmetric with regard to h and h-1, i.e., F is now a function of h +h-1  and z. Hence, 

the map 
(z, 	(z, h-1) 

maps 7? into 7? and is an involution since r2  = identity. The formula for the genus with 

/1/ =Ai' and n=n' simplifies to the one above. Note that a,— a' and that, because 

zw'h-m' has value a, at P, (resp. 	has value al at Q,), therefore x(13,)=Qi. 



vs  
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Finally, because C is symmetric it follows that 

Aij(z, h) = A„(z, h-1) 

i.e., as a function on 7?, A i,or=Aji. Therefore by Proposition 1, § 1, for all i and j, T acting 

on the divisor of coi, is the divisor of con, i.e. 

(M)+D(2)Yr = M)+V?). 

Since the divisors 7) )  have no common points, this implies that (M)r = ni)  and in 

particular 

V +Vr —Pn — Q7, = (c0„). 

Remark. Let 7? have an involution T and let 0 be some origin in Jac (R). Then the 

Prym variety Prym (7?) of 7? over S (quotient of 7? by T) may be defined as the set of 

principalEJac (7),L7 a divisor 	vi  considered modulo linear equivalence, such that 

g  vi  giv 
+ 

i=i Ob 	i=i j 
co = 0, (mod periods). 

It is a linear subvariety of Jac (n). Moreover every holomorphic differential on S can be 

lifted to a holomorphic differential on 7? which is invariant under T. Therefore it is possible 

to find a basis co1, ..., cog  such that wT=co, for 1 	go  and Wr= -wi  for go  < i ‹g. Since the 

relation above is trivially satisfied for w's such that cor = —co, it, in fact, reduces to go  

conditions 

w, = 0, (mod periods), 1 < k< go. 

We show that the regular part of Prym (n) can be parametrized by symmetric regular 

difference operators of principal type (p. 123). 

The symmetric regular difference operators of principal type lead to curves with an 

involution and to a principal divisorE Jac (7?) such that 

+ —P7,—Q„ 

is the divisor of some differential wo=ANN  AN, is a meromorphic function having for 

divisor 
n 	 n 

(ANN) = (we) 	= V + VT 	Pi — Pm —  alQi — Q, 
1 	 1 



(w0) =V +Vr —137,—Qn  
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Choose the origin to be a n Pi  +137,; then Abel's theorem tells you that V E Prym (R); 

also V is regular. Conversely, consider a regular principal divisor in Prym (n), defined 

with regard to the origin a n P,H-Pn. This implies the existence of a meromorphic function 

A having for divisor 

Then, coo  = 01 satisfies 

and therefore V leads to a symmetric principal difference operator. 

The next theorem deals with self-adjoint difference operators: 

THEOREM 3. There is a one-to-one correspondence between the following set of data 

(a) a regular self -adjoint difference operator C of support [— M, M] of period N 

(b) a curve, possible singular, of genus 

g =M(N-1)—n+1 

with ordered smooth points P1, ..., .P„ and Q1, ..., Q„,, two meromorphic functions h and z 

with the properties given in Theorem 1 with N'1 =N1  and M1=111i and a divisor V of degree g. 

Moreover 	is endowed with an antiholomorphic involution - for which n\nR.---n+ u 
(disconnected) (define ng = {pEnip =13}), such that P i -Q, with PER and Qi En_, and 

such that if 95,*(P)=013), then hh* =1 and z = z*. The divisor V has the property that 

V + — Pn — Q., 

is the divisor of some differential on n, which is real positive (1) on RR. 

Remark. Note that the regularity of V is not assumed. In this case, we will prove it 

using the relation 

V+ 	= (w) 

where co 0 on nu. 

The proof of this statement goes in two steps: first V is shown to be general. Indeed, 

since w 0 on RR, 

	

27ri Resp. co = — 27ti ResQ. co 5 = 	co > 0; 
)?R 

(1) This makes sense because flg inherits a natural orientation as the boundary of the oriented 

surface n+. 
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Pi, and Q„ are poles of w and therefore neither Pi, nor Q„ appears in or b. To show that 

V is general, it suffices to show that C(V—Q„)={0}. Suppose C(V —(2,) +{0} and let 99 

satisfy (9)% — P+Qn; then (0= —V +(27,+ E for some positive divisor E and 

(Wco) = —P+Qn+ E—V+Pn+ 

= E+E,  

contradicting 

J 
 91)*(0=1 Icorw>0. 
RR 	 RR 

In the second step we show that 

k-1 	k-1 

D 1'  Pi — Q,)—{0} 

	

1 	0 

by induction. According to Step 1, this holds for k =1 and N. So, assume that 

	

C(

k 	k 
V 	 {0} 

	

1 	0 

This fact and the Riemann—Roch theorem imply that 

k 	k-1 
dim C(V + Pi — Q,)=1. 

1 

Let fk  be the unique function in this space. Define 

	

k 	k-1 

D(')  = (ik)+V 	Pi — 	Qi. 

	

1 	0 

Then in Jac (R), 

	

k-1 	k-1 
V(k) pk _D 	Pi — Qi. 

	

1 	0 

This implies that 
dim f(V(k)) = 1 

and, hence 
dim C(V(k) —Pk) = 

since Pk  does not appear in V1̀ ); indeed fk  ft co 0 on nR  and 

(fk fk 0)) = b(k)  + V(k)— Pk — Qk, 

so that the integral of fk f:co over nR  is strictly positive and therefore fk fk*co must have at 

least one pole, the only possible ones being P„ and Qk. 
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This also implies that neither Pk, nor Q, ever appear in (̀7(k)  and, in particular, v does 

not contain Pn  or Qn. 

Proof of Theorem 3. Given a self-adjoint operator C, we construct a curve n with the 

given properties. Since C is self-adjoint, 

det (Ch — zi) = F(h, h 1, z) = 0 

has the following form: 

M 

Ao hm + Ao h — m + 	(Ai(z)hm—1  + (A,(2))h —(m—' ))— 0. 	 (16) 
i=1 

Therefore, the map 	
(z, h) 	(2,1T-1) 

defines an anti-holomorphic involution from 7? into n. But if I h I =1 the finite matrix 

Ch  is self-adjoint and therefore has a real spectrum. Therefore the fixed points nR  for 

this map are given by 
nR {(z, h)jh =h-1, z = 

= {(z, h)I 'hi =1} 

and 

R\RR  ={1hl>1}U{Ild<1} = 	n_ 

with /?+, Pi  and n_D Q 2; this defines two distinct regions n+  and n_, whose boundary is 

given by nR  and therefore nR  is homologous to zero. nR  will consist of possibly several 

circles a, with a definite orientation as noted in the footnote above. Since ai  =di, we have 

P 	2; moreover this involution extends to the field of meromorphic functions as follows 

99*(p) = (99(i3)) 

and to meromorphic differentials as follows: 

(T chp). = 9'*4*. 
With this definition 

h* = h.' and z* = z. 

By Theorem 1, the difference operator C maps into a regular divisor V such that 

	

(CO = (WNN) = (ANN) = V +V' —Pn — Qn. 
	 (17) 

Next, we show that V' = V. But, because C is self-adjoint, it follows that 



THE SPECTRUM OF DIFFERENCE OPERATORS AND ALGEBRAIC CURVES 	1 23 

Therefore, by Proposition 1, for all i and j, - acting on the divisor of coin is the divisor of 

o);,, i.e., 

vl~ + 2) = 	b(p. 

Since the divisors VP have no common points this implies that ni) ---M) and in particular 

v = n. 
Finally, we show that co 0 on nit for some appropriate normalization of c. To do this 

take the differential of F: since z only appears on the diagonal Ch — zi, 

N 	aF dh 
— Aiidz+ h—

ah 
= O. 

Using this relation, and choosing = 	dz(heFlah)-' and using Proposition 1, 

dz 	— i dh/h 	— i dh/h 	— i dh/h 
w = .JAiviv•-= 	i ANN 

	 _... 
A — N 

L\ ii 

 

h 
a.F 	17, ,_., it 	,-. ii AiN 	Ar A Ni Auv n 	A 	A 
ea i -1 LINN i=1 4--•iN ANN i=1 ANN ANN 

- i dh/h 

N 
A

Ni 
 ANt) 

i= 1ANN • ANN 

- idh/h 

Ii 
i=1 

Note that this formula shows that a)* =o). We now show that w 0 on nR. Indeed on nR 

N 

= 	Ili I2 i o. 

To show that —idhlh 0 on nR, let h=t2en at all but a finite number of points, h is a 

local parameter on 7?, and 0 is a local coordinate on nR. Since — i dh/h = dO, co 0 at these 

points, hence by continuity, at all points. 

Consider now the converse. The curve 7? has the properties listed in (b), in particular 

it has an antiholomorphic involution p iy such that 	The curve of fixed points 

nR = {p I p = 	divides 7? into two distinct regions RI_ and n_, the first containing the 

points Pi and the second the points Q1. The curve nR can thus be regarded as the boundary 

of n, or R_, (thus nR is homologous to zero). 

Choose any regular 73 such that 

V+ V —P7,—Q„ = (co) 

(since AN*i = OiN, 1 i 5 N) 
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where w =co* and it is real positive on lR•  This means that if z0  E RR and t is a local para- 

meter at z0  where t is real on ?R,  Im t >0 on n+, Im t< 0 on 	then 

w = a(t)dt, a(t) = a(t), a(t) 0 if t E R. 

Let fk  be the usual meromorphic functions associated to V, i.e., such that 

k 	k-1 

(ik)% 
1 	0 

Let 
k 	k-1 

Qk-l• 
1 	0 

Normalize fk  as before such that fk+N =hfk. We now define a scalar product between the 

tk's, i.e., 

	

(lk, fi)= 	fk 	= 	/lc it co • 
'RR 	inR 

When k+1, (f k, f i ) =0; indeed, for k >1 

k 	k-1 	 I 	1-1 

	

Ugk W)=Dk — D — Pl+ Qz+DI — D 	 -01+V 	Pn —  Qn 
1 	0 	 1 	0 

k 	k-1 
="Dk+V - Pi+ QS; 

1 	1+1 

it tells you that /kg co has no other poles but at some of the points Pi, i.e., in the region n+  

only. Since RR is the boundary of that region and homologous to zero and since 

Res 'k ir W=0, 
Pa  

the conclusion above follows. A similar argument proves the assertion when k <1. For k =1, 

(1k, 1k) 	lk 	— 	NI' co> 0 
RR 	RR 

again because on nR, w is non-negative. 

Since 

	

276 Resph 	 I  
RR 

the fk's can be multiplied with positive real constants such that 

Res4  (fk  f: co) = — 	 (20) 
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This is compatible with the normalization hh* =1; it suffices to multiply w with a real 

multiplicative constant (which can still be done) such that 

Rest. (w) = 

Consider now 99 such that 99* =q). The matrix of the operator C[92] associated to q) is 

defined by: 
Tik 	aki 	 (21) 

Now 

Also 

Resp, (99/k 	= ak, Resp, (hg co) = — 
i=i 	 l 	i=i 

(22) 

Resp, (Mew) 	ResQ, (99/k w)*  
i=1 

n 

= ResQ, (99/A w) 
i =1 

= — Rest,. (05 /: co) 

--- 

Therefore ak, =a,k, i.e., the operator C[T] associated to 9) is self-adjoint. In particular, z. =z; 

therefore the operator C is self-adjoint. The rest of this chapter will be devoted to the 

application of these theorems to a few examples. 

1. Consider a second order symmetric difference operator (1) of period N, i.e., 

	

( Cnk bk-1fk-1 ak 	bkik-E1 with ak+N— ak, bk+N = bk  E C• 

Here /V = /IF =1 and n =1. It is regular as soon as bk  +0 (1 k s N). Then 

a, — z 	b1 	0 	 bN h-l- 

b„ 	a, — z 	b2  

0 	b2 	a, — z 

C h —  ZI = 

aN- 2 Z 	bN_ 2 	0 

bN_ 2 	 — z bN_i  

bN h 	 0 	bx-i 	aN — z 

(1) Observe that any second order difference operator can be symmetrized by conjugation with 

a diagonal matrix. 
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is a tridiagonal period matrix, with determinant 

F(h,h-1, z) = ( — i)N+1(Fl bz(h + h-1) — P(z))= 0, 

where P(z) is a polynomial of degree N with leading coefficient —1. Setting fli b = A +0 

h(z) = 
2A 

 (P(z) ± VP(z)2  — 4A2) = 	
1 

 

Therefore the curve is hyperelliptic of genus g = N —1 with two points P and Q at infinity; 
besides (h) = — NP + NQ. Moreover, switching the sign of the radical in the formula above 
amounts to changing h into h-1; therefore the involution r coincides with the hyperelliptic 

involution. The fixed points for this involution are given by the 2N points where 

h= ± 1, i.e., the branch points. Let oci  and 16, be homology cycles (1 i <g); then the fact 
that (h)= — NP + NQ implies the existence of a closed loop n,a, +m,13, such that 

co+ 	co=Ni w 

for every holomorphic differential. This amounts to g relations between the branch points. 
So, any hyperelliptic curve coming from such a tridiagonal matrix satisfies these relations 
and vice-versa. 

The inverse problem, as discussed in [12, 22], is an immediate consequence of Theorem 2. 
Let the spectrum of C1  (i.e., C5  for h =1) and rr b, be known. Let also the spectrum of the 
matrix C° be known; C° is formed from C1  after removal of the last row and column. Then, 
the matrix C is completely known up to at most 2' ambiguities. 

Indeed, the knowledge of A =Fr b, and the spectrum of C1  determines the equation 

A (h + h-i) — P (z) = 0 

and therefore the hyperelliptic curve n. The matrix C° has N —1—g spectral points in C. 
They can be lifted up to in V different ways, if no one of them coincides with the branch 

points and if no two of them coincide. Each of these ways leads to a regular divisor V of 
order g such that 

± 	P Q— z‘NN(z)   dz) . 
V P(z)2 — 4,4 2 

(P(z) T P(z)2  — 4A2) 

1 	«r 	1 	i3i 
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Each one of the regular divisions V determines in a unique way a periodic tridiagonal 

matrix C modulo conjugation by diagonal matrices with entries +1, such that the 

spectrum of C° is the one given above. Observe also that Prym (R)=Jac (R). 

2. Let C be a self-adjoint periodic difference operator (1) 

(Cnh 	+akik + bkik+i with ak+N =a„ER, bk+N =bk*O. 
Then 

z) = ( - 1)N+1  (Ah + Ah-1  - P(z)) = 0 

where P(z) = zN + ... is a real polynomial of degree N. This defines a hyperelliptic curve 

whose branch points are located at the values of z where h(z) =+ IA II A; for each of these 

values of h, the matrix C h- zI is self-adjoint. Therefore the branch points are real. The 

involution - transforms a point of R as follows: take the complex conjugate in C and 

flip sheets. 

3. Next consider a symmetric fourth-order difference operator 

(Cl = ek-211c-2±bk-11 k-1+ akik+bkik+1+ elcilc+2 

with ak+,,,=ak, bk+, =I), and ck+N=ck. Here .212-  =.M' =2, so that (N, 111) = n =1 or 2; so, a 

distinction must be made between N odd and N even. When N is odd, the regularity 

reduces to the condition that ck  +0 (1 (lc-<_.N) and when N is even, it reduces to c, +0 

(1 --.1c-<N) and 
C1  C3  C5  • • • eN-1+ e2e4C6 • • • C. • 

In either case 

F(h, h-1, z) = det (C h - z I) = A (h + h-1)2  + Pi(z)(h + h-1) + P 2(z) 

with P2(z)= ( - z)N+ ... and deg P1(z) < [N/2] with equality if N is even. This implies that 7? 
is a double covering of the hyperelliptic curve S, defined by 

Ag2  ±P,(z)g +132(z) = 0 

ramified at the 2N points on S where g =h + h-1  = +2, i.e., where h = + 1. When N is 

odd, S is ramified at infinity, so that R has two points P and Q covering z = 00. If N is even, 

S is not ramified at infinity, so that has 4 points F,, P2, Q, and Q2  covering infinity. 

Then 
(h)= - NP + NQ 	 N odd 

= - - (Pi+ + 2  (Qi+ Q2) N even. 

7? has genus g =2N -2 or 2N -3 according to whether N is odd or even. 

(1) Unlike in the symmetric case, a second order difference operator cannot necessarily be made 

self-adjoint by conjugation with a diagonal matrix. 



g jvia) 

=1  vi  (0) 
co,c  = ak  t, 1 k g, 
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The inverse problem can now be formulated as follows. From the knowledge of the 

spectrum, the antiperiodic spectrum of C and A —1-if c „ you can reconstruct the curve R. 

A generic set of g points in C leads to V regular fourth order difference operators. 

Indeed from A, from the periodic and antiperiodic spectrum of C you know the 

polynomials 

4A + 2/31(z) +P2(z) = ( z)N  ± • • • 

and 

4A —2/31(z) +P2(z) ( z)N + ••• 

Therefore P1  and P2  are known; this defines completely. The generic set of g points in C 

can be lifted up to in 4° ways, defining 4g different divisors P. Each one of those leads to 

a fourth order periodic difference operator which is not necessarily symmetric. Only, 

when 	is in Prym (R), C can be made symmetric by conjugation with a diagonal 

operator. This imposes go  = [(N —1)/2] conditions on the choice of the g points in C, ex-

pressing the fact that they must be roots of the function ANN(z); the latter is symmetric in 

h and h-1  if it is to come from a symmetric operator. 

§ 4. Flows on the Jacobi variety and symplectic structures 

As a result of § 2, the Jacobi variety (except for a lower dimensional manifold) can be 

parametrized by difference operators of a given order with the same h-spectrum. Therefore 

the linear flows on Jac (R) (with regard to the group structure) can be regarded as 

isospectral flows on the space of difference operators. This section shows that these flows 

can be expressed in terms of Lax-type commutation relations. Let A denote the ring of 

meromorphic functions on n, holomorphic on no. Since z, h, h-1  are affine coordinates on 

no, A is the ring of polynomials in z, h, h-1. Let {wk} be a basis for the space of holo-

morphic differentials. 

THEOREM 4. Every linear flow on Jac (R) 

is associated with a function u =P(z, h, h-') in A such that 

ak  = 	Respi  (o), u). 
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This flow is equivalent to the system of differential equations, given by (1) 

O = [C[u]+, C] or 	= [C[u][±3, C] 

where C[u]=P(C, S, S-1). 

These two equations give flows in the space of periodic difference operators that 

differ by conjugation by a periodic diagonal A(t). 

This theorem is equally valid whether n is singular or not. It is important to realize 

that by considering integrals of the differentials n E12, we get for singular 7? also an Abel 

mapping from principal divisors mod linear equivalence to points of the generalized 

Jacobian variety. A good reference for this is Serre [28] or Rosenlicht [27]. 

In the proof of the theorem, to avoid questions of convergence, it is best to ap-

proximate the given V by divisors V(s) made up of smooth points of n, and correspondingly 

approximate C by C(s). If the flow through C(s) is given by our formula, then by passing 

to the limit, so is the flow through C. We first prove 2 simple lemmas: 

LEMMA 1. Let 73 = vi be a regular point of Jac (R). Let V(t) 	vi(t) and 73'(t) 	v; (t) 

be in a small enough neighborhood of V, such that 

vim 

f 
 

i= 	vi  

2 f v;(t) 
coi= 0(t2), 1 j g 

i=i vi(t) 

Ik(t) — f k  = 0(t) 

fk(t)— f;,(t) = 0(t2) 

uniformly over any open V such that 17 flo\V, where 1,, f k(t) and f k' (t) correspond to 73, 

V(t) and 73'(t) respectively. 

The proof follows at once from the fact that the functions tk depend analytically 
on their poles. This dependence will be made explicit in § 4, where fk  will be expressed as 
quotients of theta functions. 

(1) For any difference operator C, define 

	

Gif = Cii  if i < j 	and 	(CH-3)u  =Cii  if i < j 
=0 	if i;)j 	 - iCii if i = j 

=0 	if i>1. 
Define C-  in the same way and OH  = C - CE+3  

9 - 792907 Acta mathematica 143. Imprime le 28 Septembre 1979 

and 

then 

and 



Then, since 

we have that 

and 

-K' 

+ — V and (g4 — Qi —V 	 (25) 
1 	 -1 

+ + -1t) = — Pt — + P i(t)+D(t) 
	

(26) 
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LEMMA 2. Consider a point P EC, a holomorphic differential w =g)dz in the neighborhood 

V of P and an analytic function u in V with a pole of order n at P. Consider t E C small enough, 

so that the n points P JO, where u(P i(t))+t-1  =0, belong to V. Then 

d  n fP,(t) 
co lim — 	w = — Res, u. 

dt 	P 

Proof. Let w =dy with v(P)— 0. Then for any path 7c enclosing the zeros P of u +t-1, 

1 n  ri(t) 	1 

JP 
	1P(Pi(t)) 

u 
= -

t 	Respi(c) 	1 7V 

u  

Resp,w1 
tc, 
+tuV  

C 
— 1  

2ni j, 1 + to 
y dz. 

When t tends to zero, the right hand side tends to 

—
1

. u' y dz = — —
1

. uw = — Res, (uw) 
27r2 n 	27rt 

Proof of Theorem 4. Consider u E A. Assume V in no; the proof extends easily to the 

case where V is not in no. Then u splits into two functions g+  and g_ according to 

K 	 0 	 K 

u = uto = G cN.ifi 	fi + 	eN.i fi = g- 
i= -K' 	i=-K' 	i =1 

1 	]) 	-K' 	-K' 

;Qi — D+ 1 9i(t)d-Mt) 

where V(t) (resp. V'(t)) is a divisor of order g, near V and each P 	(resp. QM)) is near 

P, (resp. Q,), as near as you wish by choosing t small enough. Let V =D.  vi(0) = vi, 
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V(t)=D vi(t) and u(t) 	v;(t). Then vi(t) as a function of t, is holomorphic in t, because 

near vi, the function g+  behaves as 

b_i  
g,— +bo +bi s+ 

in the local parameter s. Putting g++t-1  =0 leads to an expansion of s as a power series in t. 

Using Abel's theorem 

f
v i(t) 	K 	Pia) 	 v;(t) 	K ' fQi(t) 

and 	= — 	co 
vi 	i=1 P 	 i_1 Ri 

for every holomorphic differential co. From Lemma 4 it follows that 

1 K 	Pi(t) 

lim - 	CO = 	Respi  (cog+ ). 
to t i=1 Pi 	 i=1 

The same argument applies to the function 	yielding 

1 K' 

lim 	 CO = 	ResQ, (cog-  ). 
t—>0 t i=1 Qi 	i=1 

Observe the change in sign with regard to (28), as a result of considering the function 

g_—t-1. In view of (27), (28) and the fact that D belongs to no, we conclude that 

and 

g 

i=1 

Pi(t) 	 n 
CO = — t 	Respi  (o)u) + 0(t2) 	 (29) 

vi 	i =1 

,;(t)v 	 n 

i=1 vi  i=1 
Therefore also 

f, 
 v;(0 

= 0(t2). 
i(t) 

Since the regular divisors form an open subset in Jac (R), take t small enough, such that 

V(t) and Mt) are still regular. Denote by Mt) (resp. (t)) the unique meromorphic func-

tion corresponding to V(t) (resp. (̀7'(t)). Then 

k 	K 	 k -1 	K 

((1 ± tg+)f k(t))_>- 	 Pi(t) 1 	1 	0 	1 

(27)  

(28)  
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and 
k-1 	-K' 	k 	-K' 

((1 —  tg _) fk (t)) 	Qt — 	Q, — V — P, + 	Qi(t)• 
o 	 1 	-1 

From Lemma 5 (§ 1), it follows that (1+tg+)Ik(t) and (1 — tg_)/k(t) have an expansion in 

terms of the f i(0)'s 

	

(1 + tg +) fk(t) = 	f,(0) 

and 
(1 tg fk(t) = 	alWO MO). 

tick 

The difference of these two equations reads 

(a;,;(t) — aia(t)) MO) = ik(t) — 	+ t(g+  f„(t)+g_fk(t)) 

= tuf k(0) + tuUk(t) 	k(0)) + (ik(t) fk(t)) (1 — tg _) 

=t 	C[u]ki f ,(0) + 0(t2) 

uniformly over any open set such that rc no\V . Since the functions MO) are independent, 

we conclude that 
= tC[u]k,+ (t2). 

Since fk(t) is defined up to multiplication with some function of t, it can be determined such 

that akEk(t) =1 +0(12) or aZk(t) =1 + ltC[u]kk  + (12). Therefore cti,',(t)= Oki  + tC[u]k, + (12) or 
a/,#) =Okz  + tC[u]li  + 0(12). 

Finally write the column vector (1 +tg+)zf (t) in two different ways, using the results 

above. On the one hand 

(1 + tg+)zf (t) = (1 + tg+)C(t) f (t) = C (t) (1 + tg+) f (t) 

= C (t) (I + tC[u]+ + (t2)) 1(0) 

and on the other hand 

z(1 +tg+) f (t) = z(I +tC[u]+ + 0(0)) f (0) 

= (I +tC[u]+ + 0 (t2)) C (0) f(0). 

Both relations are valid for all (z, h) E V. In each of the cases C[u]+ may be replaced by 
C[u]p+1. Then also 

(I+ tC[u]+ + 0(t2))-1C(t)(/ + tC[u]++ 0(t2))/(0) = C(0)/(0). 	(30) 
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So, the dependence of V(t) on t given by (26) (at least for small enough t) can be expressed 

equivalently as (29) or (30). Differentiating both (25) and (30 )with regard to t and letting 

ty0, we conclude that the flow 

O = [C[u]+, C] or 	= [C[u]E+3, C] 

is equivalent to the motion 

P2 (0) (0(v,(0)) = — Respi  (am) for every holomorphic w. 

The proof of Theorem 4 is finished, if every flow is shown to occur in this fashion. 

It suffices to show that the mapping 

-* 	Respi  (co, u) 

maps A onto Cg. Observe that it is possible to find a function in A with arbitrarily 

prescribed polar parts at all of the points Pi, provided arbitrarily large poles are allowed 

at the points Q.  But the power series expansions of oh, ..., co, at P1, say, are linearly inde-

pendent, so their Nth order truncations are independent for N>0. Thus a suitable u with 

Nth order poles at P1 and regular at the other P will give any sequence of g constants 

Resp (wk u). 
-1 

It is useful to have an explicit basis for the space of holomorphic differential forms 

on R. The result is this: the forms 

hkzin, i 0 

kN1 + iM1 a —= 	M1-1 

Mi —1 

are such a basis. One way to check this is to note that these forms are linearly independent 

and to prove there are g of them, using a counting argument. Another method comes 

from the toroidal embedding. We explain both methods. The first one is based on a 

combinatorial lemma: 

LEMMA 3. 

#{i, k >1 such that N,k 	 —1} = 2 (nN1M,— N,— M1-1) +1 
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Figure 2 

Proof. In Figure 2, we observe that 

# lattice points on Ti U T,U d =(Nin —1)(Min —1) 

# lattice points on T1= /1 lattice points on T,, because (i, k) i (No — 

interchanges them. 

# lattice points on d =n —1. 

The result follows at once from this count. 

The rest of the argument goes as follows: the set of (i, k) such that 

i 0, kNi+iMi  nNiMi — M1-1 

n'.2\1111— M1-1 

can be decomposed into 

such that kN1+(i+1)M1<nN1 M1-11, 

— 1 such that —1c/V;.+(i+1)3/1 
and 

fi,>-0, such that (i+1)M,<nN,M,-11 

whose total cardinal—according to Lemma 3—equals 

n 

2
- (nNi  — — — 1) + 1 + —

2 
(n' 	— — — 1) +1+N-1=g 

As announced, the second method comes from the theory of toroidal embeddings 

(Kempf et al. [13]). We merely sketch this. The idea is to embed all the Riemann Surfaces 



—• 

a2 
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asociated to C with fixed N, M, M' in one rational surface X, and to write holomorphic 

1-forms on 7? as residues of 2-forms on X with poles along n. More precisely, X is the union 

of 3-affine pieces: 
X1 = Spec C[..., zi hk, ...] i>0  

-11,11i+N k..>, 0 

X2 = Spec C[..., 	...] 

X3 = Spec C[• • • Zhk, • • • ]--M; 
i 	k?-.0 

X contains the affine surface Spec C[z, h, h--1 ] which contains the affine curve no. It is not 

hard to check that the closure of no  in X is precisely 7? and that 7? misses the singular 

points of X. The maps z H*Az, hi-->lth extend to automorphisms of X, so X is a "torus 

embedding" in the sense of [13]; in fact in the notation of the book, it is the one associated 

to the simplicial subdivision of the plane into the 3 sectors: 

Figure 3 

If co( n) is the sheaf of meromorphic 2-forms on X, holomorphic outside the singular points 
of X except for simple poles at n, then residue sets up an exact sequence: 

H°(c.o)--4- r(w(n)) -+ r(L) Hl(w) 

and as Hi(co), H2-'(0,) are dual and H1(0x) =H2( (..)) =0 (cf. [13], p. 44), it follows that 

res: r(0)(n))=>3  1-1(12,). 
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Explicitly this means that every holomorphic 1-form on is uniquely expressible as 

g dz A dh 
Res, 

F(h, 	z) • z • h ) 

where g=g(z, h, h-1) is chosen so that the 2-form in parenthesis has no poles other than 

F =O. There are 3 possible curves: (1) h E C*, z =0, (2) hm; • E C*, h =0, (3) V' z's4  E C*, 

h-1  =O. Checking the order of pole at each of these, we find that if 

g =aik hkzi 

then ai,+0 only if 
i>1 

— i.1111+ k.Aq 1 — N Mi 

— iM kN1  1— NM,. 

Theorem 4 shows that the isospectral flows for difference operators (written in the 

Lax form) can actually be linearized: they are linear flows on the Jacobi variety of the 

corresponding curve. In the second part of this section, we show that these flows derive 

from Hamiltonians according to a co-symplectic structure on the space of all periodic 

difference operators suggested by group-theoretical considerations. Consider the group G 

of lower triangular invertible matrices (including the diagonal) of order N. Let g be the 

Lie algebra of lower triangular matrices and g' be its dual, namely the space of upper 

triangular matrices. g and g' are paired by the trace of the product. Let a EG, X Eg and 

/ Eg'; the adjoint action amounts to conjugation a• X =a-iXa and its coadjoint action 

amounts to conjugation and projection on g', i.e. cr•f = (a-1M — (a-11 o-)-. Fix an element 

fC g' and consider the orbit G•fg' of / under the action of the group G. According to a 

theorem by Kirillov and Kostant [14] the orbit 0.1 is endowed with a natural symplectic 

form, i.e., an alternating two-form in the tangent plane II, to the orbit G.1 at a given 

point h. Since G acts on g' by conjugation, 

Th  = {locus of points eh A, A Eg, where hA=[it, .A.] — [h, A]-}; 

let h A and h  BE Th; then 

(t)(11AlEhB)..--_ Tr (h[A, B]) 

is a non-singular alternating 2-form, so that the orbit 0•1 is even dimensional. Instead 

of introducing a skew-symmetric form on the tangent planes to each orbit G.1, it is 
completely equivalent to introduce a skew-symmetric form on the co-tangent planes. 

Such a form is just a skew-symmetric Poisson-bracket on pairs of functions on 0 • 1, whose 



A functional F on '7j1 is called differentiable, if there is a matrix a F lac in 711 such that for 

all D 

Taking D given by 

it follows that 

lim 
F(C + 8D)— F(C)  IaF 

\ac' 84.0 

Dii={0 otherwise 

1 if (i, = (io + kN, jo  + kN), some k 
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value at each point is bilinear in the differentials of these functions. This is called a co-

symplectic structure, and this structure fits together into one co-symplectic structure on 

g', inducing all the separate ones on the orbits. It is given by 

{f, 	(x) = Tr (x- [cif (x), dg(x)]) 

(where dl(x) and dg(x), being linear functions on g', can be identified with elements of g, 

hence can be bracketed). 

The definition of this co-symplectic form can be adapted after some changes to the 

case of periodic symmetric difference operators and to the case of periodic non-symmetric 

difference operators. This leads to the Poisson bracket defined below. Before proceeding 

we need the following definitions. 

Let M be the vector space of N-periodic infinite matrices C such that 

C„ = 0 if Ii—j1 >K for some K. 

Define Tr (C), for CE in to be Zy_i  Cii. 

Put on M an inner product 

<C, D> = Tr (CDT ) = 	C 
(imez2  

in cosets of 
(N,N)Z 

fan aF  
kac jojo  acioio • 

A simple identity which will be useful is: <[A, B], C> =<[AT  , C], B). Define the following 

bracket between two differentiable functionals F and 0 on 711 

+3 aF\ 1  (aG\[+1 riaF\ 1  - 3 	(o\[-1 
{F , = ([(aC ) 	' ) 
	

] RaCI 	' ka-aCf 	J' 	I 

9t — 792907 Acta mathematica 143. Imprime le 28 Septembre 1979 
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LEMMA 5. , } satisfies the Jacobi identity. 

Proof. In general, when we are dealing with a Poisson bracket structure on a vector 

space, we can make a preliminary reduction in the proof of Jacobi's identity as follows: 

write 

{t,g}(x)=Ai,(x). 
of ag.  
ax, ax, 

Then 
a 	api,, 	ag 	an 	a, a2 g 

It 	 • 	 • 	+ A2,•   	+ A„ • 
axk 	axk  ax2  ax, 	axi axk  ax, 	axi  axiaxk • 

We claim that when you evaluate {f, {g, h}} + {g, {h, 	+ {h, {f, g}} the terms involving 

the 2nd derivatives of f, g  and h always cancel out. This is easy to check directly, and it 

also follows because Jacobi's identity is equivalent to dw =0, a) the dual 2-form; and clw= 0 

is automatic when the coefficients Ay are constant. 

In our case 

a  {F, 	(2nd derivative terms) + 1 F 4-  la° 	\ E+1  - (an" l°G\ E-31 
ac 	 Mc! (ac) j (ac) (ac) j .  

and 
1+] 	 aF)[+] 

	

{F G}) = (2nd derivative terms) + — 	— 
(0aC 	 (ac 	ac 

(since neither of the Lie bracket terms have any diagonal entries). Thus 

{H, {F, G}} = (2nd  

1daeH

rivativ

i

e term s) 

/
(ac)

1+3  (

a
F+ 

 

jao\ t+1j+  r(ac) y 1
L 
 (:)1 	gy  ill c\ 

Writing this out for {H, {F, G}}, {F, {G, H}}, {G, {H, F}} and summing, the right hand 

side is zero by the usual Jacobi identity for Lie brackets. 

THEOREM 5. The linear flows on Jac (7?) are Hamiltonian flows with regard to the 
Poisson bracket { , }. In particular, in Poisson bracket notation, a typical flow 

can be written as 

where 

= [C, (S-kC1)(+3] 

ei,= {F, co} 

1  
F(C)= 1+1  Tr (8'0+1). 
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Proof. To begin with, 

a

a 

C 
— Tr (S-k C1+1

) (1+ 1) ( S- k  Cl)T  

Indeed, by direct calculation, 

aa 
Tr (S k  CI+1  ) = 	q.4 C. • • • qi_oi cio+kN acco 	 acco 

where the sum extends over 1 i <N, li—i11 <K, 	<K, ..., and I — (i -1-kN)1 < K, 

= 	 4 C4, is  . 	c, C8, 4.49  ... 
m=0 

the latter sum extending over 1 i <N, 2 —i,1 K, li,—i,I<K, ..., 	— ocI <K, 

+kN)I <K 

1 

= 	CP.1,,,+. • • • C +kNeit kN,10-kN • • • Cim_O-k1V.a+kN 
m=0 

= (1+1) (S-k  • C1)/3, 0,. 

Let Ei i  be the "elementary" matrix 

f 1 if (k, 1) = (i +1N , j -1-1N), some / E Z 

(E'')k'i  1 0 otherwise. 

We check that the derivative of the functional CI->c is given by: 

a 

Thus we can calculate {F, cu}: 

{F, co} = <[((S-k • Cl)T)E+3, Eli' ]]—[((S-k • C1)T)[-], EV], C>. 

If i < j, 4]  =0, EV1 = Eii, so 

{F, co} = <[((S-k • Cl)E-3)T , E 	C> 

= <[(S-k  • Cl)E-3, C], E o> 

= 	C1 )E-3, C]o  

If i > j, 	=0, 43 = Eii, so 

{F, c} = — <[ o  ((S-k • Ci)t+3)T , E 0], C> 

= —<[(S-k • O)[+], C], E',> 

= — [(S-k • O)[+]  Cl ip  

10 — 792907 Acta mathematica 143. Imprime le 28 Septembre 1979 
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If i = j, we get the sum of half of each. Using the fact that C commutes with S-'0, we find 

[(S-k • C1)[-], C] = - [(S-k• Or), C], 

so in all cases, we get 

{F, 	= - [(Sk • Cr], C],, = [C, (SI' • C1)t+3 ],i  

as asserted. 

THEOREM 6. Any two functionals Tr (S-kC1+1) have Poisson bracket zero: i.e., we have 

a set of Hamiltonians in involution. If to every C E in we associate the coefficients of hkzi in 

det (C,-zI), these functionals are also in involution and through each C, generate the same set 

of flows. 

Proof . The first step is to show that any two expressions of the form 

H = Tr (S-kiCh+1) 	 (32) 

commute with one another for the symplectic structure. Consider the Hamiltonian vector 

field X, derived from H, acting on differentiable functionals: 

X,(F) = {H,, F}. 

Theorem 5 tells you that this vector field acts on C as follows. 

= [C, (S-kC1)(+3]. 	 (33) 

This flow preserves the h-periodic spectrum of C (i.e., the spectrum of CO for every 

h E C. Therefore it preserves Tr (C5)a = Tr (Ca), for every non-negative integer oc, and in 

particular the coefficient of hi? in Tr (C5)a, namely Tr (S-flCce). Therefore this flow leaves 

invariant every Hi, i.e., {1/1, H,} =0; also, the Lie bracket {X,, X,} vanishes, because 

{X,, X„}F = 

= {H 	Fil - {H {H F}} 

= {{H H;}, Fl 

=0 

using Jacobi's identity. Finally the coefficient of 27-1  in det (C,-z1) is a polynomial in 

Tr (C5) i  for 1 <i<l and Tr (C5)1  is a polynomial in the coefficients of e-i, 1 	There- 

fore the coefficient of hkzi in det (C5-z/) will be a polynomial in the coefficients of hk in 

Tr Ch  for 1--<„i < 1; i.e. in the quantities Tr S-kCi. This proves the second assertion of the 
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theorem. Observe that since C„ is N x N, the expressions Tr (Ch) for i> N are linear 

combinations of Tr (Ch)i with i N. So, no new functionals arise by considering Tr S-kG' 

for i >N. 

Remark 1. Some of the coefficients appearing in det 	z/) = 0 lead to identically 

zero vector fields. For instance the coefficients of z' equal Tr C; but since 8(Tr C)/aC= I, 

its Hamiltonian vector field vanishes. 

Remark 2. Consider the special case of symmetric difference operators. Let Aoc A 
be the subring of functions u such that tir = u. The functions of A0  lead to linear flows in 

Prym (7), because for 1 k go  (for which col', =wk) 

Respa  (wk  u) = 	Reso  (coTk  ut) = 	Reso, (co, u) 

and, moreover 

Respi  (wk  u) + ResQ, (coo) = 0. 

Therefore 
g 	Vi 

cok  = 0 for 1 k <go. 
o, 

Since A is the polynomial ring in h, h-1  and z, the ring A0  is the polynomial ring in h 

and z. Therefore all the flows in Prym (n) translate into flows of the type 

C = [C, ((Sk +S-k)Ci )+]  

[cr,  (( sk S_Ic) 	((sk 

Notice that if C is symmetric, (sk +s_k,  )U is also symmetric and the flow above is 

generated by an antisymmetric operator, which indeed preserves the symmetry of C. 

Examples. 

1. Let C be an infinite (generic) tridiagonal matrix of period N. Let n be the hyper-

elliptic curve associated with it; let P and Q be the two points at infinity. Moreover, with 

the notation used in Example 1 (§ 2), a basis of holomorphic differentials is given by 

dz 
wk 	- , where R(z) = P(z)2  - 4A2. 

ti R(z) 

Moreover, since the order of zero of wk  at P or Q equals g -k, 

ak  = Resp(cokz') 0 for k<g-j+1 

=PO for k=g-j+1 
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Therefore a complete set of flows is given by the functions z, z2, 	zg, so that the most 

general isospectral flow for C (i.e., leaving the spectrum of C and A unchanged) is given by 

a polynomial P(z) of degree at most g: 

C = i[C,P(c)± —P(C)-]. 

The Poisson Bracket between two functionals F and G has the simplified form 

{F, = 

(aF T (aG) 
as 	as 

J , 
OF 	aG 

ab 	ab 

where aF/aa and aFlab are the column vectors whose elements are given by a Flea, and al yabi  
respectively and J is defined as the 2n x 2n antisymmetric matrix 

BO T  B0) 

where 

B = 2 

b1  0 0 

	

— b, 	b2  0 

	

0 	— b2  b3  

0 

 

bN 

• 
• 
• 

 

— bN-1 

• 
• 
• 

bN 

The symplectic structure is given by 

A 
	dbi  

j=2 	9<i<N 

The g independent quantities in involution, leading to g independent flows, are given by 

N2, 	where 

det (Ch  — 	= Ai(z) = - ire + ,8, 
i=i 

An equivalent set is given by N —1 points chosen from the spectrum of C1  or 	(i.e., N —1 

branch points of the hyperelliptic curve) or, alternatively, by the quantities 

Tr Ck, 2<k‹N. 
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2. Consider the symmetric fourth order difference operator 

(C )k = Ck-2 1 k-2+ bk-1 f k-1+ aklk + bklk+1+ Chi k+2 

and assume N odd. Then n is a double covering of the hyperelliptic curve 

F(g, z) = Age  +P,(z)g +.P2(z) = 0, 

where deg P,<.(N —1)/2 (generically, =) and deg P2 = N. The differentials on no  or the 

symmetric (sheet invariant) differentials on are given by linear combinations of 

cok  _ zk-1(1-va.— ) dz, 1 < k < N  	• 
2 

— 
g°' 

this basis can be completed with the antisymmetric (for the involution or) differentials 

= 1, gi  CO = 	zk-1(F )- dz 
h — 

i= 0, 

— 
1 < k N 2 1 

 

1<k<N-1. 

Or 

Since the dimension of the Prym variety equals g (N —1), one expects to find EN-1) 

functions in A0  leading to independent flows in Prym (7?), namely 

-1 z, z2, 	zN 
and 

	

(h +h-i) z(N-Fi)l2 	(h +h-1.)zN-1.  

The second sequence starts with the power (N +1)/2 in z, because this is the smallest 

possible power for which h-1z(N+1" has an upper triangular part. This set can be completed 

to a set of flows spanning the whole of Jac (n), by adding (N —1)/2 independent flows 

transversal to Prym (n); they are generated by the functions 

	

h-iz(N+1)12 	h-1zN-1.  

Finally, a set of integrals in involution spanning out all the linear flows in Jac (n) is 

given by the coefficients of hkzi in the algebraic expression F(h, h-1, z) =0: the (N —1)/2 

coefficients of P1(z) (except for the highest order coefficient, which leads to a zero vector 

field) counted twice (once as coefficient of hzk and once of h-lzk) and the N —1 coefficients 

of P2(z) (except for the coefficient in zN and zN-1, which again lead to zero vector fields). 
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3. A symmetric sixth order difference operator leads to a double covering of the curve 

F(g, z) = Ag3  +P1(z) g2 H-P 2(z)g +P3(z) = 0. 

Assume that N is not a multiple of 3. Then all the flows in Prym (1?) are given by linear 

combinations of the functions 

z, z2, 	(h +h-l)zi°, 	(h 

where io  is the smallest integer > N/3, and 

	

(h + h-1)2  zi' , 	(h h-1)2  zN-1, 

where i1  is the smallest integer >2/V/3, and the flows in Jac (n) by these and the trans-

versal flows to Prym (7?) generated by 

and 

	

h-2zi' 	h-2zN-1. 

§ 5. Theta functions and difference operators 

Certain theta-identities allow us to provide explicit formulas for the operator C in 

terms of the curve R. They are very similar to Cor. 2.19, p. 33 in Fay [11]. To fix notations, 

we assume a basis {coi} of holomorphic 1-forms chosen; we write Abel's mapping from 

the curve 7? to its Jacobian Jac (7?) by 

We fix anodd theta characteristic 

identically at all points 

PH
J

W.  
Po 

such that the theta function 0 [3°1 does not vanish 

Po 

(this exists; cf. Fay [11], p. 16). We write 0 for 0[1 for short. The theta-identity we want 

is this: 

I

PROPOSITION. There is a constant ci  depending only on n and 
[1J 

 such that for all 

xi, ..., xm, Pi, • • • , PM, Qi, • • • 5 QM-1 6  n, e E Cg 
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we have 

det 
1M 

I-1 
{0 (e + 

a-1 ✓ Pa  

fQa  

co + .i.  
1-1 

co) • 
Pi 	oc-1 

0 
(f xi 

(0 
Qa  

1
11 

	M 

ri e(f;  (0)1 
a—j+1 	pa  

	

1 	1 
=C1' rl 13(e+ 

	

3=1 	ce-1 

fQa  
co) • 	11 	0(.1 

pa 	1<i<j<M 

xi 	 Pa  

o.)) • 	ii 	e(f 	(0) 
xi 	1.<13<cc<M 	Qa  

• 0(e+ 
Em , 

f-1 x' co) 
Eff.  Pcc 

The proof follows the standard classical procedure (cf. Fay [11], Prop. 2.16 and the 
references given there): we check that the right hand side of the equation and all terms 
in the determinant on the left hand side are in the same line bundle over n3— x Jac (1?) 
and that they have the same zeroes. To see the first, we assume more generally that we have 
3M variable points of Jac (R) and consider both sides as sections of a line bundle on 

Jac (R)3m: these bundles are products of pull-backs by linear maps Jac (n)'-- Jac (n) 

of the standard line bundle with section 0, and to check they are equal it suffices to check 

the corresponding assertion for the Hermitian forms representing the 1st Chern class of 

these bundles. If B is the Hermitian form of the standard ample bundle on Jac (n), this 

comes down to checking that all the bilinear forms 

2 [13 + 	2 Pa + 	+ 2 B(x04 —Q0+ 2 B(xcri — Pc,), 
i=i 	cc=1 	oc-1 	cc-1 	 cc=i+1 

a any permutation of {1, ..., 
and 

M-1 	i 	i 	 M 	M 

ce + 2 ce) + 2 B(xi — x j)+ 	B(Pa — Qft)+ B(e— 13,,+ 2 Xi) B(e— P 
i=1 	a=1 	a=1 

 

	

1<i<j<P7 	 1</3<x<M 	 a=1 	i-1 

are all equal. This is elementary. As for the 2nd step, fix P,, Q j  and e and consider as 

functions of x E 

ss co  . i: Gck
0 
 (is 

co  ) . 	
(fx 

	

Cov,(x) = 0 + 	 1 1  
c<-1 pa 

+ 
Pk 	 cx=k+1

0 
 Pa  

Let 0 be some origin on n. Then recall (for instance from Siegel [29]) that for some 

constant c (Riemann's constant): 
0(t— e) = 0 

if and only if 

	

g 	t) 
t = 2 f w (mod. periods) 

2 ni 
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for some positive divisor arii  of order g —1. Moreover the g roots q1, 	g, of 

0(f W — S — C)=0 

satisfy the relation 
e vi  
2 w = s (mod. periods). 

o 

The vector e E Cg defines a divisor D.  gi  — 0 of degree g —1 and hence a line bundle Le  

if we write 
U fo 

e+e=/ co. 
1 ai 

Then the zeros of 
k-1 

	

x-3-0(e+ 	co+ f x  co) 
1 Pa 	Pk 

satisfy the relation 

g fat 	 k-1 fQa 	Pk 

	

CO =  —e— 	+ 	e (mod. periods), 
1 o 	1 Pa  

i.e., this function is a section of Le(D Pee —Z"-1Q,c). Moreover x will be a zero if and only if 

	

k-1 @a 	 U fo 

	

e+ 	co+ f co= / 

	

Pa 	Pk 	2 ni  

i.e., if and only if (by Abel's theorem), 

k  

r(Le(Pa— 

k-1 

 Qe,-- x)) (0). 
1 

Similarly for any point R E n, 
x-)- 0 	to

) 

is a section of L0(R). But as 0 is an odd theta function, 0(0) =0; and this section of L0(R) 
is zero at R, i.e., L0  itself has a section q) with g —1 zeros Vo  and the function 0(fxR  w) has its 
zeros at (70 +R. Thus yk  is a section of 

 

1, 	

—1 

4 	

k-1 

 00 Pa —  Q. 	(Vo+ Q.00( (Vo+ PO) 
oc=1 	 c< 

(

=1. 	 a=k+1 

°Le ( pj o( —1)Vo). kc,-1 

0 
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In fact, the last (M —1) factors all vanish on Vo, so vk  comes just from a section of 

Le( pa) . 

This bundle has degree g —1+M, so by Riemann—Roch, we may expect vi, vm  to be 

a basis of its sections. Now det (vz(x5))+0 if and only if no linear combination of the 

sections is zero at all the points x1, 	xm. Consider the various ways the left-hand side 

can be zero: 

1. If O(e +1',„1  SQp: co) =0, then by formula 45, Fay [11], one sees that 

f 

	

ea 	fx 	x 
0(e+ 	co+ 	co) • 61 (f CO 

	

a =1 ✓ pa 	 . 	Qi 

and 

0(e +
e, 
 co+ 	co) • 61 (.1 CO) 

a-1 P 	Pi 	Pi+. 

	

are linearly dependent. (Take Fay's e to be our (e 	fp(2c, w), and take his y to be suitably 

general.) Thus and and vi±i  are linearly dependent and the determinant is zero. 

2. If 0(52 to) =0, then either xi  =xi  and the determinant is zero or x, E Vo. The left-

hand side vanishes to order M —1 along the divisor x, E V0, but so does the whole ith row 

of the determinant. 

3. If 0(4 .1 : (0) = 0, then either Pc„ 	or 13,,, ED, or Qth  E Do. If -Pct — Qfio /31 < oc1, 

then every section v, vanishes at Pa,. If e is sufficiently general, this means that all vk  

are sections of 

Le( Pa) 
ce*G i  

of degree g — 2 + M, hence with only M —1 sections, hence the yak's are linearly dependent 

and the determinant is zero. For special values of e, but .13,,,=(2,6h, the determinant is still 

zero by continuity. The left-hand side vanishes to order a, —1 along the divisor 13„, E Vo, 

but (a,— 1)-columns (given by j + 1 al) of the determinant also vanish here. 

4. Finally, if O(e + 	f xpl, co) =0, then Le(D''' P„— 	xi ) has a section. To show the 

determinant is zero, we may assume 19(e + SpQ: co)+0, i.e. r(Le(Pi —Q,)) (0). But then 

Lecil  /3„) 

	

dim (Le(P)) di m ( 	 = M. 
Le(Pi — Qi) 
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So either the y, are linearly dependent and we are done, or they span rg,e041',0). 

	

In this case, some combination is zero at all the points x1, 	xm, so again det yk(ac z) =0. 

This proves the proposition because the divisor of the left-hand side is greater than 

or equal to that of the right, but both divisors come from zeroes of sections of the same line 

bundle. Renumbering the Pa's, Qa's from — M' to M instead of 1 to M, and shifting e by 

0 Qa  

a=-M' Pa 

the formula reads: 

COROLLARY. 

det 	10  (e 	 0(.1xi co). ri 0(.1xito)} a-1 Pa 	 a=-M' 	Qa 	a=j+1 
1<i(M+M'1-1 

M-1 	Pace 	 X j 	 Elf+M'+1xi  

= ri  0(e+ f co) • 	n 	e 	0
•

jj 0(1 co) 0(e+ 	
w) .1E0 m Q,,+Epreoc  

	

a-i 

✓

Pc, 	1<i<j...c.M+M.+1 	x j 	-M'<i3<a<M 	Qfl  

Now we apply this to our curve 1? with given points P1, ..., Pn, Q1, • • • ,Qre and func-

tion z. By assumption 
n 	 n' 	M+M' 

(z) 	 P1-1111 Q2+ Ra 
1=1 	i=1 	i=1 

for some set of points R1, ..., Rm_ m,. In this case, the function z can be expanded: 

MM' 

H 0(1%0) 
i-1 	Ci  Z(X)= C2  

Glii°(rpc,w))*-. 01:11°(ixo„w))m1  
where c2  is a suitable constant. Moreover, if V is a regular divisor of degree 

define 
Qo + Co 

e= L co; 

then we claim that for suitable constants A,: 

k-1 Qa  
61  e+ 	co+ 	co

0  0 
	w 

a-1 ✓ P, Pk a- 
tk(X)= —

A .BI 

• 

0(e + f (0) 	0 ( f x o)) 
\ 	/ a=1 \J Pa  / 

and we 
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(Here k 1; an obvious modification holds if k< 0.) In fact, it is immediate by the 

functional equation of 0 that this is a meromorphic function on n. The factors on the 

right give it zeroes at Q0, 	and poles at Pi, ..., Pk. The other factor in the 

denominator satisfies 
x+Do 

0(e + 	co) -- 0(.17,  to 

which is zero if x E V because then 

x + DO  — ==- V0  — positive divisor of degree g —1. 

These properties characterize /, up to scalars. Now apply the Corollary replacing e by 

f 'it co, renumbering Pa, Q by Pa+k, Qai k) letting xi  = Ri, 1--(i <111 +111' and 

xm+,,r+, =x, and expanding the determinant along the 1st row: 

M+k 	 5-1 fQ0, 	x ) 

1 (— 1)-10(e+ 	co + .1'  to 
i-k 	 a=1 pa 	Pj 

Ri to  . 	1-1 	0 	Ri to 	0 	Ili  

	

x 	det 	0(e+ yr-,0+5 	 .., 
-M'+k<1,..<,M+k 	m=1 Pe, 	PI 	a= -M'+k 	oc4 	a=1+1 	Pa  

1...55.-M+M' 
I*5 

fQ, 
 •t 	

Ri ) 	(ix 

	

= ± C1 	 o)• II 
-iM

0(f  w•Fle 	t 

5

M

ri 0(e +
oc -111'+k 	=1 Pa 	1<i<i<11/1 	Ri 	5=1 	Ri 

o 
 

x 

	

x 	FT 	0 ( i Pa  CO) • 0 (e+ kil  fQa  CO + i CO) 
-11P+k<P<a<M+k 	Qfl 	 a=1 Pc, 	Pk 

or 

	

M+k 	C A 
Z(X) • I k(X) 	j_, 	( — 1) j 	k  

5= -M'+k 	C1 n T1 

	

5-1 1Q

c,c

, 	Rt  ) 	2-1 	 M+k (fRi )} 

	

det {0(e+ 	co + f co • fl 
 0(1 

 ( f w) • FT 0 	co 

	

c<=1 P 	Pi 	• a=' -M'+k 	C,,, 	m=7+1 	Pa  cu 
 15(4 

	

M+k-1 	1 $(5,, 	 lii 	 Pa 

	

F1 0 (e + 	co) • 	n 	0 	03 • 	ri 	0 	w 

	

1=-M'+k 	a=1 Pa 	1<z<l<M+M' (.1 R, ) -M'+k<i3<a<M+k (f Qfl ) 

Thus the operator C, up to a constant and suitably conjugated is given by 

THEOREM 7. 

	

( — 1)5 	det 	0(e + 1 

	

-11P+k<1<M+k 	

1-1 fQa  

(53 + ft  (a) • 111 0(f Ri  co) . mlik  0(r.  co) 
.---1 Pc, 	Pi 	a= - M'+k 	Qa 	a=I+1 	Pc, 

1<i<M+M' 
1+5 

M+k-1 	I 

-M' 	

fQa 
n 0 (e+ 

a=

Pa 

1= 	+k 	1 Pa 
co)

• -i- -M'+k<I3<a<Mk (J.Qfl 
to 

j-1 
• 

a=-M'+k 
0 ( f 

s 

Oa  

ce.) 

) M+k 	x 

• 
• LI 	0 	to 

co=5+1 	(fPc, 	) 

Ck j  
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§ 6. Almost periodic difference operators 

Non-singular curves n with the properties listed in Theorem 1, but without the 

existence of a meromorphic function h, lead to almost periodic difference operators, in the 

following sense: for every E >0, there is an integer T >0 such that for every interval 

1(T)Z of length T you can find ccE.I(T) with the property 

Ck.k+i —ek-Fa.k+2+a I <E Vk,k+iEZ. 

Considering the Jacobian Jac (R) as a moduli space for divisor classes of degree g— 1, 

the Theta-divisor 0 Jac (7?) is the subvariety of positive divisors in Jac (7?) of order 

g — 1. Whenever one considers a regular divisor V, the corresponding sequence of mero-

morphic functions and the associated sequence of regular divisors 

k 	k-1 

Pk =  (ha +D + Pi — G Qi, kEZ, 
1 	0 

then 
C(Dk — (4) = {0} 

or what is the same 
{M}Nk+ID. 

where {M} E Jac (n) is the point corresponding to DIV 

Now, we define a uniformly regular divisor 73 with regard to the same sequence to be 

a regular divisor, with the property that 

.C(U — Qk) = {0} 

for every k (1 <lc (n) and for every: 

{V} E  U {Pk+pn} PEZ 

Or, equivalently, for every k (1<k <n'), 

(0+ Qk) n U I'Dk+pnl =0. 
PEZ 

As we shall see later, there are many such uniformly regular divisors. 

THEOREM 8. Let n be a non-singular curve with points Pi, 	and Q1, 	let z be 

a function on n subject to 

(z)— 	 d, 
1 	1 

where d is a positive divisor not containing the 13 2's and Qi's. Then every uniformly regular 

divisor V determines an almost periodic difference operator C. 
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Proof . Let v be the l.c.m. of n and n'. Observe that in Jac (7?), 

v 11, 	v 
Dk+v — Dk 1=7  

n l 	n 

Let p be the divisor on the right hand side. The divisors ... 	 ... form a 

linear sequence of points in Jac (7?). The transformation obtained by adding p to a given 

point on the torus is periodic or almost periodic. If this transformation would be periodic, 

it would imply the existence of a meromorphic function h having for divisors some multiple 

of p. If we fix some measure of distance on Jac (7?), then at least we can say that for any 

e >0 , there is a positive integer T such that for every interval I(T) of length T there is an 

integer P E I(T) fl Z with the property that in Jac (n) 

k+pv 	k+pv 

— + Pa Q. 
1 	0 	 1 	0 

= I (✓k - Qk) - Mk+pr - Qk) 

= I V, - 	I 
< 8 VkEZ. 

   

    

Consider the closure {pP} of the sequence of points p7 in Jac (n): this will be the union 

of a finite number of cosets of the real subtorus Pc Jac (7). We wish to prove first that, 

with a suitable choice of A- and B-periods on n, P is contained in the real sub-torus given 

by the A-periods alone. In fact, our hypothesis that V is uniformly regular means that 

certain cosets of P are disjoint from 0. This means that the cohomology class of 0 

restricted to P is zero. But we have 

H1(P, Z) c H1  (Jac (7?), Z) 	Z) 

and the cohomology class of 0 on Jac (n) is just given by the 2-form: intersection product 

(a, b) — (a • b) on 111(R, Z). Thus this triviality means H1(P, Z) is an isotropic subspace. 

Any maximal isotropic subspace of H1( n, Z) can be taken as the set of A-periods, so 

this proves our assertion. This choice of A-periods means that 0 is a periodic function in 

the P-coordinates, hence for any e, the values 

0(e+ ce 	
w 

1 

1 j Qa  

for all I are equal to their values in some compact fundamental domain mod periods. This 

plus the explicit formula for cif  in the last section proves Theorem 8. 
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THEOREM 9. Consider a curve n, 2n points P1, Pn, Q1, 	Qn  on n, a meromorphic 

function z having the properties above with .2W1=M'i. Let - be an antiholomorphic involution 

for which n\nR- U n_ where nR= {p E 7?I23 = p} such that P 2  =Q 2  with Pi  E 	and 

Q, E n_ and such that z(p) =z(p). Consider a divisor V having the property that 

p+ -t.  —Pn —Qn  

is the divisor of some differential on n, which is real positive on nR. Then 	determines a 

self-adjoint, almost periodic difference operator C, whose L2-spectrum is the set of values of 

z on nR. 

LEMMA. Any divisor on the curve n satisfying the conditions of Theorem 9 is uniformly 

regular. 

Proof. Recall from the proof of Theorem 3 that 

voo+ &) = Pk + Qk+ 

that

// 

for some 1-form cok, with cok..--0 on nR. Therefore all the divisors V= V(k+vn), p E Z, 

satisfy: 

---Pic-EQk+(c0), wi0 on nR. 

Passing to the limit of any sequence, it follows that this condition still holds. But by the 

argument in Theorem 3, any such w must have a non-zero residue at Qk, hence Qk doesn't 

occur in the divisor 	hence D' —Qk O. 

Proof of Theorem 9. From the Lemma it follows that 	is uniformly regular; by 

Theorem 3 (§ 2) and 8 it maps into a self-adjoint almost periodic difference operator C. 

Consider now the space of meromorphic functions 

C.= {11(f)> — 	 with ki,li EZ arbitrary}. 

Any f E C maps into a sequence An, zero for almost all n (Lemma 5, § 1) such that 

00 

I= 

Let 73 not contain any point of RR. Then using the inner product defined in Theorem 3, 

27L 	
1112 0)- 72 	A 7  .1 ini:70)=1412 <°(). t; 

1 	1 

RR 
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C is a space of complex-valued functions on RR, separating points and closed under 

conjugation, so by the Stone—Weierstrass theorem the space C naturally completes to 

the space L2 ( ng ) of L2-complex valued functions on RR; the space of almost everywhere 

vanishing sequences completes to /2(Z) = {{2„} I I 2„1 2  < 00}. A basis for the space L2(nR) 

is given by the functions fk. This defines now a unitary transformation from /2(Z) to L2( nR). 

The difference operator C acts on /2(Z) as follows 

n+M 	 n M 
(C 2)n= 	2k Ckn = 	Cnk Ak 

k=n-M 	k=n-M 

and C acts on L2( nR  ) as a multiplication operator. Indeed for f = Ant n  

Cif = G An(C/ n) 

= 

= zf. 

This operator is bounded and self -adjoint, since RR does not contain P, or Q;. The 

spectrum of this operator is the range of z, defined on the cycles RR. 

If V contains a point of RR, we may argue by a limiting process that the theorem 

still holds, or, noting that w has zeroes where f has poles, we replace L2( RR) by the space 

of functions f on RR — V n RR such that 

S I / 1
2 w < CO 

RA 

Then the proof goes through as before. 
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