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A remarkable "dictionary" was discovered by I.M. Krichever [7], following 
suggestions in the work of Zaharov-Shabat [11], where they attempted to find a 
common formalism for the inverse scattering method of integrating certain non-linear 
partial differential equations. Subsequently, a characteristic p analog of this dic-
tionary was discovered by V.G. Drinfeld, and a matrix analog was worked out by 
P. van Moerbeke and myself. Preceding this stage, a legion of authors have worked 
previously in the hyperelliptic-degree 2 operator case : much of this can be traced 
through the recent articles [3], [5] and [10]. It is not entirely inaccurate to say that 
initial insight behind this and related discoveries was the work of the first electronic 
computer ! This lecture is a report on these 3 dictionaries with only a brief discus-
sion of their applications. (see Added in proof) 

This dictionary is a one-one correspondence between 2 types of superficially 
totally unrelated sorts of data : on one side of the dictionary, one has an algebraic 
curve, one or more points on it, and a vector bundle over it ; on the other side, one 
has commutative subring of some big non-commutative ring of operators. This cor-
respondence seems to me remarkable for many reasons. Firstly, it appears, as 
mentioned above, in at least 3 quite distinct cases. Secondly, it enables one, 
generally in terms of theta functions, to construct solutions both to equations formed 
from operators in these commutative subrings and to equations formed from flows 
in the space of all operators in the big non-commutative ring. Thirdly, it gives a 
new parametrization of the moduli space of the curves involved and/or their jaco-
bians, vector bundle moduli spaces, etc.. We will discuss this in more detail below. 

To make the idea precise, we state here the results in the simple case where 
the bundle is a line bundle, for all 3 types of operators : 

(I) Difference Operator case. Let k be any field. Let M1(k) be the ring of 
finite difference operators over k, i.e., maps A: 11 t: k— fl!:: k given by 

n+Na 
E Ann,x,„ 	all n E Z. 

nt--n+ N1 
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If [N„ N2 ] is the smallest interval such that A n„,= 0 if in — n [N„ N2 ], we say [N1, N2 ] 
is the support of A. If moreover A „,„+,, #0 and A„,„,,,# 0 for all n E Z, we 
say that A is properly bordered. Then there is a natural bijection between sets of 
data as follows : 

Data A. a) X a complete curve over k (i.e., X reduced and irreducible, 
one-dimensional, proper over k). 

b) P, Q e X, smooth k-rational points, 
c) . torsion-free rank 1 sheaf on X such that 

X(5)=0  
hi(F(nP—nQ))=0, 	all n e Z. 

Data B. Commutative subrings R c 114`,1.,(k), with k C R and such that a A, B ER 

which are properly bordered, with supports [a1, a2], [b1, b2] such that (a1,b1)=1, 
(a„ b2) =1 and a,bi <aibz ; two subrings R1, R2  C Mtl,(k) being identified, however, if 
for some invertible element: 

A=(2nOnv,), 	A n  E k*, 

we have 

R1= 

(II) Differential Operator case (Krichever). Let k be any field of characteristic 
zero. Let k[[t]][d/dt] be the ring of formal linear ordinary differential operators 
over k. Then there is a natural bijection between sets of data as follows : 

Data A. a) X a complete curve over k, 
b) P E X, smooth k-rational point, and an isomorphism 

c) torsion-free rank 1 sheaf on X such that 

h°(<3-4")= hi (7)= O. 

Data B. Commutative subrings RCk[[t]][d I dt], with kCR and such that 
3A, B E R, operators of form: 

A — dd  + di(t)(  dd  t Y 1  + • • • + a„(t) 

B — ( dt
)i 

 +b,(t)( ddt )P 1+ • • • +b p(t) 

with (a, p),1; two subrings R1, R2 ck[[t]][d I dt] being identified, however, if for 
some u(t) E k[[t]], u(0)#0, we have 
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R,=u(t).R2ou(t)-1. 

(III) Field Operator case (Drinfeld). Let k be any field, a e Aut (k) an auto-
morphism of infinite order and let k, be the fixed field. Let k{a} be the ring of 
maps A: k—k of the form 

A(x)=E agli(x). 
i = 0 

Then there is a natural bijection between sets of data as follows : 

Data A. a) X, a complete curve over k,, 
b) P, e X, a smooth k,-rational point, 

def 
c) torsion-free rank 1 sheaf on X =Xo x 00k such that h'(.F)=17'(.9")= 0, 
d) an isomorphism: 

r: (1,0 xa)*>•.9-(Po—Pi) 

for some smooth point P, e X, Pi#Po• (Here I go  xa: X—X is the map given by 
X,-->X0  and CI : Spec k —> Spec k.) 

Data B. Commutative subrings R C klub with ko c R and such that 3 A, B e R, 
operators of form 

A=anan+ • • • d-a„ 	an #0 

B=b,Thani+ • • • d-bo, 	bn #0 

with (n,m)=1; two subrings R„R,ckfal being identified, however, if for some 
a e k*, we have: 

Ri=a• 12,• 

§ 1. Difference operator case 

Let me first explain, in the rank 1 case, how one goes from Data A to Data 
B. This construction will give the essence of everything that follows and we can sketch 
the generalizations fairly rapidly. We consider the infinite sequence of sheaves : 

..9"(2Q —P) 
\.) 

.9" (Q —P) 

(Q) 
■.) 

	

.F(P) 	9"(2P—Q) 

	

\). 	L 
g"-(P — Q) 

.9-  (3P —2Q) 
& 	\) 	• 

(2P —2Q) 

Those on the bottom row have no If or H'. Therefore those on the top row have 
a 1-dimensional FP, and if 

sn  E H°(X , 	+ 1)P —nQ)) 
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is a non-zero section, sn  generates 1-dimensional vector spaces : 

((n +1)P — nQ) I (nP — nQ)==-,' ((n +1)P — nQ)®,xK(P) 

and 

((n + 1)P — nQ) I ((n + 1)P — (n + 1)Q) L-4 ((n + 1)P — nQ)C),,,,K(Q). 

The first follows from the sequence : 

0 —>1-/°(< (nP — nQ))—>i-P(g-- ((n +1)P — nQ)) 

((n + 1)P — nQ))0K(P)—JP (34" (nP — nQ)) 

and the second from the similar sequence with K(Q). As a result, it follows that 
Isnl„„ is a k-basis of the infinite-dimensional vector space M=F(X—P—Q,,.). 
In fact, starting with any s e 	 ..°)."), let k, 1 be least so that s extends to 

s e 	,97(kP+ 1Q)). 

Then for a suitable a e k, as,, and s will have the same pole at P, i.e., 

s — as E F (X , ..fl(k— 1)P+ 1(Q))). 

Similarly, for suitable b e k, bs_ 1  and s will have the same pole at Q, i.e., 

s — as k_i — bs _t E ra,...((k-1)P+ (1-1)Q)). 

Continuing in this way, we eventually find a section of 	Since H°(.F)=--- (0), this 
is zero and s is written as a combination of the {,s73. Now let 

R= 	-P — Q, (9x). 

Clearly M is an R-module, so for all a E R, n e Z, we can write : 

n+ N2 

a-sn= E 
,n=n-N1  

In fact, it is easy to see that N1, N2  may be taken to be the order of poles of a at 
P and Q : 

(a)=-N,Q4-N,P—D, 	some D> 0 supported on X —P — Q 

and that in this case A „,„_,,# 0 and A ii, n+  r 0, all n. (If a had a zero at either P 
or Q, N1  or N2  can be taken to be negative and the matrix A is upper or lower 
triangular.) Now consider the map : 

R--->Meo (k) 

. 
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We may check that it is a homomorphism as follows : 

(ab)sn=b(E A nk-k) 

,E Ank(bSk) 

=Li A nk (E Bk,„sn,) 

=E(E A nk Bknz)s,n,• 
m k 

Note that the only choice we made in defining this map was that of the {s,}. If s„ 
is replaced by Ansn, 2„ E k*, then the matrix A is replaced by (A')„,,=2,22,7,1A„,„ 
i.e. , A' = AAA-1. Finally, for all N1, N2  sufficiently large, there are functions a E R with 

poles at P and Q of order exactly N„ N1 : so the image of R in A4400(k) has the pro-
perties required in Data B. Incidentally, if X is smooth, it is an arduous task, but 
not deep, to give explicit formulae for the entries Ann, in terms of theta functions 
associated to X. This can be done following the methods of Fay [4]. 

The spectral properties of the rings R which we get in this way are very simple 
and help to understand how to reconstruct (X, P, Q, 5") from R. Since all the 
operators A e R commute, you can expect to find simultaneous eigenvectors . for 
all A e R, at least over suitable extension fields K D k. We put no convergence 
restriction on g, but seek vectors g e ±:K for some field K D k, such that 

A2=2A•g, 	all A e R. 

In this case, the eigenvalues 2A  together give a homomorphism 2: R—›K, hence 
define a K-valued point of X —P —Q. The following holds : 

Proposition. Let Data {X, P,Q,R} define RCA/11(k) as above. Let K D k 
be a field, 2: R—+K be a K-valued point of X —P—Q, lying over x E X —P—Q (x 
defined by the prime ideal Ker 2). Then there is an isomorphism between 

a) the eigenspace E 	KlAg=2A-X, all A E R} 
and 

b) HomR  (.F,Inl.g-x,K).  (Here K is an R-module via 2). 

Proof. In fact 

HomR  ( F x 1 mx• F s, K)=--- Hoin, (r (X — P — Q , ,F), K). 

Using the basis {s0 of I v —P —Q, ,F), this comes out as : 

maps sni—x„ e K such that for all a E R 

if asn=E Annism, then 

E A nmx,Th = 2(a)• x„ 

=Eigenspace for eigenvalue 2. 
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This suggests how to go back from Data B to Data A. The idea is simply to 

take X—P—Q to be Spec R and to complete it to X. For each point of X—P—Q, 

we consider the corresponding eigenspace, and "glue" these together into a bundle 

over X —P —Q. Then 	is just the sheaf of functions on this bundle, linear on 
each fibre (e.g., generated by the functions 	If k=C, the 2 points at infinity 

on X have a spectral meaning in that their neighborhoods are given by the set of 
all eigenfunctions growing exponentially as 	co or 	00 : I x„I>C1x,,_,1 or 

lx.+11>C1x.1, for C getting larger and larger. Over any k, the 2 points at infinity 

correspond to the 2 valuations on R given by assigning to each matrix A the least 

integers N1, N2  such that A is supported on [—A11, N2]• 
It seems difficult to make the above rigorous by a direct attack. We take a 

much more algebraic approach as follows : define 2 filtrations on R : 

R {A ERIA supported on (— 00 , n]} 

Rni = {A eR1A supported on [—m, oo)}. 

Using the 2 given elements A, B e R where 

A E Raz  n Rai 

B e Rb, n Rbi 

and (a2, b2)=1, (a1, b1)= 1, one proves : 

Lemma. i) Every C E R is properly bordered, 
ii) for all n, dim Rn+1/Rn.<1, equality if n>0, 

iii) for all n, dim R'IRn<1, equality if n>0. 

To prove this, simply note that if C has support [—c1, c2] then 

AC=CAcin,..pas„+aa,n+a2+c2—Cn,n+ca • an+c,,n+c2-Faa 
(C'n,n+c,=-0  iff Cn+a2,n+a2+c2= 0). 

So 

AC=CA} 

BC CA 
o (Cn, n+c, = 0 for one n iff cn,n+c2 =0  for all n) 

hence C is properly bordered. Now if C, C' have support [*, c2], then some com-
bination aC+pC' has one zero along c„,,,z, hence it has support [*, c2-1]. A 
similar argument appllies to the bottom border. Finally, monomials A'W give us 
all supports [*, n], n> no  and [—m, *], m>mo. 

Corollary. R is an integral domain, the subring of R generated by A and B 
is isomorphic to k[X,Y]l(f), f irreducible, and R mod this ring is finite-dimensional 
over k. In particular, R is a finitely generated k-algebra. 
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Proof. The fact that every C e R is properly bordered shows R is a domain. 
The lemma shows dim R7J1 R n < n + m +1, and a simple count of the set of mo-
nomials AiBi in Rn r1Rn n >0, shows their number grows like n2  : so A and B 
satisfy some identity. Finally, using the inequality a,b,> aib„ choose positive in-
tegers A, p such that 

a,  > 2 >  b2  
a1  p b1  

Using (a2, b2)=. (a,, b1)=1, one finds monomials AiBi with i>0, 0 <../ <a, in 

(Ran+k+i n RPn) — (R2n+t n RPn) 

for all k, 0<k<2-1, n>>0, and likewise, taking 0<i<b1, j>0, in 

(R„„„(11?"+ k  —(R„„„ (I RPn+k) 

for all k, 0 k p —1, n»0. Thus these monomials plus the subspace Rano  n RPn°  

span R as a k-vector space. 	 Q.E.D. 

We can now define X —P—Q to be Spec R. To define the whole of X, the 
most convenient way seems to be as Proj of a graded ring. As in the proof of the 
Corollary, fix A, p>1 such that 

a2-1 > A >  b2  
a1  — p b1-1 

and define 

q„=R„,(IRPn 

.1= 0 .Rn.  
n--o 

In particular a contains 
a) the element 1 in gi  =RA  11 RP  we call this e, 
b) A' e ga„ 
c) BP  e 

An argument like that above shows that a is generated, as a module over k[e, A2, BP], 
by a subspace RoC)• • •C)gno, no>0. Thus a is also a finitely generated domain 
over k. Define 

X = Proj (a). 

X contains the affine piece e* 0, which is, by definition : 
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Spec (a [])0  

(0  signifies the degree 0 component), and 

g[-
1 = lira (Ran  n RPn)=R. 
e 0  mull by e 

To see what we have put at infinity, note that X is covered by the 3 affine pieces 
e#0, 241#0 and BP O. Since A2.13P R E - --(aa-Fb2-1) n R9(aa+bi-1), we get in .9: 

A' • BP-=---e • C, 	C E a2+bi-1. 

Thus outside the affine e*O, X has points e =A1=0, BP 0 and points e=13P =0, 
AA#0. I claim there is exactly one of each, and that it is a smooth k-rational 
point. To see this, check first that the direct systems 

Ax 	 Al 
.90 	> a2 	> 	> Rka2 	 
II 	 11 	 II 

	

Ro  n R° 	R2a2  (1RP" 	 RkAaa n RkFa2 

n 	n Aa 	 n Aa 
R, 	> R2a2 ------> • 	>Rklaa 

have the same direct limit, so the affine ring of A' #0 is : 

(ring of fractions 

	

g[  1 	(RAna2, mult. by A2), 
A' o 	 ClAk, C eRka21.  

In this ring, the homogeneous ideal (e) defines the ideal of elements C/ Ax, C 
Choose positive integers cr,r such that 

aa2+ rb2 —ka2 — 1 

and set C=A°13'. It follows that for all n, 

g[
l .=L"--k • 104 C  )c)•••ek(  c  I n

efideal 
A' 0 	Ak 

	
Ax 	tC e B ka,_ n  

thus 

{Completion of ..q[ 	 } k [[  C   11 
A' a 	 Ax 

E Rka2-2. 

which proves our claim for the points e=BP = 0. The other case is similar. Let 
P be the point e=13P =0 and let Q be the point e=AA=0. Note that e vanishes 
to order 2 at P and a  at Q. Thus 
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(9x(1) 	x((e)) = Ox(2P pQ). 

Incidentally, describing X —P — Q = Spec R, then the valuations f Hordp f and 
ordQ  f , for f c R, are easily seen to be just the upper and lower limits of support of 
f. Note that the ideal of P is 

00 

	

C) 	R. 
n=0 

To get the the sheaf .F on X, let M be the vector space of column vectors and 
consider it as a module over R. Filter it like R: 

M = {(a1)1 	0, i> 

Mn = {(a,) I a, =0 , i < —n}. 

Introduce the graded a-module : 

En =Man M9n-1  

n= O  nn. 
n=0 

One checks immediately that if n> max (612+1, bi d- 1), then : 

=e• nn-i+ 	n-a2+ BP  • 931.-b1. 

It works like this : 

	

[— p(n —1) +1, 	 , 2(n-1)] 

e 

[—pn+1, • • • , p(n-1)+1, 	, 2(n —1), • • • , An] 

i xBP 	 ix A1  

	

[— p(n —1)1) + 1, • • • , 0] 	[0, • • • , 2(n —a2)] 

Define 	to be 11 . Since dim En= (2 - p)n, n>0, it follows that the Hilbert 
polynomial z(g(n)) is (A +/.2)n for all n. In particular, rkg"=--1 and x(..)=0. 
Finally, we may define related sheaves by : 

Mpn+b-1 
9NZ''b)==MA 
Na.b)_09)4

n+a 
n  

a,b) 

g-(a,b) 	91-1 (a, b) 

Since 9n(a'b) C E(a+l'b), E(a,b) awa,b+i), we get -(a,b)c...F(a+1,b), 	cg(a,b+1),  

and it is easy to check that 
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(E(a+1,b)/n(a,b))7z  
M2n+a+1/M2n+a 

n large 	
by ea+1 

lideal of P). 
	R17,1 R,n _, 

(where e,, e M is the kth unit column vector). Therefore 

and by induction : 

Moreover, if a> — b, then ea}, E ma}, n Mb-1, hence 

ea+, E F(X, „'"(a+1,b)) 

is a section that doesn't vanish at P. Then using the exact sequence 

(a ,b ) ____>((c+1,b) ___>10P)—>0 

and the existence of the section ea+, of 	we find 

(a, b))_—_-÷111(5", (a+1,b)).  

But if a +b is large enough, FP is zero. So FP is zero whenever a+ b> 0, i.e., 

IP(X , 	— aQ)),  (0), 	all a E Z. 

This completes the construction of Data A. We leave it to the reader to verify 
that our maps between Data A and Data B are inverse to each other. 

The dictionary can be greatly extended. Here is one much more general 
correspondence : 

Data A'. a) X a one-dimensional scheme, proper over k, without embedded 
components. Let 

R=C) 
VEX 

generic 

be its total ring of fractions, 
b) S, T cX disjoint finite closed subsets meeting every component of X. Let 

Cs={f e Rif e 0.,,x, allxES} 

(92,=--{f € RI € ex,x, all x e T}, 

c) 	a coherent sheaf on X such that x(g)=0 and has no zero-dimen- 
sional associated points, 
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d) a flag of es-modules 

.Fs=KoDKIDK2D • • • DK.=-- f•Ko, 

f e Cs a non-zero divisor zero at every x e S, dimk  (Ki /IC,+,)_= 1, and a flag of CT-
modules : 

<FT=LoDL1DL2D • • • DLp=g•Lo 

g E Cr  a non-zero divisor zero at every x e T, dimk  (Li /L1+,)=1. 
We put 2 requirements on this: first 

Cs=fa e aKi cKi, 0<1<cel 

CT=- {a E aL/CLt, 0<i<P}. 

Secondly, if we define K,, L, for all 1 e Z by 

K„,a=f •K,,Li+A=g•L, 

and sheaves ,F( k'" by 

{K, at S 

''_.--- " = La  at T 

.'.F.  elsewhere 

then 

Data B'. Commutative subrings Rcilit',(k) with kcR such that 3 A, B E R 
where A is properly bordered above with support [a,, ad and B is properly bordered 
below with support [b,, b2] and a2b1<a1b2 ; two subrings R,, R2  being identified if 

R,= A R2 . A' 

(A diagonal) as before. 

To go from A' to B', as before we just choose 

S'n  E H°(X,g-.(.+1,-.)) 

and verify that {s„} is a k-basis of H°(X—S—T,..F). Hence R=H°(X—S—T,e,) 
acts as a ring of matrices on the {s,i} and this is data B'. 

To go from B' to A', define R„, Rn, M and M „, Mn, TZ (a ' b)  as before. Instead 
of the lemma above, the argument only shows: 

dimR,z+,/Rn <a„ 	all n 

dim Rn'IRn<b„ 	all n. 
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One then proves as before that R is a finite module over k[A, B] and that A, B 
satisfy some non-zero identity. Similarly .R and 93-1(a'b' are finite modules over 
k[e, A', BP]. Set X =Proj 	„F.(a,b) =fft(a,b). As before, the open set e#0 in X 

is just Spec R. Moreover we have 

	

A'. BP e • C, 	C E  gaz+bi--1 

so the divisor e= 0 breaks up into S defined by e= BP = 0 and T defined by e= A' = O. 
The open set A' #0 is Spec of the ring 

R(A) =lim (R, 	mult by A2) naz, 	2= fring of fractionsl ,  
lC/Ak, C e R k„) 

and -.(a'5)  on this open set comes from the module : 

NtA)=1inl (Mana2+ay 
1./.71/A k, M E Mka2+a 

= [module of fractionsT mult by A') 

These are independent of b, have isomorphic localizations on the complement of S 
(the set S is defined in this open piece by e= 0, which becomes 11 A#0 in this affine 
ring). Therefore these define a flag {K1} as required. Moreover 

1  [module of 	
1= {

module of 
E M A lmlAk, m 

	

- --kaa+ct 	MI Ak, m E  Mkaa+a-az} 

so the a in Data A' is a2  and the f is the function defined by 1 /A in the above affine 
ring. {K1}, j9  and g are defined similarly. The calculation of x and vanishing of 
JP's goes through as in the special case. Note that X — S — T is the affine 	so 
each component X, of X meets either S or T. But if, for instance, only S met Xi, 

then x(,..--(k,-/c) ixi) would go to + co as k--> , so h°(..F(k ,--k))--› co which is not so. 
Thus both S and T meet all Xi. Finally, note that if C e R, then C c R1  iff C. (M)a, 
CMa+„ all a; hence : 

R(A)=---{1 e R[  1   I 
A 

f • lit4) c1W,A), all a} ; 

from which the requirement 

 

OS  ={f eRlf•Ki  K1, all l} 

follows directly. 
There is one particularly nice case of the dictionary. This relates to arbitrary 

periodic difference operators A: we say A has period n if 

A ki.na +n —  A k,11 	all k, 1 E Z. 
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If S is the shift operator : 

Sk,I =Olc,1+1, 

then to say A has period n is equivalent to saying 

A • Sn =Sn • A. 

Therefore, if A is any properly bordered periodic difference operator, with support 
[—a„ a2], such that (n, a1)= (n, a2)=0, the ring R= k[A, Sn, S-n] is an example of 
Data B. It is easy to see that the corresponding curves X are those such that 

a) nP-.--nQ 
b) there is a function f on X with poles aiQ-Fa,P. 

Another interesting case is when k=C and we strengthen the hypothesis 
hi(.F(nP —nQ))=-0. Suppose : 

a) X is a smooth curve of genus g. 
b) P, Q E X. Let q5: X--4Picl (X) be the canonical map and let a=¢(P)-

0(Q) e Pic° (X). 
c) .51- is an invertible sheaf on X of degree g — 1 defining a point 

[,F] E Picg-'(X). 
Let 

I= { [F] na}„„c Picg-1  (X) 

where — denotes closure in the complex topology. Let 0 c Picg-1  (X) be the theta 
divisor, i.e., the set of divisor classes with h1>0. Then assume 

xne=cb. 

As we have remarked, periodic matrices arise when is finite. However, when-
ever I (1 0=¢, I claim that the matrices A E MI(C) that arise will be almost periodic. 
By definition this means that : 

V e>0, 3N 1<N,<N,< • • • 	such that 

all k, 1 

and N1+1 —N1  are bounded. 

The most interesting aspect of the dictionary, however, is to analyze what it 
does to the Jacobian flows. Again take k=C and consider the general Data A', B' 
correspondence. The Jacobian variety Pic°  (X) acts on Data A' by 

L an invertible sheaf on X, at least "generically", i.e., for most L, .FOOL will still 
satisfy the vanishing hypothesis. This means that the tangent space to Pic° (X), 
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which is canonically H'(91), defines a vector space of commuting vector fields on 
the manifold of Data A', although, when you integrate these into flows, they may 
be incomplete. It is very interesting to express these vector fields in terms of Data 
B'. The result is this : let RCMI(C) be an instance of Data B'. Regard R as a 
fixed abstract ring, but consider deformations of its embedding in MhIco(C): 

Ot: 

Fix one element C e R. For any X e AV,(C), let 

x 	 ; (X0), = {X i" 
0, 	 0, 

i=j. ; 
i 	 X", i> j • 

Then the flows in Data B' are defined by the differential equations : 

d 
 Ot(A)=[0t(C)+, Ot(A)]. 

This is not hard to prove : 
a) describe Hl(0X) by Cech co-cycles via the covering gi,{X—S, — T}, 

giving : 

R= ((X — S) n (X — T), x) 

; (91)—>IT(01). 

Corresponding to c e R, we get the tangent vector to Pic° (X) described by the in-
vertible sheaf L on X x kk[e]: 

c._,10,,C),Ic[e] on X — S, X —T 

tglued by mult. by 1+ w. 

b) Let 	sk  E R.,F,k+i—k>> define 00  : R—>M1(k). Deform these to 

,- (k,z)00,,L, on X x kk[e] 
sit E 	 cin.  

Via L—=--->0 x0k[e] on X —S (resp. X —T), write 

sf =s, +64, s', E ['(X—S, ""(k +1.- k)) 

= sk + es s  E  r k" ,ic,/  

where 

dt 

s k  es,c = (1 + ec)(s k  Esc), 
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or 

Sjc — Sc: ---=CSk• 

c) If 00(c)=Ck3, then by definition 

CSk =J Ck,1S1• 

Write C =C+  + Co  +C_. Then 

csk = E Ck,iSt+ E Ck3Si  
k<1 

(C ±s)k 	((Co+ C -)s)k. 

Since 

(C+s)k  e 	-"+1,-")cr(x—s, 	(k+1,-k)) 
t>k 

-I- C --)S) e r(E g-(1+1,--1))cra T, 
15k 

we may define 

+S) I 	S k = ((C 0 C S) k 

and get st with the required property. 
d) To determine the change in the matrices 0(f) associated to f e R, we must 

write : 

f.st=E (0aWki+EsisiWki)(1). 

This works out to say 

f.sk =E sbiWkisz + E 00(f)„,z, 

or 

GC+, cboWls)k = E (c+)kif.st—E 0oWki(c+)/nsn—E sbi(f)k.sn. 

as required. 
Note that as [cbt(C), 0,(A)] =0 and [0t(00, Ot( 4)] generates a flow in the direction 
of equivalent subrings, the flow in Data B' may also be written : 

1 

dt
0t(A)= —

2 
[0t(C)+  — 0t(C)_, cbt(A)]. 

To see the connection with the Toda lattice equations, as promised in the title, take 
A=C to be an n-periodic symmetric matrix with support [— 1, + 1] ("tridiagonal"). 
Let A be 
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ea.-1-a- b7, ea--a' 0 0 0 

0 

0 

ea.-a1 

0 

b, 
eat-a2 

eat-a2 

b2 

0 0 

0 

0 0 0 eat-ay b3 ea—a4 

1. 

where E ai=0 E bi =O. 
i=i 	i=i 

Then one readily calculates that the flow is given by 

= bk 

bk eak 	ak — eak-ak+ 1 
 

which are the Toda lattice equations describing a set of n particles on a circle, each 
pair being connected by a spring-like force that tends to keep the (k +1)st ahead of 
the kth, rising exponentially if they get closer or even get in the wrong order, but 
relaxing exponentially as they get farther apart in the right order. 

It appears that particularly nice solutions of these equations arise by taking X 

to be a singular curve whose smooth model is P. Apparently, if X has p ordinary 
double points we get the so-called p-soliton solutions of these non-linear equations. 
And if X is "unicursal", i.e., the map P'—+X is bijective, hence Pic° (X) is an addi-
tive group, then we apparently get solutions in which the entries A if of the matrix 

are rational functions of i, j. This has not been fully worked out as yet. 

§ 2. Differential operator case (Krichever) 

Again let us start with Data A. Our first goal is to construct a deformation 
of the sheaf .~ to a sheaf 	over X x kk[[t1], plus a differential operator 

17 : ..F*---><F*(P) 

such that : 

1) F(as)=a•Fs+ 	
as 

•s, 	ya E &x®kk[[t]], S E 547*. 
at 

Moreover, if z E 	 is a local coordinate so that a/az e T,,, is the basis 

given by Tp,,a=k, then we require : 

2) F(s)=-- + (section of <F*)• 
z 

If k=C, we can describe 5c.* analytically in a very simple way : let UC X be a 
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small complex neighborhood of P in which z is still a local coordinate. Define 
on X x C to be FO0c  on U x C and on (X —P) X C, but glue ..F" to itself on 
(U —P)xC by the transition function et/z. Define Pon sections of g.* on (X —P) X C 

to be a/at. Since 

a  e-tiz  at 
	 a 
(etlz f (z, ID= 

1 
f(z, 	

a

t 
f(z, t), 

17 extends to an operator from g-* to g-*(P) as required. To do this algebraically, 
we do the same thing regarding etiz as a formal power series in t. This gives us a 
formal sheaf on the formal completion of X x IA along X x (0). By Grothendieck's 
formal existence theorem, it defines a sheaf g-* on X x kk[ftl]• 

Then Hi(X X kk[Pl], F*)=--(0), i 	, 1, so the map : 

H°(X X kki[t]l, g-*(P))--Jr(g-*(P) I g-*) 
211 

k[[t]] 

is an isomorphism. Let so  be a generator of this k[[t]]-module. Define 

sn  E W(X X kic[Pl], g-*((n+ OP)) 

by 	 sn=17n(s). 

Note that sn=so /zn + (lower terms), hence so, • • • , sn  are a k[[1]]-basis of 
H°(X x 	-* an +1)P)). Now let R=RX —P, 0,). Then for every a E R, 

if a= a I zn (lower terms) at P, then aso  E H°(,*((n + 1)P)) so 

n-1 
aso -,  - as n+ E ai(t)si  

i=0 

n-1 
= (cel7n+ E ai(t)f 

1=0 

Define an embedding of R in 10]][d dt] by taking a to : 

D(a)=a\ 
 d 
dt )

n+ a i(t)( 
 dt  
d 
 )

1. 
i=o  

It is easy to verify that this is a homomorphism and that if so  is changed to u(t) • s0, 
u(0)*0, then D(a) is replaced by 

u(t) o D(a) a u(t)-1  

so we get an equivalent ring. 

To see intuitively how to go backwards from R to (X, P, g"), consider as in 
§ 1 the spectral properties of the differential operators in R. Let KDk be an ex- 
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tension field and look for formal power series f(t)= E aX, ai  e K, such that 

Df=2D f, 	all D E R. 

Then D 2D  is a homomorphism R-->K, hence a K-valued point of X —P and the 
following holds : 

Proposition. Let Data (X, P, ,F) define REk[[t]][clIdt] as above. Let K D k 

be a field, 2: R—>K be a K-valued point of X —P lying over x E X —P (x defined by 

the prime ideal Ker 2). Then there is an isomorphism between: 
a) the eigenspace {f e KDEIDf=2(D).f all D E R}, 

and 

b) HomR  (Fxlms•Fx,K)  (K an R-module via 2). 

Proof. Start with 0: 	 Thiss is the same as an R-linear map : 

0: C) sm •k=r(X—P,,F)--K. 
n=0 

Any such map extends uniquely to an nth-linear map 

q5*  : O sn •k[[t]]=R(X—P)xk[[t]],,F*)—>K[[t]] 
..o 

such that 

0*(17  a), 	
dt 

q5* (a). 

Such a cb* is determined by the value f (t), 0*(s 0) and conversely, given f(t), 0* 
must map 

E sn  • an(t),—>E an(t)(  dtt)n  At). 

For this to be R-linear, however, means : 

q5* (a • so), 2(a)0*(so), 	all a E R, 

i.e., if a • so= (E ai(t)17i)so, then 

E a, (t)(  d 
dt 

 -Y f(t),  2(a) • f(t) 
\ / 

which means that f is in the 2-eigenspace of R. 	 Q.E.D. 

Now to go backwards from R to (X, P, .F), the intuitive picture is this : X —P 
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is just Spec R. M--->deg D is a valuation on R and thus X is just Spec R plus one 
point P such that 

D„ D2  E R, deg Di < deg D21. 

 

To get 	associate to each point of X —P the corresponding eigenspace of R and 
"glue" these into a bundle. ". is to be the sheaf of functions on this bundle, linear 
in each fibre, generated by the functions fi---4(n)(0). 

Alternatively, if M is the vector space of singular distributions on the t-line 
supported at t=0, M is an R-module and on X —P is just U. 

However, rather than following this approach, it seems easier to use a more 
abstract approach better suited to generalizations. Starting with RC k[[t]][d 1 dt], 
and A, B e R as in Data B, let : 

R„={D E RldegD<n}. 

Then we have : 

Lemma. i) For all D E R, D=a(d I clOn + (lower terms), a E k. 
ii) For all n, dim Rn+11R,,<1, equality holding if n is large. 

Proof. Let A, B E R be the given operators of relatively prime degree. If 
deg A = a, calculate the term of degree a + n 1 in DA — AD and we find that if 
D= an(t)(d I dt)n + (lower terms), then a • a'n(t), 0, hence an(t) is a constant. Thus 
dim Rn+1/R„<1. The monomials A93.1  give us operators of arbitrary sufficiently 
large degree. 

Introduce the graded ring : 

a= E R„. 
n=0 

Then as in § 1, we have : 

Corollary. R is a finite k[A]-module. .1 is a finite k[e, A]-module where 
e E .1, represents the operator 1, A E .1„ represents A. Hence R and 3 are finitely 
generated integral domains over k of transcendence degree 1 and 2 respectively. 

We now define 

X=Proj (a). 

The affine open e #0 is given by : 

(open subset\ = Spec im  r 1 
( 3 e+0 	 0 

R, 
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and the affine open A#0 is given by : 

(open subset \ = spec (A- 	\  

\ A #0 	 L A ioi 

Spec  {ring of fractions C I A", deg C< ka}. 

As in § 1, if C = A113.1  has degree Ica-1, then the completion of this last ring in the 
e-adic topology is just k[[z]], z being the local coordinate corresponding to C Ak 
So e=0 consists in one smooth k-rational point P, and the sheaf 0,(1) is just ,(P). 

Next, let M denote the big ring k[[t]][d/dt], but considered now as a module 
over various rings by left and right multiplication. Define : 

Mn M deg D <n} 

932=-C)Mn. 
n=o 

We consider M as a k[[t]]OkR-module by letting 101] act by left-multiplication and 
R by right multiplication. Similarly, we consider Ti as a k[[t]]OkM-module. It 
is immediate that these modules are finitely generated : let 	Ti be correspond- 
ing sheaf over X x kk[[t]]. We have canonical maps : 

o: Mn 	x ,1011, g"*(n))=-- r X 	* (nP)). 

Let sn  be the image of (d I dt)n . For n>>0, this is an isomorphism and 1-1'(.9*(nP)) 
= (0). For each n, s n  generates „* (n) 1 . -"*(n —1). Hence by descending induc-
tion on n, On  is an isomorphism for all n >0 and 1-11(3F*(nP)),  (0). Also, by the 
Hilbert polynomial, ..F* is a rank 1 sheaf. 

Next, consider (d I dt)left-mult.  gt.-,9X[1]. It induces a map 

: 	—>,*(P) 

and from the identities 

( 	
right 	) • Dright=D 	• (  d  

left 	 dt)left 

) • a(t)left —  Wieft+ a(t)lef t 
•
( 	d   ) left 	 at 1eft 

( 	right 
(operator from Ti  to Ti),  

dd  t left 	at ) 	' 

A right = Cright  • ( d 	+ (lower order operator) 
dt right 

we deduce that V satisfies : 

ddt 
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aa  
P(as)= 	• s + a • F(s) 

at 

F(s),  + (section of g"*). 
z 

We are now essentially back where we started : I claim that any pair (..F*, 17) with 
these properties is constructed as a deformation of "" on X as in the beginning of 
this section. We omit this verification. 

Extensions of this Dictionary to rank d sheaves g" and commutative rings R 
in which all operators have degrees divisible by d can be made. However an addi-
tional complication arises from the possibility that the sheaf ,F may be unstable. 
We have only worked out the "generic case" where the bundles involved are all 
stable, and, moreover, have not characterized the rings of this generic type. How-
ever we can give a procedure for constructing certain rings of commuting operators 
from vector bundles. We need some definitions : let X be a curve over k (char 
k=0), and assume for simplicity that X is smooth, and irreducible of genus g>0. 
Consider the set of all stable rank r bundles with parabolic structure at P: i.e., 

Eo cEi c • • • cEr=E0(P) 

X(Ez)==i 
Ei  stable locally free of rank r for all i, meaning 
for all non-zero subsheaves 

< 	rkF  X(Ei). 

The set of all these forms a smooth quasi-projective moduli space yr of dimension 
r2(g —1) +1+ r(r —1)/ 2. To each point {E*} e V', we may associate an infinite 
flag of bundles by requiring 

Ei„=Ei(P), 	all i e Z. 

Let 

Endk (E*) 

be the sheaf which is just End (E0) on X —P where, near P, the endomorphism 2 is 
required to satisfy 

2(Ei)cEi,k. 

Then it is well known that the tangent bundle Tv  can be identified canonically via : 

T ,I,.}  I-P(X, End° (E*)). 
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Look at the exact sequence : 

0-,End° (E*)—>End' (E*)—>rd Horn (  E,  Ek+i  )_>0.  
Ek 

Lemma. IP (End' (E*))=k. 

Proof. In fact, take any 

Eolx-p —>Eolx-p 

which extends to P so that A(Ek)CEk+ 1, all k. If A(Ek)cEk  for some k, then since 

Ek  is stable, 	a • id., some a e k. If not, then in a neighborhood UCX of P, 
choose 

el  E F(U,E,+1)—F(U,E,)• 

Then e„ ,le„ • • • , 	will have non-zero image in the quotients E_„1/E,, 
E_,„2/E,+ 1, • • , E° /E_ l, hence will give a basis of EolEo(—P). Thus they are a 
basis of E, in some smaller Uic U. Likewise, if z is a local coordinate at P, then 
(1/ z)e„ Ae„ • • , 27'e, are a basis of E, near P; so in terms of this basis, A is given by 
a matrix 

A= 

0 
0 
0 

al / z 

1 
0 
0 
a2  

0 • 
1 	•• 
0 
a,• 

• • 0 
• • 0 
• • 	1 
• • a,. 

ai  E r(U,,ax). 

Since 2(Edct Eo, al(P) 0. 
Now det (A) is a rational function on X with poles only at P. Then the above 

	

shows that it has a simple pole at P, and this is impossible since g>0. 	Q.E.D. 

Now taking cohomology, we find : 

0—:-(3 Horn (  Ek   Ek+1 	,{"-4111  (End' (E*))-40. 
k=0 	Ek _i  Ek 

Globally, this defines r sub-line bundles L, C Tv, hence a rank r distribution : 

r-1 e Li cTv. 
i=i 

Now define : 

Data A' (smooth stable case): 
a) X a complete smooth curve over k, 
b) PeXa k-rational point, 
c)q5 : Spec k[[t]]--->Vr a morphism such that 



Algebro-geometric construction 	 137 

9.5(alao€ (:), Li  
i=i 

(alat)1,_. 0 ( 	L,) 	for any 0<k<r —1 
k omitted 

0(0) E (open set where h°(E0)=. hi(E,),  0). 

Data B'. Commutative subrings RCkatillc I dt] such that rl deg C, all C E R 

and 3 A, B E R of form 

d  
A = ao(t)( 

 dt /

n
+ • • • an(t) 

B = bo(t)( 
 d  )- 

dt 	
-I- • • • + bni(t) 

where (n,m),r, ao(0)#0, ba(0)#0, modulo 

R—u(t)0Rou(t)-i, 	u(0)#0. 

We claim merely that every piece of Data A' defines a piece of Data B'. To 
see this, let 0 define the family of vector bundles with parabolic structure {Ek} over 
X x Spec k[[t]]. Let ea  be a basis of Eo lu,, where {U„} is a sufficiently fine covering 
of X x Spec k[[t]] and assume that if P E U„, then 

e„,, 	e,,, 

z 	z 

is a basis of Ei 	0<i<r. Let 

ec,= A „p • e 

on U„ n up. Then 

g.5(a/at) E H1(X x Spec k[[t]], End°  (E,)) 

is given by the 1-co-cycle : 

aA 
A-  "P  ,rt at 

and the assumption that this lies in @Li  means that it dies in H' (End'), i.e., 

(*) 
A _, aA 	 A.;p1D,r Ar,p _D,,  
'ft  at 

D„ E T(U„, End' (E*)). 

Note that if P (1,,,D„ is a matrix of regular functions and if P E U„, D,, has the form 
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a12 	ai,r_i 

	

a22 	• • • 	a2,r-1 

	

„
a32 	• • • 	a3, r -1 

Zar2 • • :-.N • ar,r-1 

a3,7 

arr 

Then define 17 by Pe„,-Di„: (*) shows that 17 is a global differential operator and 

(**) shows that 17(Ek)c Ek +1. Moreover, note that an  (P)#0, • • • , ar,r-1(1))# 0, 

a,,r(P) #0. For if one of these were zero, then 930 mit =0  would die already in H1  
of End' (E*)11End (Ek) and hence .2.5(a lat) It = o  would lie in OL, (k omitted) contrary 
to assumption. Therefore, the polar part of 17 : 

q-1 	 r-1 
P: 	Ek  / 	Ek-1-1/Ek 

k=0 	 k=0 

is an isomorphism. 
Now choose a generator so  of I' (X x Spec k[[t]], E1). By the 3rd  assumption 

on 0, so  generates EilEo. Define sn  e Ivo by 

sn=l7nso. 

Then Isnl are a k[[t]]-basis of r ((x —P) x Spec k[[t]], Eo), hence the ring R is defined 
as before via : 

ya e r(X—P, ex), if 

a • so= E ai(t) • si# (E, ai(Onso, 

then let 

D(a)= E ai(t)( 6dit Y 

and let 

R = Image (D). 

In the case where r= 1, Vr reduces to the Jacobian and 0 reduces to a 1-
parameter group on the Jacobian. Interestingly enough, if r> 1, the distribution 
(:),L1  is contained in the tangent space to the fibres of the map 

: V--(Jacobian) 

E*1-+ArEo, 

hence the curve 0 is a curve on one of the rational varieties ir-'(pt.). Thus whereas 
an explicit description of the operators in the rings R may be expected to involve 



d Ds(a)=[(Ds(b)uk)+,Ds(a)], all a E R. (10 
ds 
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the theta function when r=1, the operators must be very different (perhaps more 
elementary?) when r>1. The differential geometry of the highly non-integrable 
distribution OLi  on V has not yet been studied as far as I know. 

Suppose r=1, X is smooth and k=C. As in the difference operator case, we 
may strengthen the hypothesis 111()=.0 as follows : 

Let 0 : 	(X) be the 1-parameter group given by the line bundles ettz 

defined above. 
Let I c Picg-1  (X) be the closure in the complex topology of the locus of points 

+0(t), t E R. 

Assume 

zne=0. 

In this case, it is to be expected that the coefficients of the differential operators 
that arise are almost periodic functions of t. On the other hand, if r=1, k=C 

and X is rational with double points, these coefficients should be rational functions 
of exponential functions eai t  ; and if X is unicursal, these coefficients should be ra-
tional functions of t. 

The most interesting aspect of the dictionary, however, is its effect on the 
Jacobian flows. Let k=C and consider the general Data A',Data B' mapping (or 
for singular curves X, we may consider the Data A—*Data B mapping). For every 
invertible sheaf L, L acts on Vr by E,,--*E,()L, hence it acts on the set of all pos-
sible 0. As in § 1, this means that the tangent space M91) to Pic° (X) acts as a 
space of commuting vector fields on the manifold of all possible Data A"s. These 
vector fields are very beautiful when expressed in terms of Data B'. The result is 
this : let RCC[[t]][d I dt] be an instance of Data B'. Regard R as a fixed abstract 
ring, but consider deformations of its embedding in C[[t]][d/dt] : 

Ds : R--,C[[t]][ d  
dt 

Fix one element b e R and some />1 ; let k =order Ds(b). We shall define, in a 
minute, for every ordinary differential operator D of order k whose leading coefficient 
a(t)(dI dt)k satisfies a(0) 0, an approximate (//k)th power (Dlik), of D. Then the 
flows in Data B' are defined by the differential equation of Lax type*: 

What is (Disk)+? We may introduce a formal symbol (d I dt)-i subject to the 
commutation relations : 

* I am told that this description of the Jacobian flows has been discovered also by 
Gel'fand and collaborators. 
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da  (di dt)-' • a = a • (d I dt)-1 —(d dt)-1  • 	 (d I dt)-1, 
dt 

or, solving inductively : 

d 	2 (_1),  dka  /  d  
dt 1 	k=0 	dtk 	dt 

We get this way a very large non-commutative ring of formal operators whose ele-
ments we write : 

+lc 	d D= E ai(t)( 
 dt

) , 	ai(t) E C[M]. 
1=-0. 

If the ai  are replaced by Ce functions of t, this may be interpreted as the ring of 
pseudo-differential operators in t mod the ideal of C--integral operators. Let PsD {t} 
denote our formal ring. Then we have the following lemma : 

Lemma. Let D E Cl[t]lid I dtl, I 	ao(t)(d I dt)'n  + • • • + an(t), ao(0) O. Then, 
up to an nth  root of 1, D has a unique nth  root /Yin  E PsD {t}. Moreover the com-
mutator subring ZD  of D in PsD {t} is the commutative ring of operators: 

a.Diin, 	ai  E C. 

Proof. The main point is the calculation : 

[D, c(t)(  d
t 	 d ) 

	d
t 
 y+-+ lower terms. 

d  

From this it follows by easy induction that ZD  has, mod scalars and lower order 
terms, a unique element of each degree m E Z, and that it has the form ao(t)'n/n(d/dt)'n 
+ (lower order terms). If E E ZF  has degree 1 and E' E ZD  has degree —1, it fol- 
lows that E • E'=c 	deg N <0, c E C, C#0. Therefore 

E-i=E' • 1  -(2 (--i)iNi /C) E ZD, c i=0 

hence, 

ZD {ring of Laurent series E ciEi in E}, 

hence " = " holds here because each side has one new element in each degree. Thus 
ZD  is commutative. Finally, D itself is in ZD  so 

+n 
D= E ciEi, 	Ci  E C, C„#0, 

i=-00 
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and, in a ring of Laurent series, such an element has a unique nth root (up to a 
root of unity): 

D=cin•E•(1+ 	Cn-1 E-1+  Cn-2  E-2+  .) 1/n 

where the last term can be expanded by the binomial theorem. 	Q.E.D. 

Definition. For all D as above, set 

Dkin___(DkIn)± +(pk/1_ 

where (D"), c C[[t]][d/dt], and (Dkin)_ c PsD {t} has negative degree. 

To prove equation (E1), we first extend the isomorphism 

T (X — P, 0 x)-->RCCUtll{ clt] 

al-->D(a) 

to an isomorphism : 

PsD {t} 

def 

fraction field 
of ep,x 

To do this, for all k, let 

Ek=E ke0 p x® Cat]l) 

and note that V extends to an isomorphism : 

Ek —>Ek+1* 

Then define 

by 

and note that for all k : 

S_k=17-kS0 

k-1 
Ek==- {module of elements E ai(t) • s 11 . 
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In particular, for all a e Kp,x, if a has a k-fold pole at P, then aso  E Ek +„ so 

E ai(t)r)so. 

D(a)= 	ai(t)(  d  y 
 E PsD 

dt 

With this preparation, we can easily check (q) : 
a) describe H1(0 x) by the acyclic resolutions : 

0—>0 	)1(nP)--0 x(nP) 1 0 ,—)0, 	n> 0, 

giving 

coker 11-f(0/(nP))--> 	°x(nP)  } 6, 

op,i+r(x—P, 0,y) 

Then c c 4,x  defines a tangent vector to Pic° (X) described by an invertible sheaf 
L on X X cC[e] Re) by : 

— 
{
02(C)cC[e] on X —P, over Spec i5p,x 
glued by mult. by 1 +Ec. 

b) Via L, we may deform E*  to E*(:),xL over X x Spec C[[t, Ell / (e2), and we 

may extend 17 to 

17  : 	 4-10„,1L 

by (a0b)=(7a)(8)b, for any section b of L over X x Spec C[s], i.e., b not depend-

ing on t. Moreover, we may lift so  e P(X®C[[t]], E1) to a section s: of E1(8),1I, 

given by 

so lx_p=(so +64) e r((x—P) X CD, Ell I (69, E1) 	via L lx_p 

so 	= (so + esD E E1OC[6]/(62) 	via 	x  , p 

where 

(so  + esD= (1 + Ec)(so + EsD 

Or 

aSo= 

Set 

so"=cso+ . 
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c) But we may write 

k 

cs0= E 
1= - 

If we define 

E ci(osi  
i=-00  

so = — E ci(osi  
i=0 

then s:=(,s, +e4, so+ esio') gives the required lifting of the section so. Define 

sP = Fie . 
d) To determine the change in the differential operators D(a), a E F(X —P, 

we must solve 

k 

as =E (ai(t)+Edi(t))st 
i=0 

Expanding this over X —P, it says : 

a4= E aat)Fiso+ E ai(t)17i4. 
1=0 	 i=0 

a4= —( E ci(t)17i)(aso) 
_o 

— 
.1=0 

c,(t)17.1)( 
1
i ai(t)17i)s, 

E ai(t)I7i4=- — (E ai(t)17)(E cjwri)so. i-0 	 i=0 	j=0 

Thus, if we set 

( * ) 	 E ai(t)17i =FE ai(t)ri , E 
1.0 	1=0 	j =0 

we have a solution (the higher degree terms in the commutator are zero because 

E/5= _,ci(ovi commutes with EL, ai(t)171). 
e) But 

1 
cj(t)( 

 dt 
d  )1  =D(c)+, 

-0  

But 

while 

k 

the differential operator part of the pseudo-differential operator assigned to c. If 

we choose b e 	—P, Ox) with an h-fold pole at P and let c=-bk/h, then 
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ci(t)( 
dt 

y 
—(1)(b)")+, 

.7 = 0   

so (*) reads : 

de 
d D(a)=[D(a),(D(b)")+] 

as required. 

To see the connection of the general theory with the Korteweg-deVries equa- 
tion, as promised in the title, we take D(a)=D(b) to be the second order operator 

D--( 	)2 
dt 

 +a(t), 
/ 

and take k=3, h=2. Then one can solve mechanically for D1/2, finding : 

D112,(d 	a(t)  (  d 	a'(t)  (  d  )-2
+ 

a"(t)—a(t)2   (  d  
dt I 	2 \ dt I 	4 \ dt 	8 	\ dt 

6a(t)• a'  1(t6)—a"'(t)(  ddt   14 +  . . . 

whence 

d  V +  3a(t)  (d  d 	3a/(t) 	a"(t)+3a(t)2   (  d D3 / 2
=(   

+ • • • 
dt / 	2 \ dt / 	4 	8 	k dt 

and 

[D, (D3")+l= --10"/(t)d- 6a(t) . a'(t)). 

Therefore, if 

D,=(d
2 

dt 	
+a(s, t), 

the Jacobian flow is given by : 

as 	1  (  a3a   +6a.  as  
as 	4 at, 	at 

which, (up to coefficients which can be normalized away) is the Kortweg-de Vries 
equation. 

Now whenever X is a hyperelliptic curve and P E X is a Weierstrass point, then 
there is a function a on X which a double pole at P only. Then with suitable 
normalization : 
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y
D(a)—(  d  

dt 	
ao(t). 

Thus if we follow a Jacobian flow on Pic (X), we get a 1-parameter family of 
operators : 

	

yD s(a), dd  t 	ao(s , t) 

where a, satisfies the Korteweg-de Vries equation. For smooth X, these solutions 
were discovered by McKean and van Moerbecke [9] and others ; for singular X of 
type 

y2 ___ x f (x)2 

these appear to be the n-soliton solutions of Kay and Moses [6] ; and for a unicursal 
X of type 

y2 x2n +1 

these appear to be the rational solutions of Airault, McKean and Moser [1]. These 
connections have not yet been investigated in detail. (see Added in proof) 

§ 3. Field operator case (Drinfeld) 

As in the introduction, let k be a field, a e Aut (k) of infinite order, k, the fixed 
field. Generalizing the dictionary in the introduction, consider : 

Data A'. a) X, a reduced and irreducible complete curve over lc,. Let X= 
X,x kok: we assume this is reduced* and irreducible. 

b) Po  e X, a regular closed point. Let P, Po x kok c X . 
c) A torsion-free sheaf 	on X such that 

	

h°(..)= hl 	=0. 

d) A maximal flag of subsheaves: 

• 

where length ( k+1/)= 1  

e) A homomorphism of sheaves 

* As pointed out to me by J. Tate, "X reduced" is automatic because whenever ko  is 
the fixed field of some e, k is separable over ko. (To see this, suppose on the contrary there 
were x1  , • • • , xn, E kovP which are linearly independent over ko  but dependent over k: 
+ • • • -Fanx.=0, a0  E k. Assume n is minimal too. Then zi-Faa2-x2+ • • • +aan •xn,=-0 so 
(oat —a2)x2+ • • • +(aan —an)x.=0, so either x2 , • • • ,xn  are also dependent or aak=ak, all k, hence 
ak  E /co. Both cases are impossible.) 
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a: (1-xoXa)*gix-p—>g-lx-p 

on X —P, which is not surjective, such that, on X, a carries .fix 	k-Fi• Here 
a: Spec 1c4---Spec k is induced by a: k--4, so that (lio xa)*." is a sheaf on X con-
jugate to g" via a. 

Data B'. A commutative subring Rckfal, with Rko  and Rn k = ko, modulo 
the identification: 

R—aRa-1, 	a e k*. 

We claim these 2 sorts of Data are equivalent as before. Before proving this, 
however, we want to prove a remarkable observation of Drinfeld—that in Data A', 
the assumption h°(,)=Ii(.F) =0 follows from the a priori weaker assumption that 
x(F)=0. To see this, first define .97„ for all n E Z by requiring 

g-ni-d=g-n(P). 

Note that x(•-„),n.  Since  g-ncg-n+i, h°(.- n)<11% n+i) and h1  CF >111(g n+i). 
Let no  be the smallest n such that h°(. )*0 and let so  e r(g - no). Certainly no<1 
because h°(g-1)>x(g-1)=1. Consider the maps 

a : (12(0 X 

Define inductively sections 

sn  E r(g".+.0) 
by 

sn= a((l x0  X arsn_i). 

By assumptions e, since x(g-„,1),x((1,0  x 0.)*".„) +1, /(coker a)=1 and alx_p iS 
not surjective, a must be surjective at P. Thus 

g-n+1=g-n a((l x0  x a)*.„). 

From this it follows also that intersecting in .F„,, : 

ce((lx0  X arg-n_i)--= 	fl cy((ixo  X arg•n). 

Therefore the sequence of sections s„ satisfies the implications : 

	

S, E P(.Fn+no-i)(X(1x0 X0')*  sn_i G RF 	fl n ce(lx0  arg-n+ no-1) 

E r(•Fn+no-2)• 

Since so Rgno-i),  it follows that for all n, sin  r(. -n+ no- 1)• But therefore the 
sections {so, si, • • • , sin} are linearly independent. Thus 



Algebro-geometric construction 	 147 

n+1<h°(.F 9Z 7t0) 

- X(. n+ no) 
	

if n>0 

- n no. 

Thus no>1. Putting this together, n0=1, i.e., h'(..F0)=-- 0 as asserted. 
Now to go from Data A' to Data B', construct sn  E TI•Fn+1)  as above. Notice 

that 171(F„)<h1(.F0)=0 if n>0 so by the argument just given, {s0, • • • , sn} is a 
basis of 11(, n+,), all n> O. Therefore Isnlno is a basis of F(X —P, g"). Now let 
R,r(Xo — P0, 6,0) and consider the action of R on I' (X —P, 	This is given 
by : 

f • so= E an(D•sn, 

for all f e R, and suitable an(f) e k. Define a map from R to KO by 

N 

anWon. 
n=0 

As in the previous cases, it is easy to see that this is an injective homomorphism 
and the image is an example of Data B'. 

Concerning "eigenvalues" of the operators R c klub the corresponding problem 
is to look for solutions in some extension field K k of equations of the form 

E a • • aie= 0, 
i=0 

We have the following result : 

ai  E k. 

Proposition. Let Data (X„ P0,1.9 a) define Rc Ka} as above. Let K k 
be a field and a: 	an extension of a to K. Let x0  E X0 —P0  be a closed point 
with ideal mxo. Then there is an isomorphism between 

a) the ko-vector space of e E K such that E a,a1e=0, all E aiai E R cor-
responding to functions a E mx0  
and 

b) Hom(k ,o)  (F1m,° •,F,K). 

Proof. Since r(X—P,,F)=C%-_, ks„ is a free k{a}-module with basis s0, 

Hom(,,,) 	I mxo 	(k, o)-maps 2: Rx—P, 

with mxo  • F(X —P, ,F)c Ker 2 

elements E K killed by m.ro. 	Q.E.D. 

To go backwards, start from R. Define 
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Rn={x E RI deg x<n} 

C)R „ 
n=0 

X,=Proj 

Note that R is an integral domain and xi-deg x is a valuation on R. Let s be the 

g.c.d. of the values {deg x}, x e R. For any elements A1, A2  E R„, write them : 

Ai= a,o.ks 

Using the commutativity of R, it follows that 

aqui' a2)=- a1/ a2. 

Let k2  c k be the fixed field of us : then k2  is a Galois extension of k, with group 

Z/sZ. Let k,ck, be the subfield generated by the ratios ai l a,. Then s= d • r, and 

k1  will be Galois of degree r, for some factorization of s. In particular, for all n: 

dimk,(R( n+nsIR„„)<r 

with equality for n large. Now let e E MI  represent 1 and take some non-constant 
operator A E gr,, with deg A =as. Then as before we see that d is a finite kde, A]- 
module, hence it is a finitely generated ko-algebra as well as an integral domain. 
Thus X, is a reduced and irreducible curve proper over Spec k,. The affine open 

set e 0 is just : 

(open subset Spec M[-1  
e#0 	 elo 

Spec R 

and the affine open set A#0 is just : 

(open subset) = Spec m[ J A  _ 0  

\ A#0 I 

Spec {ring of fractions 
CI A k, deg C< kcal .  

Since k, is algebraically closed in R, it follows that X 	
def 
	X, X ko  k is also irreduci- 

ble, and, as remarked in the footnote earlier, k is separable over /co  so X is also 
reduced. On the other hand the Cartier divisor e =0 on X, is given by : 

V (e) Proj (A` I e .1) 

=Proj (c) R„,R7,_) 
n=0 

=Proj (subring of k1[t] of finite codim , deg t=s) 

=Spec k1. 

+ (lower terms). 
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Since this is reduced and irreducible, V(e) consists in one regular point P0, with 
residue field k1. 

For the next step, we rename the ring kful as M and regard it as a module 
over k ko  R: namely, let k act by left multiplication and let R act by right multi-
plication. Moreover, let 

Mn={x E MI deg x<n} 

E=0 Mn n=0 

E[n] = WI with grading shifted by n (E[n]k— Win+k) 

,Fn+1=-9X[n] on X. 

It is easy to check thatJ2 is a finitely generated a-module (in fact, it is finitely 
generated over k[e, A]) , so all the sheaves .F7, are coherent. Multiplication by 
e e g defines a degree-preserving injection : 

e : 9)2[n],9)ffn + 1] 

hence an injection 

347n+1 -  >.-6"n+2, 

which reduces to an isomorphism on the open set e# 0, i.e., on X —P. Moreover, 
coker (e) is a graded module, all of whose graded pieces are isomorphic to k, so 
""n1-2/.Fn+1 is a sheaf isomorphic to k, hence has length 1. To check ..Fn _s= 
.-n(—P), you have to be careful because Fn(—P) does not correspond to : 

(Graded ideal of P) • (Graded module of .-"„). 

This is because g is not generated by elements of degree 1 so X does not carry an 
invertible sheaf 0(1) ! You have to take a sufficiently large, sufficiently divisible 1. 
Then working with degrees divisible by 1: 

5- n( — P)=--(graded ideal of P) • (graded module of 

= [ () Im (R,,,,_,--›/?7„,)1 • [C) Mn+nizi . 
m-1 	 n-0 

But if sal, />0, then Ri _ 1=-R1 _ s  and Ri_s - Mk=All-s+k for all k»0. Thus 

,Fn(—P), [0 Im (Rnii,—*Rm )]•[0 M 
m=0 

-=[
=[

oo  
0 R I—S •  Mn+(n-1)/]—  
m=0 

10 Mn-Fml-s m=0 
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( *) 

Now using the dictionary of FAC, we have : 

- n+1.} n>0. 

H'(X, 	+1) = (0) 

Moreover, comparing n and (n —1), if (*) holds for n and n>0, then we have : 

g- n+1./ 0->FP(Y,...F.n)->HV 5 ni-1)->HV, 

0 	 Mn _, 	> Mn 	> k(an)—>0. 

Then since/.-C"n -= (93Z[n] I Tan — 1])-  and since an E IR[n]0  generates this -  

module, it follows that 19 is an isomorphism. Thus the diagram shows that (*) holds 
for n —I also. Continuing down, it follows eventually that h°(,0)=1/1(,F0).= O. 
A Corollary of this is that g", is torsion free. Note incidentally that P consists of 
r distinct regular points, so the sheaves n must be locally free of rank d= s I r in 
a neighborhood of P. Finally, left multiplication by a gives a degree preserving 
map 

E[n],932[n+1] 

which is linear with respect to R, a-semi-linear with respect to k. Thus it defines 
a homomorphism a as required. Over the affine piece X — P, all the 	reduce 

to /17/ and a is again left multiplication by a. Thus its cokernel is M/aM, which 
is just the sheaf k sitting in fact at the point of Spec R 0,0  k defined by the ideal 

Ker [R Oko  k±->k] 

0(a, -I- al( + • • • + a nan)Ob = a ob 

The most interesting case of this dictionary is when k0  is the finite field Fq, 
kDk0  is any extension, and a(x)=x4. In this case, Data A' is essentially what 
Drinfeld calls a "Shtuka" and Data B' is exactly what he calls an "Elliptic module" 
[2]. The point is that if (X o, P0, 	a) is an example of Data A', then the whole 
tower {34'.-7,} is derived simply from the diagram: 

(Ix°  X a)* .F0  

( * ) 

((3,  given inclusion). In fact, we saw that 

auxo  x 	x ay%Fo  n 	(intersection in 3-47,) 
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Cr(lio  a)* _2=--Ce(11,0 	n 
	

(intersection in g-i). 

etc. 

Now Drinfeld defines quite generally a Shtuka to be a pair of vector bundles g.„ 5, 
on X, plus a diagram like (*) such that l(coker 	l(coker p).1. The support of 
coker (a) is called the zero of the shtuka and the support of coker (18) is called the 
pole. The shtuka arising from towers {g-7,} are easily seen to be characterized by 
2 properties : 

1) Let P= {the pole and all its conjugates over Fa. Then the zero is disjoint 
from P. 

2) Restricted to P, a' • p defines a q-Lsemi-linear map of the Fq-vector space 
g-o /mp.F0  into itself. This map should be nilpotent. 

The purpose of the twin tools of elliptic modules and shtuka in Drinfeld's 
papers is to set up a non-abelian reciprocity law, i.e., prove Langland's conjecture 
for the field Fq(X0). I don't want to say anything about this except to indicate why, 
in the rank one case-Data A and B, the dictionary gives a new method of con-
structing explicitly the abelian extensions of the field Fq(Xo). Let us rephrase the 
idea of Data A once again, assuming now that g-  is an invertible sheaf on X. Let 
Pic° (X0) be the jacobian of X„ considered as parametrizing invertible sheaves of 
degree 0. As usual, map the regular points (X0)„, of X°  to Pic° (X) by taking y to 
the point representing the sheaf OX(y —Po) : call this *. Let a : Pic° (X0)---4"le (X0) 
be the Fq-morphism induced by pull-back by a on sheaves : 	x ar,F. Fol- 
lowing Lang [8], we consider the diagram 

(Yo)reg---->Pic°  (X) 

11-6  
(X0)„,—>Pic° (X) 

where (Yo)reg  is the fibre product. Now note 

A k-valued point 	A pair (.F, x), .F an invertible sheaf () 
= on X of degre 0, x E X„g  such that 

y of Yreg 	 (1 —a)([5])=*(x) 

(A pair (,, x) where 
— ,97® (1,0  X a)* 	0 x  (x —Po).  

(

Associating the sheaf g =.F((g —1)Po) to 	we carry the identification further : 

A pair (g, x), g of degree g —1, x e X„g  such that).  
(1x0 x (r)*g _̂g(P0 —x) 

Thus (Yo)reg  is the scheme classifying all possible examples of Data A'. But Lang's 
geometric class field theory states that the curve Yo  is the maximal abelian covering 
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of X,, such that (1) it is unramified over (Xo)reg, (2) with certain bounds on the 
ramification over the singular points (these bounds getting as weak as you wish as 
the points get more singular) and (3) with no residue field extension over P,. The 
dictionary now states that (Yo)reg  is equally the scheme classifying all possible ex-
amples of Data B. But these are readily described by equations : write 

rao— Po,(9x0) -_- F,[zi, • • • ,z7,]1(fi, • • • , ft). 

Let Zi  have a pole of order ni  at Po. Then Data B is given by assigning : 

n  Zil--).A i= E ai jai 
J=0 

where Ai  e k{cr} satisfy 

Ai/1.7 =A jAi  

(*) 
	

k(111, • • • , A n)=0 

ai,„,#0. 

We may normalize this mod R aRa-1, e.g., by picking Z1, Z2  so that (n1, n2)=1 
and Zia / Z21(Po) =1, and then requiring 

a1,,,,=a2,„,=1. 

Then the equations (*), written out as equations in the aij  define a scheme over k„ 
which is precisely the affine piece of the abelian covering Y, over (X,)„g —P,. This 
is one of the simpler results in Drinfeld's extraordinary paper [2]. 

Appendix (added on Oct. 15, 1977) 

Professor E. Coddington has kindly given me references to 3 very beautiful 
papers of J. L. Burchnall and T. W. Chaundy, all entitled "Commutative Ordinary 
Differential Operators", which appeard in 

Proceedings London Mathematical Society 21 (1922), p. 420 
Proceedings Royal Society London (A), 118 (1928), p. 557 
Proceedings Royal Society London (A), 134 (1931), p. 471. 

It appears that virtually all the results described in § 2 are in fact due to them : 
in particular the correspondence given in the introduction between Data A and B 
for differential operators was established by them. Even more remarkably, they 
even recognized the fact that when the curve X has singularities, there are several 
classes of commutative rings of operators in Data B corresponding to which strata 
of the compactified Pic (X) 	lies in : see their 3rd paper where the case of the 
curve X given by xm,yn, (m, n)=1, is analyzed at length. In their papers, and 
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in a note by H. F. Baker following their 2nd paper, the explicit construction of 
these operators via theta-functions and related abelian functions is given in detail. 
The one point they do not explore is the infinitesimal deformation of a pair of com-
muting operators hence they were not led to a Lax equation or to the link with the 
Korteweg-deVries equation. Instead they discuss at length a procedure for relating 
2 rings R„ R2 cC[[t]][d I dt] namely via an auxiliary operator T such that : Ri o T= 
T 0 R2. It would seem that once this link is made, their work anticipates a large 
amount of the recent work on degenerate-spectrum Sturm-Liouville operators and 
exact solutions of the Korteweg-deVries equation. 

Added in proof. 1) Krichever's work had been anticipated in some nearly 
forgotten papers of Burchnall and Chaundy in the 20's—cf. Appendix. Also at 
this point I would like to thank D. Kajdan for introducing me to these ideas and 
sharing his many insights. 2) cf. H. McKean, Theta functions, Solitons, and 
Singular Curves, to appear. 
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