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STABILITY OF PROJECTIVE VARIETIES 1)
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Introduction

The most direct approach to the construction of moduli spaces of

algebraic varieties is via the theory of invariants : one describes the varieties

by some sort of numerical projective data, canonically up to the action of

some algebraic group, and then seeks to make thèse numbers canonical by

applying invariant polynomials to the data, or equivalently by forming a

quotient of the data by the group action. The main difficulty in this approach
is to prove that "enough invariants exist": their values on the projective
data must distinguish non-isomorphic varieties.

Take as an example the moduli space Jt
g

of curves of genus g 2 over

some algebraically closed field k. Given C, such a curve, we obtain by

choosing a basis B of r (C, (Q
x

c
)®

1

), an embedding $: C -> f^i-mg-D-i

x
) Lectures given at the "Institut des Hautes Etudes Scientifiques", Bures-sur-

Yvette (France), March-April 1976, under the sponsorship of the International Mathemat
icalUnion. Notes by lan Morrison,



= F N
. Let Fbe the Chow form of # (C) (cf. 1.16). Changing the basis B

subjects # (C) to a projective transformation and F to the corresponding
contragradient transformation. So if we could find "enough" polynomials I x

in the coefficients of F which are invariant under this action of SL (N+ 1)

then the image of the map given by Ch> (..., I x (F), ...) would be Ji
g

.

As of two years ago, this process could be carried out only when char k

= 0 and C was smooth; and moduli spaces in characteristic p had to be

constructed via the much more explicit theory of moduli of abelian varieties

(cf. [14] and [15]). Since then, however, two very nice things hâve been

proven:

a) W. Haboush [10] by making a systematic use of Steinberg représentations
has shown that ail reductive groups are geometrically reductive (cf. Remark
1.2. vi). This was independently shown for SL (n), by Processi and Formanek
[25], using the idea that the group ring of an infinité permutation group has

"radical" zéro: i.e. for each x e R, x / 0, there exists y e R such that xy
is not nilpotent. For a complète treatment of the new situation in charac

teristicp moduli problems see Seshadri [20].

b) D. Gieseker [9] using the concept of asymptotic stability (cf. 1.17) has

established the numerical criterion for stability (c
s

of 1.1) for surfaces of

gênerai type. Inspired by Gieseker's ideas, the author has extended this

method to the "stable" curves of Deligne and Mumford [6]. (Thèse are

curves C with dim H 1

(C, 0c)0

c ) =g, ordinary double points but no worse

singularities and no smooth rational components meeting the remainder
of the curve in fewer than three points; they are important because the most

natural compactification M
'

g
of Ji

g
is the moduli space for stable curves of

genus g.) The power of the ideas of Gieseker is by no means exhausted. It

looks like nice results may be possible for other surfaces, perhaps even for

singular surfaces and the technique suggests several nice problems: in

particular, it may lead to a proof of the surjectivity of the period map for K3

surfaces. The new ideas and results of thèse lectures are largely inspired by

Gieseker's results (cf. especially corollary 3.2 below).

My goal is to outline this method and its applications, especially to the

completed moduli spaces of curves Ji g , indicating open problems. The

field is moving ahead rapidly and may be greatly simplified in the near future.

We will work in gênerai over an arbitrary ground field k.



§1. Stable points of représentation, examples and Chow forms

For more détails on the notations, définitions and properties which

follow see Mumford [14], which we will call G.I.T. or Seshadri [20].

Fix k an algebraically closed field,

G a reductive algebraic group over k (i.e. G =

[semi-simple group x G" 1/fînite central subgroup),

V an /2-dimensional représentation of G,

r (= V

There are three possibilités for x whose équivalent formulations are summa
rizedin table 1.1 below.

1.1.



1.2. Remarks, i) Recall that a 1-PS (one parameter subgroup) AofG
is just a homomorphism X:Gm -» G. Such A can always be diagonalized in a

suitable basis:

If in this basis x= (x l 5..., x n
), the set of weights of x with respect to X

is the set of r t for which x,- 0.

ii) Unstable is not the opposite of stable, but of semi-stable. We will use

non-stable as the opposite of stable.

iii) The important part of stability is the condition: OGO
G

(x) closed in V.

In virtually ail the cases that will interest us the finiteness of stab (x) will
be automatic (but cf. the remark following 1.15).

iv) A point x is stable if it merely has négative weights with respect to

every non-trivial 1-PS X, for then it also has positive weights with respect
to X, namely, its négative weights with respect to A" 1

.

v) The proofs of cc
u

=> a
u

=> b
u

and of bb
s

=> # s
=> c

s are obvious : for

example, if A is a 1-PS for which ail weights of x are positive, then A (t) x -> 0

at t -* 0; i.e. c
u

=> a
u .

vi) The proofs of a
s

=> b
s

and b
u

=> a
u

are achieved by réduction to the

spécial case called géométrie reducivity of G. A group G is called geomet
ricallyreductive if

a) whenever VoisV

o
is an invariant codimension-1 subspace of a vector space V

in which G is represented, there exists an n for which the codimension-1

invariant subspace V° • Symm II ~IF~ 1

F c Symm"F has an invariant
1-dimensional complément.
But notice that this is the same as saying that

b) whenever x oisa (/-invariant point, then there exists a G-invariant

polynomial / such that/(x) 0 and/(0) =0. (Just consider xasa
functional on the dual V and apply a) to its kernel there).

And b) is a spécial case of a
s

=> b
s . When char k = owe can take the poly

nomial/to be linear, for by complète reducibility the invariant subspace

generated by x is invariantly complemented. A simple example shows this

does not happen in char/?. Take p = 2, G = SL (2), V = the space of



symmetric bilinear functions on k 2

,
and xa non-degenerate skew-symmetric

forai (xeV because p = 2 !). Then x is SL (2)-invariant and there are no

G-invariant non-zero linear functionals on V. A quadratic / which does

work is the déterminant.

vii) The remaining implications c
s

=> a
s

and a
u

=> c
u are essentially

conséquences of the surjectivity of the natural map

where À is considered as a k ((/))-valued point of G by composition with

the canonical map

1.3. Let V
ss (resp. V

s
) dénote the Zariski-open cônes of semi-stable (resp.

stable) points. V— V
ss

is the Zariski-closed cône of unstable points. The

conditions b of 1.1 tell us that if we try to map P (X) to a projective space

by invariant polynomials, we can only hope to achieve a well-defined map

on P (V) ss
and an embedding on P (F) s . From the point of view of quotients

this can be expressed by:

Proposition 1.3. Let X= Proj k [V]
G

. Then there is a diagram

such that i) // x,yeF(V) s , n s (x) = n
s (y)o3g eG s.t. x=gy

ii) ifx,yeV(V) M9 n(x) = n(y) oO G
(x) nOG (y) nP (F) ss 0.

We now want to look at some examples to illustrate the application of
thèse ideas.

1.4. "Bad" actions. Using results of T. Kimura and M. Sato [1 1]
1

),

we can give a list of ail représentations of simple algebraic groups in charac

2
) Plus help given by J. Tits.



teristic0in which ail vectors are unstable. The point is that there are very
few such représentations.

1.5. Discriminant. If G is semi-simple and char& =0 then any

irreducible représentation V has the form V = F (G/B, L) for a suitable

line bundle L on G/B (B is a Borel subgroup of G). To a point x in V associate

the divisor H x on G/B which is the zéro set of the corresponding section.

Except in the extremely unusual case that the set of singular H
x

is of co
dimension> 1, there is an irreducible invariant polynomial ô, the discri
minant,such that

1) ô (x) = 0 o HYH
Y

is singular

2) V - (ô = 0) consists of semi-stable points

An interesting case is

Lemma 1.6. Let G=SL (n), V=Al (k n
). If Wckn is a subspace of

codimension l then let <£>
w dénote the natural map A2A

2 W® AA
l ~2~ 2

(k n
)

-> A
1

(k
n
). If 2<l<n—2ornis even I=2orn—2, then there is a

G-invariant ô such that S (x) = Ooxelm (sw) f or some W.

When I=2 and n = 2m + 1 we hâve seen that there are no invariants :

corresponding to thèse cases the Grassmanian of lines in P 2m in its Plùckei

embedding in projective space has the unusual property that the singulai

hyperplane sections are of codimension 2in the set of ail such sections

Question : if not every point of V is unstable, then is the set of singulai

hyperplane sections H x of codimension 1 ?



For /=2 and n even or /=3,n 8, one can check that xis unstabk

o ô (x) = 0, hence (5 générâtes the ring of invariants. It would be nice te

hâve a necessary and suffîcient condition for a 3-form to be unstable foi

higher n as well.

1.7. 0-Cycles. For G = SL (W), dim W= 2

F
n

= Symm"^)

= vector space of homogeneous polynomials /
of degree n on W,

P (F n
) = space of 0-cycles of n unordered points on

the projective Une P {W), the roots of an /

determining the cycle.

n

If /=/ = Z a i
xU ' i

y
i and is tne one-parameter subgroup given by

i = 0

f i-> (

_
)in thèse coordinates, then X (t)f =£ a^

n ~2* *"""*/. For/
\0 / i = o

to be stable, the weights (n~2i) associated to the non-zero coefficients of/
must lie on both sides of 0: i.e. if y n/2, neither x J nor y3y

3 divide/.

In fact, the stability of/is équivalent to the same condition with respect
to ail linear forms /: VXfify w/2.

Thus P (V n
)

s
= {0-cycles with no points of multiplicity n/2)

P (V n
)ss = {0-cycles with no points of multiplicity > nj2}

1.8. Remark. In the example above we can also prove that semi

stabilityis a purely topological character. I claim that if n is odd and / is

unstable then the action of G near /eP(FJ is bad: on ail open neigh
bourhoodsof the orbit of /, G acts non-properly and the orbit space is non-
Haussdorf. Let's see this for n = 7. Consider the following déformations
of a 7-point cycle.



(Subscripts indicate multiplicités)

At each intermediate stage the two cycles are projectively équivalent, but the

unstable limiting cycle in the right is clearly not équivalent to the limit on

the left. In fact, any pair of cycles with the multiplicities indicated on the

line / = 0 arise in this way as simultaneous limits of projectively équivalent

0-cycles. Moreover, there are cycles of the same type as the left hand limit
in any neighbourhood of the orbit of the right limit — just biïng a multiplicity
one point in towards the triple point; so the orbit space cannot be Hausdorff

near the right limit.

1.9. Curves. Hère G = SL(W), dim W= 3, V
n

= Symm" (W), as

before, and a point fe V
n

defines a plane curve of degree n. There is a very

simple way to décide the stability of/. Represent/as below by a triangle of

coefficients, T.



We can coordinatize this triangle by 3 coordinates i
x ,

i
y ,

i
z (the exponents

of x, y and z respectively) related by i
x

+ i
y

+ i
z

= n. The condition that

a line L with équation ai
x

+ hi
y

+ ci
z

= 0, (a, b, c) =£ (0, 0, 0), should

pass through the centre of this triangle is just a + b + c = 0; if L also

passes through a point with intégral coordinates then a, b and c can be

chosen intégral. It is now easy to check that the weights of the 1-PS

at/are just the values of the form definingL at the non-zero coefficients of/.
In suitable coordinates every 1-PS is of this form so:

/is unstable o in some coordinates, ail non-zero coefficients of /lie to

one side of some L

fis stable o for ail choices of coordinates and ail L,/has non-zero

(resp. semi-stable) coordinates on both sides of L (resp. / has non-zero
coordinates on both sides of L or has non-zero
coefficients on L).

Roughly speaking, a stable /can only hâve certain restricted singularities.
We summarize what happens for small n, showing the "worst" triangle T

for /with given singularities, and the associated L when/is not stable.

1.10. n =2: We can achieve the diagram below for a non-singular
quadric / by choosing coordinates so that (1, 0, 0) ef and z = 0 is the

tangent line there, so / is never stable. We cannot make the xz coefficient

of/zero without making / singular so/is always semi-stable; indeed, we

know / always has non-zero discriminant. A singular quadric always has a

diagram like that on the right: make (1, 0, 0) the double point. Henceforth,
we leave the checking of the diagrams to the reader.



1.11. n = 3: It is well known that in this case the ring of invariants is

generated by two invariants, A of degree 4 and B of degree 6. If we set

A= 27 A
3 + 4B 2

,
then up to a constant the classical /-invariant is just

A
3/A.3

/A . The possibilités are :



We remark that in this case, we hâve

and that the y-invariant is a true modulus. Note that from a moduli point

of view ail three semi-stable types are équivalent.

1.12. n = 4: There are already quite a few diagram types hère. Their

enumeration can be summarized by saying that / is unstable if and only

if/has a triple point or consists of a cubic and an inflectional tangent line;

fis stable if and only if/has only ordinary double points or ordinary cusps

(i.e. singularities with local équation y2y

2 =x3+ higher terms). The remaining

/'s with a tacnode (a double point with local équation jy
2 =x4 + higher

terms) are strictly semi-stable.

1.13. Remark. The fact that for n 4 curves with sufficiently tame

cusps are semi-stable (or even stable!) is a deflnite problem because

i) such curves do not appear in the good compactiflcation M g
of the

moduli space of non-singular curves of genus g. But

ii) if we wish to obtain a compactiflcation of Jt
g

as the quotient space of

some subset of P (V n
) by G, the natural candidate is P (V n

)
ss

; so thèse

curves must be let in.

For example, when n = 4, we hâve

Jtz is the moduli space for "stable" curves of genus 3: (see introduction).
Recall from Proposition 1.3 that P (VJJG is just the projectivization of
the full rings of invariants of P (F 4 ). The rational maps a and /? induced
by the top isomorphism enable us to make a topological comparison of
thèse two compactiflcations. Let's see geometrically how cuspidal curves in

P (Vdss prevent oc and /? from being continuous.
First ce: the diagram below shows on the left a déformation on M

'

3 with
limit in M and on the right the same déformation followed to its limit in

P (VJJG.



In the limit on the right, the value of the /-invariant of the shrinking elliptic
curve has been lostî So a blows up a point representing a curve C with a

cusp to the set of points representing joins of an arbitrary elliptic curve with

the desingularization C of C. a also blows up the point representing a double

conic to the family of ail hyperelliptic curves.
As for /?, look at the double pinching below:



Hère it is the manner in which the tangent spaces of the two branches hâve

been glued at the tacnodal point which has been lost in the limiting curve

on the left: this glueing corresponds on the left to the relative rate at which

the two pinches are made. Thus /? has blown up the point corresponding
to the double join of two elliptic curves to a family of tacnodal quartics.

A

1.14. Surfaces. Hère G= SL (W), dim W= 4 and V
n

= Symm" (W)

as before. The technique for determining stability hère is essentially that

given for curves in 1.9 except that one has a tetrahedron T of coefficients

and 1-PS's détermine central planes, L: and, of course, the computations
required to apply the technique are much more complicated (cf. the case

n = 4 below). For small n, the situation is summarized below.



1.15. Adjoint stability.

Proposition 1.15. Let G be any semi-simple group with Lie algebr a g.

Then Jeg is unstable <=> ad X is nilpotent.

Proof: (=>) From the formula ad (Ad g (x)) = Ad g o ad xo Adg
* it

is immédiate that the characteristic polynomial det (7/- ad x) is G-invariant,
hence that is coefficients are invariant functions. If x is unstable, thèse ail

vanish so adx is nilpotent.
(<=) If adx is nilpotent then the { exp t (x) | t g k } is a unipotent subgroup
of G which must be contained in the unipotent radical R

u (B) of some Borel

subgroup B of G. Fix a maximal torus T œ B, so B = R
u

.T. Then by the

structure theorem of semi-simple groups we can write g = t + / ]T g a
\

\a>o /

+/X flfl / where t= Lie (D and ( ô> Lie (*, (2*)). Let Xa be

\a<o y \a>o y

the character of T, which is associated to a = (oc,) (i.e. if w e T, y g g a

then Ad (w) (j>) = x a (^) j) 5
and let / be a linear functional on the group of

characters of T defining the given ordering: i.e.,

We can always choose / so that ail the c i are integers. If we deflne a 1-PS À: G
m

->- TbyÀ(o= (..., t
c

\ ...), then the weights of X with respect to X are

some subset of { / (a) | a > 0 }, hence are positive. Thus X is unstable.

Remark. There are no stable points. One can show that the regular

semi-simple éléments of g hâve closed orbits of maximal dimension but

their stabilizers will be their centralizers, i.e. maximal tori of G, and hence

far from fînite.

1.16. Chow form. The Chow form is the answer to the problem of

describing by an explicit set of numbers a gênerai subvariety V r c P n
.

In two cases, the problem has a very easy answer: a hypersurface has its

équation F and a linear space U has its Plûcker coordinates. The Chow

form is just a clever combination of thèse two spécial cases. Suppose V r

has degree d. There are two ways to proceed

i) If u= (u
t
) gPn write H

u
for the hyperplance ]T u i X i =0. One shows

that there is an irreducible polynomial <PVP

V such that



Moreover &v&
v

is multihomogeneous of degree din each of the sets of

variables (u
(

o
j \ ..., u

(

n
j) ), $ v

is unique up to a scalar, and $ v détermines V.

ii) If G= Grassmanian of LL n ~~ r ~ v
s in PMP

M and (9
G (1) is the ample line bundle

on G defined by its Plùcker embedding, then the set of L e G such that

Ln V7^o is the divisor D v of zeroes of some section if (9
G {d) and V

and D v détermine each other. (Unfortunately, D v
is almost always a

singular divisor.)

Thèse methods give the same resuit via the identification

Letting W d
be the d th graded pièce of W9W

9
the identification furnishes an

irreducible représentation

Thus, although we will usually consider the Chow form as a point of the

SL (n+l) représentation ® r+l Symm
d

(C n+l ) this form lies in the irreducible

pièce W d
and can be thought of as defining a divisor on the Grassmanian.

For more détails on Chow forms, see Samuel [17, Ch. 1 § 91.

1.17. Asymptotic stability. We will say that a variety V r cP" is

Chow stable or simply stable if its Chow form is stable for the natural
SL (n + l)- If L is an ample line bundle on V, we say that (V,L)
is asymptotically stable if

Attention : a stable variety need not be asymptotically stable (nor, of course,
vice versa). Indeed, one of the main goals of this exposition is to show that
the asymptotically stable curves are exactly the "stable" curves of Deligne
and Mumford, and that by using asymptotic stability we can construct MQM

Q

as a "quotient" moduli space for thèse curves.



§2. A CRITERION FOR $ X^r \subset P^n$ TO BE STABLE

If f(d) is an integer-valued function which is représentée! by a rational

polynomial of degree at most r in n for large n, we will dénote by n.l.c. (/)
(the normalized leading coefficient of /) the integer e for which f(n)

n
r

= e — + lower order ternis. (What r is to be taken, will always be clear
r !

from the context.)

Proposition 2.1
x

). (The "Hilbert-Hilbert-Samuel" Polynomial). Sup

poseX is a k-variety (not necessarily complète), L is an invertible sheaf

on X and J> a®x is an idéal sheaf such that Z= Supp (9
X \J is proper

over k. Then there is a polynomial P (n, m) of total degree r, such that,

for large m

Proof. We can compactify X and extend Lto a line bundle on this

compactification, without altering the validity of the theorem so we may
as well assume X proper over k. Let n : B -» X be the blow-up of X along

£ (i.e. B=Bj (X) = Proj {(9 X ® J ®J 2J
2

@ ...)) and let Ebe the excep
tionaldivisor on Bso that J>

.
(9

B = G {—E). The well-known theorems of

F.A.C. (Serre [18]) for the vanishing of higher cohomology in the relative

case imply that when m > 0:

0 7c
# (0(- = S m

ii) R%{(9{-mE)) = (0), i > 0

Now examine the exact séquence:

The Hilbert polynomial for % (L n
) certainly satisfies the conditions on P.

Moreover, in view of i) and ii) ; we hâve for m > 0:

so, a theorem of Snapper [5, 21] guarantees that this last Euler characteristic
is also a polynomial of the required type for large m and n. By the additivity
of y we are done.

This resuit and its géométrie interprétation are essentially due to C. P. Rama
nujam[16].



Définition 2.2. In the situation of Proposition 2.1, we dénote by e L {J>)

(the multiplicity of J measured via L) the integer n.l.c. (x {LL
n jJ n L n

)).

Examples, i) If J =0 and Xis complète, Pis the Hilbert polynomial
of L. ii) If Z is set-theoretically a point x then P is the Hilbert-Samuel

polynomial of ./ as an idéal of (9
XiX and £ (</) is its multiplicity there: in

particular, it is independent of L. Note that, in gênerai, e L («/) dépends on

the formai completion of X along Z and the pull-backs of J,L to this

formai completion.

2.3. Classical geometric interprétation. Let X r c P' 1 be a pro
jectivevariety, L=ox (1), and Abea subspace of T (P

n

, (1)). Define LAL
A

to be the linear subspace of P" given by s = 0, 616
1 g A. Define J>

A to be the

idéal sheaf generated by the sections seA, i.e. JJ r

A .Lis the subsheaf of L

generated by those sections and Z= Supp (® x l^ a) = XnLA is the set

of their base points.
If pp A

\ P" —Z^->P (yl) —Pm is the canonical projection, and nis the

blow-up of X along «/^ then there is a unique map making the following
diagram commute:

Moreover, because sections of (9
Fm (1) pull back to sections of/^.Lonl

and are blown-up to sections of L twisted by minus the exceptional divisor E,

(2.4)

Define p A (X), the image of Xby the projection p A , to be [cycle (q (£))] :

that is, q (B) with multiplicity equal to the degree of B over q (B) if thèse
hâve the same dimension and 0 otherwise. I claim

Proposition 2.5. e L Çf A ) = deg X- degp A (X).

Proof. If His the divisor class of a hyperplane section on X, then



By 2.4, qis defined by the linear System of divisors of the form n
1

(H) — E,

hence

Finally, from its définition

This proof brings out the geometry even more clearly. If H u ..., H
r

are generic hyperplanes in P r then

As the H i specialize to hyperplanes H/ of the form s = 0, s e A (remaining
otherwise generic) the points in this intersection specialize to either:

i) points outside Z: thèse points correspond to points in the intersection of

Im (q) with r generic hyperplanes on P", and each of thèse is the spécial
izationof deg q of the original points i.e. deg/?^ (X) points specialize
in this way

ii) points in Z: e L (J> a) measures the number of points which specialize
in this way.

For example, if X 1 cP2 is a curve of degree d, y = (0, 0, 1) is on X and

A= kX 0
+ kX u then \Z\ = {y}, p A (x 0 ,x v x 2 ) = (x 0 , xj and the

picture is:



Thusp A (X) = (aP
1

), where ais the degree of the covering/?; a generic line

meets X in d points and as this line specializes to a non-tangent line through

yit meets Xatjon mult
y (X) = e L (£ A

) points and meets X away from jin

d-eL (£ A ) =a points.
The following technical facts will be useful in calculating the the in

variants e L (£).

Proposition 2.6. a) If (in the situation of Proposition 2.1) L and £.L

are generated by their sections then h° (L n /J n L n
) -eL {£) - = O (n

r " 1

).

(Thus we can calculate e L (£) from the dimensions of spaces of sections.)

b) Suppose, in addition, we are given a diagram

where f is proper, andafinite dimensional vector space WczF {X,J>L) which

ï) générâtes J>
.

L
J ° A

ii) defines a closed immersion X— X o c_> P (W)

Then the dimensions of the kernel and cokernel of the map

{T (X, L")M-submodule generated by the image of W® n
-» r (JL

n IJ n L n )

are both O^' 1

).

Proof The idea in a) is to show that h
1

{L n \J n
. L n

) = Oiri" 1

),

i 1
. We first remark that is a compactification ïofl over which L

extends to a line bundle L such that

i) Lis generated by its sections

ii) some W c= r (X, L) which générâtes $ . L extends to a

W c r (x, L) .

Indeed, on any compactification X, there exists a cohérent sheaf #" such that
W\ x = L and SF has properties i) and ii), and the pullback of W to the

blow-up Bp
Y

(X) is a line bundle with thèse properties: so we might as well

replace X by B& (X). Then if we take an idéal sheaf J such that IF générâtes
J , L, £ = $ . £' where £' is supported on X - X only, and it suffices



to show h
1

(L"//"L") =O (rf- 1
) i 1 since L n /j n L n L n /J n L n ® L n \J'\ L n

so this bounds h
1

(L n /J n L n
). To do this, it suffices, in turn, to bound

h
l

{X 9
L n

) and h
1

(X, j n
. L") = à'(£ 7 (X), L(-£)® M

) (where £is the

exceptional divisor on i?j(Z)). Thèse bounds follow from:

Lemma 2.7. If X r is proper over k and L is a Une bundle on X gen

erated by its sections, then h
1

(L® n
) =O O/"

1

), i 1.

Proof. Let X o
be the image of Xin P rt under the map given by the sec

tionsof L. Then L=n* (d) Xo (1)) and

The last isomorphism follows from first applying the Leray spectral séquence,
and then noting that ail the terms involving higher cohomology groups
vanish for large n, by the ampleness of OXo0

Xo (1). But if pe Supp Rltc^,(R
1

tc^,(9
Xo

for i 1, the fibre n' 1

(p) has positive dimension, hence dim Supp R
l

n*G X{i

±= r—l which gives the desired O (t/"
1

) bound on the dimension of the

last space.
A suitable compactification and an argument like that in the proof of a),

reduce the part of the statement of b) about the cokernel to bounding an

h
1

(J n
. L n

) and this is accompanied as in a) by a blow-up and the lemma.

The procédure for dealing with the kernel is somewhat différent: What we

want to control is the dimension

That is to say, for n > 0, the dimension of :

Let B= B, (X) and qbe the proper, birational map B 1+B r aP" x Spec A

induced by W. Then q* (® B > (1)) = n*L (~E) and for large n, we hâve



The cokernel of the inclusion on the right is just H° (B
f

, g* (®
B )I(9 B ' («))

But the support of this last sheaf is proper over 0 e Spec A, hence of dimen

sionless than r, so a final application of the lemma complètes the

proof.

2.8. Fix :Xr cP"a projective variety,

X o , ..., X
n

coordinates on P",

<PXP

X the Chow form of X,

k chosen so that this is a 1-PS of SL (n+\), i.e. k = - Ypijn^r 1

We define an idéal sheaf «/ c ® xx Aï by

Remarks, i) From an examination of the generators of «/, one sees

that the support of the subscheme Z = O XxA i/J^ is concentrated over

OeAl ; if we normalize the p t so that p n
= 0 then the support of «/ also

lies over the section X
n

= 0 in X.

ii) Consider the weighted flag:

The subscheme Z looks roughly like a union of p^-order normal neigh
borhoodsof L

t n X. It is easily seen to dépend only on the weighted flag
and not on the splitting deflned by L



iii) Roughly speaking, e&Al(g)(!)e

&Al(g)(!) ( i )(*/), which we will dénote e (J)

measures the degree of contact of this weighted flag with X x)
.

The multiplicity
of J can be expected to get bigger, for example, if L o becomes a more

singular point of X or if LL
n _ l oscillâtes to X to higher degree. The main

theorem of this chapter makes this more précise:

Theorem 2.9. In the situation 0f1.%, <PXP

X is stable (resp. : semi-stable )

with respect to X ifandonly if:

Proof. We begin with a définition.

Définition 2.10. If \i\ G
m -> GL(W) is a représentation of G

m
and

W t
is the eigenspace where G

m acts by the character t\ then the fi-weight
CO

of Wis Yj i- m W
t . If weWt then we say iis the fi-weight of w.

i= — oo

*) It seems to be a gênerai fact of life that one must go up to some (r + 1) dimensional
variety — hère X x AA 1 — to measure such a contact on an r-dimensional variety.



1) The limit cycle. If X À(t) is the image of Ibya (0, then taking

lim X À(t) gives a scheme XÀ(0)X À(0) and an underlying cycle X, both of which

are fixed by X. Moreover, $ xHt) = (# x
)

A(t) so if x= where
i = a

x>f
is the component of $ x in the i

th weight space; then

Hence, #J= <PX}CIP

X}Cl
and ais the i- weight of ox.By définition, $ x

is stable

(resp : semi-stable) with respect to Aif and only if a<o (resp :<s 0) or

equivalently if and only if the /l-weight of <P^ is <0 (resp: 0).

2) The next step is to connect this weight with a Hilbert polynomial;
this is done by:

Proposition 2.11. Let V r cP be fixed by a 1-PS X of SL(n+l),
let I be the homogeneous idéal of V and let R

n
= (k [xO,x

0 , ...,
Xn]/IX

n ]/I) n (i.e.
oo

V= Proj (© R
n )). Let a v be the X-weight of <PVP

V and rr
v

n
be the X-weight

n = 0

of R
n .

Then for large n, rj is represented by a polynomial in n of degree at

most (r+\) with n.l.c. a v .

Proof a) Assume Vis linear. In suitable coordinates, we can write
~f° 0

V- V(X r+1 , ..., X
n

) and X(t) = . . Then in the notation

of 1.16, the Chow form of Fis the monomial

r

Hence <Py = <PVP

V and has weight £ û f . On the other hand the A-weight of
i = 0

R
n dépends only on a 0 ... a r9

is symmetric in thèse weights, and is linear in

r

the vector (a 0 , ..., a
r
), hence dépends only on £ a f . By considering the case

i = O

a 0
= ... = a r we see that



which is certainly of the form claimed.

b) V is a positive cycle of linear spaces. Hère it is more convenient to

consider the idéal / instead of V. By noetherian induction, we can suppose
the claim proven for ail 1-fixed ideals /' /. Then if V= Yj a t

L v
l et J\ be

the idéal of L l9 and choose an aek [X] —I which is a /Ueigenvector of

weight, say, w and such that J
1 a c /. Now look at the exact séquence :

The claim is true for / + aby the noetherian induction. If /' = {/ 1 afe 1 }

=) J
x

=> /, then via the shift of weights by w, a+ I/I k [x]/f ; but this

shift changes the A-weight by an amount w. dim [(k [x]/I') n
]) =O (n r

),

hence does not affect the leading coefficient of the A-weight. The claim for

/', which also follows from the noetherian induction, thus proves the claim

for /.

c) Réduction to case b). Recall the Borel fixed point theorem: if G is a

connected solvable algebraic group acting on a projective variety W, then

there is a fixed point on OGO
G

(y) for every ye W. Let [V] be the associated

point of Vin Hilb P n and consider the orbit of [V] under the action of a

maximal torus Tc SL(n+\) containing X(t). Let [V o
] be a T-invariant

point in OTO
T ([F]). Then VoisV

o
is a sum of linear spaces, since thèse are the

only jT-invariant subvarieties of P w

. If we décompose <PVP

V by <PVP

V = ]£ <Py,

a

where a runs over the characters of T and <f>*
v is the part of <PVP

V on which T

acts with weight a, then for any z eT,(P
x

v = £c\ <Py for suitable constants
a

cc
z

a . Since <P
Vo

is both T-invariant and a limit of forms <PP
T

V , %gT, <P
Vo =$a

for some a. Moreover since F is a A-invariant point, ail the characters a

appearing in the décomposition of <PVP

V must hâve the same value on A,

hence the A-weight of $
Fo

is the /l-weight of $ v .

It remains only to compare the homogeneous coordinate rings. Now

F and V
o are members of a flat family V

t , te S for some connected parameter

space S, so that if n > 0, H° (V t ,
(9

Vt (»)) are the fibres of a vector bundle

over S. This means that the A-action on thèse fibres varies continuously,
hence that the A-weights of ail the fibres are equal. Now the claim for V

follows from b).



Remark. The relation between Chow forms and Hilbert points in c)

is really much more gênerai: in fact, Knudsen [12] has shown that there is

a canonical isomorphism of 1-dimensional vector spaces k. <PVP

V [(r+ l)
st

"différences" — formed via ® — of successive spaces in the séquence

A dim Rn
RR

n
], and it is possible to base the whole proof of 2.1 1 on this.

3) Nextwe will see how to obtain 1" A(O) by blowing up «/. Consider the

map

If the embedding of Xis defined by ,y
0 , ..., s

n eF [X, 0x(l)]0

x (l)] and the action of
n

a (t) is by (a 09 ..., a
n

) i-> (t r °a
0 , ..., f n a

n
) with r 0 r 1 ... r

n
and £ri

i=o
= 0 (i.e. (0, ..., 0, 1) is an attractive fixed point and (1, 0, ..., 0) is a répulsive
fixed point), then A*t (X^ = t ri

s
t . Now t~ y is a unit on G

m
x X, so

changing the identification (d) p
n (1)) OGm0

Gm ® (9
X (1) by this unit we

can assume A* (X^) = t pi s t
where p t =rt—yis normalized as in 2.8 so

that p n
0. Then A± "extends" to a rational map A 1 xX-+P" which is

defined by the section { t Pi s t } eT (A
1

x X,p\<9 x (\). is just the idéal

sheaf thèse generate in 00
A i xX and Z is just the set of base points of the

rational map. Blowing up along J> gives the picture

where the morphism A is defined by the sections {t Pi
s t } in F [B, (p 2 n)*

(0(1)) (-£)]. Now Im(yl) is the closed subscheme of A 1 xP" g j V en by
m

Proj ( © R
m

) where
m = 0



_Yk [/]-submodule of r (X, (9 (m)) ® k
k [t]

|_generated by m
th

degree monomials in { t Pi
s t

}

In fact, Im Ais fiât over Al,A
1

,
because of :

Lemma 2.13. Let S be a non-singular curve, X fiât over S and f:X
-» Y be a proper map over S. Then the scheme (f(X), oy/ker/*)0

y /ker/*) is fiât
over S.

Proof. We may as well suppose S= Spec R; and then this amounts to

showing the oy/ker/*0

y /ker/* has no iMorsion: if a e0 y /ker/*, reR, then

r .a = 0 => r .f* a = 0 =>f* a = 0 => a - 0.

In particular, we see that XÀ(0)X À(0) is the fibre of Im A over t=o, i.e. XÀ(0)X À(0)

m

= Proj ( 0 RJtRJ.
m = 0

4) The proof is completed by making précise the relation between «/

and the 2-weight of $x • One must be careful however because there are two

G
m

-actions on Rm/tR

m /tR m ,
that given by the identification Rl/tR

1 /tR 1 =© (t ri s t
) k,

which is just À, and that given by the identification RJtR^ = © (t Pi
s t

) k;

call this action [i. The weights of \i on RJtR m are just those of À translated

by my. By Proposition 2.11

A droll lemma allows us to re-express the /i-weight of RjtR m .

Lemma 2.14. Let W be a k-vector space and let G
m actby \i on W

with weights p n
pp

n _! ... p 0 =0. Let W t
be the eigenspace of weight

p t
and let W* be the k [t]- submodule ofW®k [t] generatedby © t Pi W

t .

Then dim {k [t] ® W/W*) = \i-weight of W*/tW*.



Proofby Diagram

Recalling the définition of R
m (2.12), and applying this to the on

RJtR m , we see that the /i-weight of RjtR m
is just: dim(r (X, (9 (m))

® k
k [t]/R m

). But the sections { t Pi
s t } whose m

th tensor powers generate
R

m ,
also generate «/./?* (®x(i)) so by a ) anc^ b) °f Proposition 2.6, this

last dimension can be used to calculate e (J). Putting ail this together, we

see that:

which, with the analogous statement for semi-stability, is our theorem.

2.15. Interprétation via reduced degree. If X r
cz P n is a variety,

its reduced degree is defined to be:



A very old theorem says that if X is not contained in any hyperplane then

red. deg (X) 1. Reduced degree measures, in some sensé, how compli
catedlyX sits in P M

,
and there are classical classifications of varieties with

small reduced degree. For example if X has reduced degree 1 and is not

contained in any hyperplane then X is either

a) a quadric hypersurface

b) the Veronese surface in P5P
5

or a cône over it

r

c) a rational scroll: X=P( © opi0

pi (nj) <= P*, n t >0
i = 0

r

where N=£ (n t
+ 1) —I,ora cône over it. (This is called a scroll because

ï=0
the fibres P'" 1 of X over P

t are linearly embedded.)

Some other facts about reduced degree are:

i) canonical curves, K3-surfaces and Fano 3-folds hâve red. deg = 2;

ii) ail non-ruled surfaces and ail spécial curves hâve red. deg =± 2. (For
spécial curves, this is just a restatement of Clifford's theorem.)

iii) for ample L on XX r
9

the embedding by L® r has reduced degree

asymptotic to r ! as n -+ oo ;

iv) red-deg is preserved under taking of proper hyperplane sections.

It would be very interesting to know whether almost ail 3-folds (in a sensé

similar to that of ii) for surfaces) hâve red. deg 2+g. The following
définition is introduced only tentatively as a means of linking the présent
ideas to older ideas (e.g. Albanese's method to simplify singularities of

varieties) :

2.16. Définition. A variety X r
c: P n is linearly stable (resp. linearly

semi-stable) if, whenever L 1L
11 '™' 1 cPn is a linear space such that the image

cycle p L (X) of X under the projection p L :P"—L ->• P m has dimension r,

then red deg p L (X) > red deg X (resp. red-deg p L (X) red deg X).

Attention: p L
is allowed to be finite to 1, and which case p L (X) must be

taken to be the image cycle. Linear stability is a property of the linear

system embedding X; if X r c P w is embedded by F (X, L), then X linearly
stable means that for ail subspaces A c r (X, L)



or equivalently, by applying Proposition 2.5,

Examples, i) when Xis a curve of genus 0, it is linearly semi-stable but

not stable. When g 1, Clifford's theorem shows that Xis linearly stable

whenever it is embedded by a complète non-special linear System (see § 4

below).

ii) P2P
2 is linearly unstable when embedded by (9 (ri), n^3 because it

projects to the Veronese surface. In view of the next proposition, a very

interesting problem is that of finding large classes of linearly (semi)-stable
surfaces.

(It may, however, turn out that linear stability is really too strong, or un
predictable,a property for surfaces in which case this Proposition is not

very interesting !)

Proposition 2.17. Fix X r c F n

,
let Cbe any smooth curve and let L

be an ample Une bundle on C. Let <P
t

: C x X-> P iv(l) be the embedding

defined by {Sj® X
t } where {Sj} is a basis of F (L®

1

) and X
t

eF [X, (9
X (1)) are the homogeneous coordinates. If <ï>

t (C xX) is linearly
semi-stable for ail large z, then X r is Chow-semi-stable.

t p v 0

- iRi
Proof Choose a 1-PS: X(t) = . t n+l

_0 t Pn

as in (2.8).

Choose a point peCan isomorphism L
p s (9

p
and an / large enough that

L® 1

is very ample and L® 1

(~p o p) is non-special. Then the map

is surjective. Let A 1 be the inverse image of 0 [(Jt pp

p

l clJt pp

p
o c) ' %i]

1 = 0

this map and let JJ
[

A c (P
CxX be the induced idéal. Since ail the L® 1

are
trivial near p and J\ has support on the fibre of Z x C over P, the ideals



JAJ
A are independent of i; we dénote this idéal by JA. The hypothesis says

that for large i

and letting / -> 00,

But C x X along p x Xis formally isomorphic to A 1
x I along 0 x X

with corresponding J>
A s, so by Theorem 2.9., X is Chow-semi-stable.

§3. Effect of Singular Points on Stability

We begin with an application of Theorem 2.9.

Proposition 3.1. Let X 1 cPn be a curve with no embedded components
such that deg Xjn + 1 < 8/7. // X is Chow-semi-stable, then X has at

most ordinary double points.

Remarks, i) When n =2, deg Xjn + 1 < 8/7 <^> deg X<4 and the

proposition confirais what we hâve seen in 1.10 and 1.11

ii) Suppose Lis ample on X 1 and X
m c p^ m >

i s the embedding of X

defined by r(X,L® m ). By Riemann-Roch, deg XJN(m) -> lasm-> 00, hence:

Corollary 3.2. y 4« asymptotically stable curve X has at most ordinary
double points.

In particular, if XcP2 has degree 4 and has one ordinary cusp,

then, in P 2

, Xis stable but when re-embedded in high enough space, Xis
unstable! The fact that this surprising flip happens was discovered by

D. Gieseker and came as an amazing révélation to me, as I had previously
assumed without proof the opposite.

iii) We will see in Proposition 3.14 that the constant 8/7 is best possible.

Proof of 3.1 . We note first that a semi-stable Xof any dimension cannot
be contained in a hyperplane: if Je V(X 0 ), then X has only positive

weights with respect to the 1-PS



The plan is clear: by Theorem 2.9, it suffices to show that if x is a bad

singularity of X, then there is a 1-PS.

such that

First, if x e X has multiplicity at least three, then take coordinates
~

t
~~

1

(X 0 , ..., JQ so that x= (1, 0, ..., 0) and let X(t) =
'

Then

[ 'J
is generated by { tX 0 ,

X l9 ..., X
n }. Since { X l9 ..., X

n
}

generate Ji XiX n d X o
is a unit at x, J= (/, «^

x
) @

A1 xX ,
i.e. «/ is the maximal

idéal of (0, x) on A 1 xX. Therefore, e Çf) = mult (Ox) (A
1 xj) = mult

x
X

3, which does what we want since 16/7 £ p f
= 16/7 < 3.

i = 0

Now if x g V is a non-ordinary double point — i.e. a double point whose

tangent cône is reduced to a single line — then dim (J^ XtX l^l
t

x) = 2 and

x ,x JIJ where /is the idéal of the tangent cône at x. Choose

coordinates (X 09 ..., XJ such that

i) X o (x) # 0

ii) v= AyA'o and u= Z 2 /Z 0 span Jt XtX \J(
2

xX

iii) me/so that m2m

2
e

iv) X d /X 0 , ...,XJX O eJf 2

XJC



~t 4

t2t

2
0

t

Then if X(t) = the associated idéal is

0

1

J= (t
4 X 0 ,

t2t

2 X l9 tX 2 ,

X3,...,X

3 , ..., X
n

). But (9
AA i xX IJ is supported only at the

point (0, x) hence e («/) is again Hilbert-Samuel multiplicity and is at least

equal to the multiplicity of the possibly larger idéal «/' = (t
4

,
t

2
v, tu, Jt\jù.

If /is the idéal (t
4

, J^l^x)* then since

./' is intégral over /. Hence

as required.
The attempt to systematize this theorem leads to a numerical measure

of the degree of singularity of a point. The results that follow are part of

a joint investigation of this concept by D. Eisenbud and myself. Full proofs
will appear later. Many of thèse results hâve also been discovered inde

pëndentlyby Jayant Shah.

Définition 3.3. If (9 is an equi-characteristic
x

) local ring of dimension

r, and k oisan integer, then we define e k (0), the k th flat multiplicity
of (9, by

A A

It is obvious that if 0 is the completion of 090
9

then e k (0) = e k {(9).

Proposition 3.4. e k (0) max (1, e (0)/ +k) !).

2
) The hypothesis on (9 can be avoided, and the proof simplified, by a use of the

associated graded ring instead of the Borel fixed point theorem (D. Eisenbud).



Proof. The second bound is obvious. To get the first note that if /
e (/) n

r

is any idéal of finite colength then e (/") =nre (/) and col (J n
) =

1

—

+ Oiri" 1

), hence

To get an upper bound on e k we first obtain another lower bound !

Proposition 3.5. e 0 {(9) 0 ((9 [[>]]); moreover if r= dim (9 >0
an d there is equality, then the sup defining e Q {(9 [[t]]) is not attained. Hence

Proof. We begin by giving a lemma which is useful in the applications of

e 0 as well.

00

Lemma 3.6. Let Jbe the set ofideals of G [[t]] oftheform I= © l\t \
i=o

where ït
is an increasing séquence of ideals of finite colength in (9 such that

In ~ ® f or some N. Then

Proof For any equi-characteristic local ring R, let Hilb'jj be the

subscheme of the Grassmanian of codimension n subspaces of R\Jt\
parametrizing those subspaces which are ideals: since any idéal in i£ of

colength n contains J/ n

R , Hilb^ parameterizes thèse ideals. Let e: Hilb#
-> Z be the map assigning to an idéal its multiplicity. By results of Teissier
and Lejeune [23], e is upper-semi-continuous.

The natural G
m

-action on (9 [[t]] by t -> Xt induces a G
m

-action on

Hilb^j-^-jp By the Borel fixed point theorem, there is, for every I, an idéal
rlxed by this action in OGm0

Gm (/). Such an idéal must, by the upper-semi
continuityof multiplicity hâve multiplicity at least as large as e (/). Thus,
to compute e 0 ((9 [[t]]) it sufïïces to look at G

m
-fixed ideals of finite colength

and J is just the set of such ideals.
00

Fix / = © Ii t\ where 707

0 c I x c ... c INI
N = (9 is an increasing séquence

i = 0

N-l
of ideals in (9. Clearly col (/) = col (7 f ). To bound e (/) we note that

i = 0



Hence,

(We hâve evaluated the second sum by "intégration" !)

Finaliy

with strict inequality if r > 0

Corollary 3.8. If (9 is regular, e 0 (0) = 1 and if r > 1, the defining

sup is not attained.

Corollary 3.9. (Lech
x

). For ail (9 and ail 1a (9, e (/) r!e (0)

col(7), hence e o {(9) e (0).

Proof None of the quantities involved change if we complète 6

But after doing this, we can write 0 as a finite module over (9
0

=

k[[t u ..., t
r
]] so that:

(*) There is a sub 00-module0

o -module ®o (&) Œ® sucn tliat tne quotient 0/0 0
is an

00-torsion0

o -torsion module M.

]
) Cf. [13], Theorem 3.



Let 707

0
= In(9 0 . Then col (/) col (7 0 ) and

Condition (*) implies that dim (M/Iq M) is represented by a polynomial

of degree less than r, hence

We state two other useful properties of e k
:

Proposition 3.10. i) If (9 and & are local domains with the same

fraction field and (9' is intégral over (9, then e k ((9') e k {(9).

ii) If (9 = (k [[t]] + &>) is an augmented k [[t]]-algebra, let (9
n

= Qp,

a local ring with residue field k ((t)) and let 0
s

= 0/tO be its specialization

over k; then e k {(9
n

) e k (d)
s

).

We corne now to the main définitions.

Définition 3.11. (9 is semi-stable if e x {&) = 1; (9 is stable if in

addition, the defining sup is not attained.

This terminology is justified by the following proposition which shows

that the semi-stability of the local rings on a variety X is just the local

impact of the global condition of asymptotic semi-stability for X.

Proposition 3.12. Fix a variety X\ an ample Une bundle L= (9
X (D)

on X, and peX. Then if (9
p>x

is unstable, (X, L) is asymptotically un
stable.

Proof Choose an idéal Ic (9
P)X [[t]] such that

i) e (/) = (1 +e) (r + 1) ! col (7), s > 0

00

ii) 7=© I t t\ 707

0
<z 7X7

X c ... <= 7^ =&xa séquence of ideals of
i = 0

finite colength. (This is possible because of Lemma 3.6).

Let <P
m

dénote the projective embedding of XbyT (X, L® m
). Choose m

large enough that



a) for ail QeX,r (X r
,

L m
) *,r (X, L m /I 0 J?

Q>x . L m
) is surjective

b) L m is very ample

c) A °
(J r,L-)>-i-^^ = J- deg *- (3r)

I+e r! I+B ri

(That the last condition can always be realized is a conséquence
of Riemann-Roch for X.)

Next choose a basis Z f -,
0 i N, of T (X, L m

) such that

Finally, let Xbe the 1-PS which multiplies X tJ by t
l

: i.e. in the form of

(2.8) p
(l>j) =z; then by assumption (a) the idéal «/ corresponding to

A in (2.8) is just / and is supported at the single point (o,p)eA 1
x X.

Moreover, by condition a)

(This is Lemma 2.14 again). Hence,

By Theorem 2.9, <P
m (X) is unstable.

Restating Corollary 3.7 gives us a trivial class of stable points:

Proposition 3.13. If 0 is regular and of positive dimension His stable.

The next step is to pindown the meaning of semi-stability for small

dimensional local rings. For dimension 1, we can be quite explicit:



Proposition 3.14. If dim G = 1 and G is Cohen-Macauley (i.e

Spec G has no embedded components), then :

i) G stable oG regular oc {G) = e 0 {(9) = e x ((9) = ... = 1

ii) (9 semi-stable but not stable oG an ordinary double point oe(G)
= eo(G)e

o (G) = 2,^(0) = e2(0)e

2 (0) = ... = 1.

iii) G a higher double point =>~ e 1 (G) 8/7.

iv) 0 a triple point or higher multiplicity => e
x (J9) 3/2.

Proof. If 0 is a triple or higher point, so is 0 [[t]], hence e {(9 [[/]])
3, and by Proposition 3.4, (0) =eO{G [[t]]) 3/2.

As for Cohen-Macaulay double points, when char. 2 thèse are ail

of the form G=k [[x, y]]/(x
2 -y% 2 n 00. (Think of Gasa quadratic

free A: [[y]]-algebra; the argument can be readily adapted to char. 2 also).

If n^3, then in k [[x, y, t]]/(x
2

-y
n

), take /= (x
2

, xy, y
2

, xt, yt
2

, t*).

(This, of course, is the idéal of Proposition 3.1 again). I has complementary
basis (1, x, y, t, yt, t

2

,
t

3
), hence col (/) =7.1 claim e (/) = 16, which

will imply iii). We first note that ïis intégral over (y
2

,
t

A
). We compute the

multiplicity of (y
2

,
t

4
) as

intersection-multiplicity at Ji ((Spec G) . (y
2

=0) .
(7

4 = 0))

= 8. intersection-multiplicity ((Spec G) .(y=o).(f= 0))

= 16

since # is a double point.
When G is an ordinary double point, I claim e 0 (G [[t]]) = 1. Since this

e L/M) 2
value is attained by the maximal idéal Jt\ = - = 1

,
this will

2! col {Ji) 2

prove ii), hence i) in view of Proposition 3.13.

In gênerai, if G = h [[x, y]]/(x . y), an idéal I a 0 [[t]] corresponds to

a pair of ideals / c k [[x, t]] and K c k [[y, t]] such that / + (pc)/(x) and

K+ 00/00 nave tne same image, say (t n
), in A: [[r]]. A rough picture is

given below: the condition on the two ideals ensures that they glue along
the intersection of the two planes.



In this situation, col (/) = col (/) + col (K) -n, and e (/) = e (/)
+e (K), so the inequality e (/)/2 .

col (/) 1 follows from :

Lemma 3.15. If Iczk [[x, y]] and I+ (x) = (x, y
a
), then e (/)

2 col (/) - a.

Proof. By applying Lemma 3.6, we can reduce to the case where /
is generated by monomials:

Then as .'n (3.7):

Remark. If /a0 [[t]] is of the form of Lemma 3.6, the expansion

(3.7) for I n
,

which we hâve used again hère, can be used to give even better



bounds for e (/). To get thèse however, requires the more involved theory

of mixed multiplicities which will be discussed in § 4.

The meaning of semi-stability for two dimensional singularises is not

yet completely worked out, but what follows gives a good overview of the

situation.

Définition 3.16. If (9 is a normal 2-dimensional local ring, x is the

closed point of Spec G), and X* —^Spec'o is a resolution of (9 (i.e. n

is proper and birational), then we define

i) big genus of (9 = dira R* n% (G x *)

(R l^ is a torsion (9-module supported at x)

ii) Unie genus of (9 = sup (jp
a (0 z )), where Z runs over the effective cycles

on n-^x). z

Wagreich [24] has shown that big genus little genus — hence the names —

and Artin [3] has shown that if the little genus is zéro then so is the big

genus. (But when little genus = 1, big genus may be > 1). We call (9:

rational (resp. strongly elliptic) if its big genus is 0 (resp. 1), and weakly

elliptic if its little genus is 1
.

If there is to be any hope of constructing compact moduli spaces for

semi-stable surfaces, the non-normal singularity xyz = 0 must be semi
stable — in fact, it is. But xyz = 0 is the cône over a plane triangle so the

triple point on it is really a

degenerate "elliptic" singularity.
In fact, xyz = 0 is a limit of

the family of non-singular cubics

xyz + t(x 3

+y
3 + z

3
) =0. Simi

larly,the standard singularities
AA

n _ 1
: xy =zn and D

n
: xx

2

=y
2

z

+ z
ïl hâve non-normal limits xy

=0 and x2x
2 = y

2
z respectively

as n -> 00. We can summarize
thèse considérations in the heu
risticconjecture: the semi-stable

singularities of surfaces will be a limited class of rational and strongly
elliptic normal singularities and their non-normal limits.

We now list without proof some classes of semi-stable singula
rises.



3.17. Elliptic polygonal cônes. In P" * take a generic n-gon
n

v PiPi+i (Po^Pn +i) an( 3 take the cône in C n over it. This is a union of
i = 0

«-planes crossing normally in pairs and meeting at an n-fold point at the

origin. We also allow the degenerate cases n = 2 (local équation xx
2

~y
2

z
2

)

and n=l (local équation xx
2

=y 2y
2

(y + z
2

)) which correspond respectively, to

glueing two planes to each other along a pair of transversal lines, and to

glueing a pair of transversal lines in a plane together as shown below.

Proposition 3.18. Elliptic polygonal n-cones are semi-stable if and

only if 1 More over, ail small déformations of thèse singularises
are semi-stable.

Examples of such singularities are:

i) Cône over a smooth elliptic curve with generic jin P", 3 /z 5.

(In fact, I expect this holds for arbitrary j). Thèse are also called the

simple elliptic (Saito) or parabolic (Arnold) singularities, and may be

co

described as ©F (E, L m
) where Eisan elliptic curve and Lisa Une

m = 0

bundle of positive degree n : with this description, they are also defined

for n — 1,2. For small n9n
9

thèse hâve the form

ii) The hyperbolic singularities of Arnold

iii) Rational double points

iv) Pinch points: thèse hâve local équation x2x
2 = y

2
z.



3.18. Rational polygonal cônes. In P" i take (n-l) generic line

segments P
0

P
x kj P

1
P 2 ... \j P

n - 1
P

n
and in C" take the cône over them:

one obtains (n —2) planes crossing normally in («— 1) Unes.

Proposition 3.19. Rational polygonal n-cones are semi-stable if and

only if 2 n 6. Hence, ail small déformations of thèse singularises are

semi-stable.

A typical singularity which anses in this way is the cône over a rational

normal curve in P"" 1

,
2 n 6.

By applying the semi-stability condition to the idéal /= ©tl J. (F)
j = o

c 0 [[/]], where / is an idéal in 0 and ~ dénotes intégral closure in 0,

one can prove the following necessary condition for semi-stability:

Proposition 3.19. If (9 r is semi-stable, laG and P (i) = dim (0/(1%
then

When r = 2, and (9 is Cohen-Macaulay this reduces us to ten basic

types of singularises. In the flrst few cases we hâve listed the singularises
of this type which are actually semi-stable.

1) Regular points: always stable.

2) Double coverings of C2C
2 with branch curve of multiplicity semi

stablehère are,

a) rational double points and their non-normal limits xy = 0,

x = y
2

z,

b) hyperbolic double points,

c) parabolic double points.

3) Triple points in C 3
: Semi-stable are,

a) cônes over non-singular elliptic curves,

b) hyperbolic triple points.

4-5) Triple and quadruple points in C 4
.

6-7) Quadruple and quintuple points in C
5

.

8-9) Quintuple and sextuple points in C
6

.

10) Sextuple points in C
7

.



Remark. With Eisenbud, we made some computations by computor
to eliminate cases; the computer came up with some amusing examples.
For instance it found an idéal link [[x, y, z, t]]/(x 2 +y3 + z

7
) with col (/)

= 63,398, mult(/) = 381,024, showing that e 0 1.000167, hence that
the singularity x2x

2 +y3 +z7 = ois unstable.

Further restrictions, confirming the heuristic conjecture, on what

singularities are semi-stable are provided by:

Proposition 3.20. If (9 is normal and semi-stable then (9 is rational
or weakly elliptic. Moreover, there are no cuspidal curves, i.e. generically
ail singular curves are or dinar y.

We omit the proof except to note that the last statement cornes from the

observation that for large n the choices /„ = (T
9

, u
9n

,
v

9n
)

~ show that
e2e

2 (k [[T
2

,
T 3

}]) 1 + 22/221 !

Now suppose (9 is not Cohen-Macaulay. We can create a slew

of stable o's using i) of Proposition 3.10. For example if k [[x, y]]

v (9 => k [[x, xy, y
2

]], then (9 is semi-stable since the ring on the right which
is the pinch point is semi-stable; a typical example is (9 = k [[x, xy, y

2

, y
3

]],

a very partial pinch in which only the j-tangent has been removed. For
tunatelymost of thèse points cannot appear as singularities of varieties on

boundary of moduli spaces as they hâve no smooth déformations. More

precisely, (cf. [27]):

Theorem 3.21. If (9 is a 2-dimensional local ring which is not Cohen-

Macauley such that (9 = (9' jt(9' where (9' is a normal 3-dimensional local

ring ; let (9
noxm

be its normalization and (9 ={ae (9
novm

\ for some n, Ji% a

c= 0) .

Then i) (9 is a local ring

ii) If in addition (9 has characteristic 0, then

Remark. If, as seems likely, in view of Proposition 3.20 the big genus

of the Cohen-Macaulay ring (9 is 0 or 1, this means that (9 must be nearly

Cohen-Macauley.
We conclude this section by outlining an as yet completely uninves

tigatedapproach to deciding which singularities should be allowed on the

objects of a moduli space.



Définition 3.22. (9 r is an insignificant limit singularity if, whenever G'

is an (r+l) dimensional local ring such that (9 = (9'\t& for some te®',
n: X-*X -* Spec & is a resolution of Spec G' and EaXisan exceptional

divisor (Le. àimn(E) < dimE), then E is birationally ruled, that is,

the function field of E is a purely transcendent al extension of a proper sub

field.Equivalently, setting G\Jt G =k, this says that whenever R is a

discrète rank 1 valuation ring containing G' with tr . dz%. k R\J( R
= r,

then R\Ji R
= K(t), for some K such that tr. deg. k

K =r-1.

Examples. 1) xy =ois insignificant because on deforming this only

A
n singularises arise.

2) x2x
2 +y3 = 0 is significant because the déformation t6t

6 = x2x
2 +y3

blows up to a non-singular elliptic curve with (E
2

) = -1. Similarly
I can show that ail higher plane curve singularities are significant.

3) x 3x
3 +y3 +y*=ois significant because tl2t

12 =x3 + .y
3 + y

4 ' blows

up to a 3-fold containing a K3 surface.

4) Jayant Shah [26] has proven that rational double points and Arnold's

parabolic and hyperbolic singularities are insignificant. As a limiting
case, normal crossings xyz = 0 is insignificant.

Remarks. 1) Why should birational ruling of exceptional divisors be

the right criterion for insignifiance ? The reason is that ail exceptional
divisors which arise from blow-ups of non-singular points are birationally
ruled and ail birationally ruled varieties arise in this way. So on the one

hand, such exceptional divisors must be permitted, and on the other, the

examples suggest that sufficiently tame singularities cannot "swallow"
anything else.

2) The examples suggest that 0 semi-stable and (9 insignificant are closely
related. For instance, perhaps thèse are the same when embedding-dirn G

= 1
. In dim 2 for example, after hyperbolic and parabolic singularities in

the Dolgacev-Arnold list [2, 7] of 2-dimensional singularities corne 31 spécial

singularities. Thèse are ail unstable and in a récent letter to me Dolgacev
remarks that ail of thèse hâve déformations which blow up to K3 surfaces

as in Example 3. If semi-stability and insignificance turn out to be roughly
the same in arbitrary dimension, we would hâve a very powerful tool to

apply to moduli problems.



§4. Asymptotic Stability of Canonically Polarized Curves

The chief difficulty of using the numerical criterion of Theorem 2.9

to prove the stability of a projective variety is that it is necessary to look
inside OXx0

XxA i to compute the multiplicity e L («/). To circumvent this

difficulty, we will construct an upper bound on e L Çf) in terms of data on X

alone. For curves, this bound involves only the multiplieities of ideals

J> ci (9
X ,

but for higher dimensional varieties — in particular, surfaces — it

requires a theory of mixed multiplicities, i.e. multiplieities for several ideals

simultaneously. To motivate the global theory, we will first describe what

happens in the local case. Hère the basic ideas were introduced by Teissier

and Rissler [22]. Recall that if G is a local ring of dimension r with infinité
residue field and lis an idéal of finite colength in it then whenever/ l5 ...f r

are sufficiently generic éléments of /, e (/) = e((/ •••>//•))• This suggests

Définition 4.1. If 0 r is a local ring and 119I

l9 ..., I
r are ideals of finite

colength in 0, the mixed multiplicity of the I t
is defined by

where f t elt is a sufficiently generic élément. (The set of integers e ((/ l5 ...,/ r ))

has some minimal élément and a choice (/ l 5...,/,.) is sufficiently generic if

the minimum is attained for thèse f t .)

The basic property of thèse multiplicities is

Proposition 4.2. Let 1u...,I

u ...,I k
be ideals of finite colength of a local

ring (9 r and let

where l\ ril indicates that I t appears r t times. Then

i)

ii) There exists a polynomial of total degree r

and an N o such that if m t^ N o for ail z, then



F roof. See Teissier and Rissler [22].

Using this we obtain the estimate :

Proposition 4.3. Let Ia (9 [[t]] be an idéal of finit e codimension and

let II
k

= {ae(9\at k el} ; then IoI
o

Ç= h<= ...
<= INI

N =O,N>O. Then

for ail séquences 0 = r 0 < r ± < ... < r l
= N,

Proof. Since /=> ©tn /,

whence

(4.4)

By Proposition 4.2 i) each remainder terms R
t

is O (n r x

). Indeed, ii) of

4.2 says that except when /orn— i< N o ,
the R

t are ail represented by a

polynomial of degree r - 1 so that we can obtain a uniform O(n rr ~ x

)

n-l
estimate for the i?

t-; hence £Rt = O (n
r
).

i = 0

But the n.l.c. of the (r+l) st
degree polynomial representing

dim(^ [[t]]/I n
) is by définition e(I); so evaluating the n.l.c. of the sum

in (4.4) using the lemma below, gives the proposition.

/!(r-/)! n~ln ~ 1

Lemma 4.5. t~ -» P+l = E (n-i) r - j i j + O(n r
)

(r + 1) !

/ = 0

Proof. We can reexpress the left hand side in terms of the /?-function as



and the right hand side is just another expression for n r+i times this intégral
as a Riemann sum plus error term.

To globalize thèse ideas we combine them with some results of Snapper

[5, 21].

Définition 4.6. Let X r be a variety, L be a Une bundle on X and

J>
u ...,J> r

be ideals on (9
X such that supp ((9 x l^i) is proper. Choose a

compact ification X of X on which L extends to a Une bundle L and let

7i : B->X bethe blowing up of X along Yl^i so tnat 7l
~1~ 1 i/d =@b (~^;)-

Let n*L = (D). We define

We omit the check that this définition is independent of the choice of X

and L.

4.7. Classical geometric interprétation. Suppose Xisa projective

variety, L = (9
X (1) and J \ .L is generated by a space of sections W

t

c T(P n

,
(9 (1)). If H u ..., H

r are generic hyperplanes of F n

,
then # (H 1

n ... n H r n X) = deg X. One sees by an argument like that of Pro
position2.5, that as the H t specialize to hyperplanes defined by éléments of

Wi but otherwise generic, the number of points in H 1 n ... n H
r n X

which specialize to a point in one of the WW
t

9

s is just e L (J rl,r

1 , ..., «/
r
).

We can globalize Proposition 4.2 to give an interprétation of the mixed

multiplicity by Hilbert polynomials.

Proposition 4.8. i) Let X r be a variety, L u ..., L
n

be Une bundles on X

and <f1,...,Jf

1 ,...,J> l
be ideals in (9

X such that supp {® x l^ï) is proper for ail i.

Then there is a polynomial P (n, m) of total degree r and an M o
such that

if nîj =± M o for ail j then

Now suppose ail the Une bundles are the same, say L and let

Then

ii) P (Yj m i> m i> •••' m i) =?r ( m v •••5 m i) + lower order terms



iii) |X (X, LlmiL Imi I[l <?V ® Llm ) -pr ((run u ..., m z
) | =O((£ m/' 1

)

(i.e. we retain an estimate assuming only Yj 71
] ar S e )

Proof. Making a suitable compactification of X will not alter the Euler

characteristics so we may assume X is compact.
Before proceeding we recall certain facts: If R= © R

ni ..,m
i s a

multigraded ring we can form a scheme Proj (R) in the obvious way from

multi-homogeneous prime ideals. Quasi-coherent sheaves £F on Proj (R)

correspond to multigraded i?-modules M=© MBI,M

B1 , ... s ,, r Suppose i?
0 , ..., 0

= fc a field and that i? is generated by the homogeneous pièces

R
o , ..., o, i, 0 > •••> o- Then we get invertible sheaves L 1?L

1? ...,L Z on Proj (R)

from the modules M i9 where M £
= (R with z

th -grading shifted by 1), and

the multigraded variant of the F.A.C. vanishing theorem for higher coho
mologysays that if <F is a cohérent sheaf on Proj (R) then

Now if */l 5/

l5 ..., <//, are idéal sheaves on X such that supp (0 x /^j) i s proper
for aU i, let se = © J^f 1

... J^- Then is a multigraded sheaf of
mj-^O

x-algebras.x -algebras. Let = Proj {sé)\ the blow up of X along H^j s J ust 7i:

-> X. If Ey is the exceptional divisor corresponding to Jfj, then when
(9

B (~Y,? n j Ej) is cohérent and when ail the mj are large the relative versions
of the vanishing theorems say :

a) #7E
# (0(- =0, i>o

b) Ti^(-XmA-) = FI <?7

In any case,

c) supp RR
1

7i
# (^ {-Y l

m j
E j)) nas dimension less than r, />O,

d) Y\^T l

except on a set of dimension less

than r.
l

From a) and b) we deduce that when ail the m5m
5 are large, x (II j )

= 1 (** & (" s>; Ej)). Thus, x (*, ® y = X(^ ® i? 0
- x(A ®LL

n

i

i (-Y> m j
E ii) and both of these last Euler characteristics

polynomials of degree by Snapper [5,21]. Now if n* L = 0B(D0

B (D) 9

his resuit also says,



which is ii). Fix an N such that ii) holds when ail m j N.

Now suppose /isa proper subset of {1, ...,
/ }, /is its complément and

that values m t < N are fixed for ail iel. Let 7ij :Bj -» Xbe the blow up
of X along fi yAs above we deduce that 3N r

depending on / and the
JeJ

m i9 iel such that if m } > N\ V/ e/, then

Then applying c) and d) we see that for some C, also depending on / and

the m t , ie/,

Combining this with the argument used in the proof of i) and ii) shows that

for some C (depending on / and the m i9 iel)

From ii), we get an estimate of this type with a uniform constant C, when

ail the nij N. Since there are only finitely many sets / and for each of

thèse only finitely many choices for the m t , iel with m i < TV we can com
bineail thèse estimâtes to show: there exists M and C" such that if any

m t > M, then

which is iii).

The following analogue of Proposition 2.6 allows us to calculate mixed

multiplicities in terms of the dimensions of spaces of sections.

Proposition 4.9. If L> J'^L, ..., J \L are gêner ated by their sections,

then



Proof. We give only a sketch of the proof which is very similar to that

of Proposition 2.6. One first shows as in the proof of 2.6a), that for

Using the long exact séquence

this reduces the proposition to showing that

and this is done exactly as in the proof of 2.6b). (Note that the extra hypo
thèsesof 2.6b) were not used in this part of the proof.)

The global form of Proposition 4.3 is:

Proposition 4.10. Given a variety X, a Une bundle L on X and an

idéal J a OXx0

XxA i with supp (® x x A i/«/) proper in X x (0), let J k
= {a

e(9 x \t k aeJ} so that J o ç t f l ç ... çJN = (9
X and let L t =L® 00

A i.

Suppose that L, J \ L and «/ L
± are gêner atedby their sections. Thenfor ail

séquences 0 = r 0 < r 1 < ... < r l = N,

Proof. By Proposition 4.9, eLIe

Ll Çf) is calculated by the order of growth
of

Exactly as in Proposition 4.3, for each n, we introduce using the r/s an

approximating idéal sheaf J'
n

:

where Jn>oJ

n>0 c Jn>lJ
n>1 a ... c J n>N =®x for N>o. Since

it follows that



dim (H° (X x Al,A
1

, L'i)/H 0
(X x Al,A

1

, J n

. L\)

f dim(H°(X,L n )IH°(X,J nik .L n
))

k = 0

The rest of the proof follows Proposition 4.3 exactly, using 4.9 again to

get the estimate

Corollary 4.11. If in Proposition 4.10, X is a curve

If X is a surface,

We now show how this upper bound proves the asymptotic stability of

non-singular curves. It turns out that the estimate is, however, not sufficiently
sharp to prove the asymptotic stability of curves with ordinary double

points: more precisely, if </ is the idéal associated to a 1-PS À with nor
malizedweights p t then the estimate of the corollary may be greater than
2 deg X

•LPi ( c f- Theorem 2.9)

Theorem 4.12. If C
1 cPN is a linearly stable (resp. : semi-stable)

curve, then C is Chow stable (resp.: semi-stable).

Proof. We prove the stable case; the semi-stable case follows by

replacing the strict inequalities in the proof by inequalities.
Fix coordinates X o , ...,

XNX
N on P^ and a 1-PS



Let Jbe the associated idéal on O
Cx A i and let J k c (9

C
be the idéal defined

N

by J k .L = [sheaf generated by X k , ..., Z N ]; thus ./ = £ *
Pfc </*• The

linearstabilityofZ implies (cf. 2.16), e(J k
) <—— . codim <Xk,...,X

k ,...,X N >

deg C
.

k

= — .
So using Corollary 4.11,

N

2 deg C
N

In view of the Lemma below this implies e L Çf) <— —XP/ which in
iv + 1 j=o

turn implies C is stable by Theorem 2.9.

Lemma 4.13. If p o^± ... p w =0, r/z^/i

Proof Draw the Newton polygon of the points (/c, p fc
) as shown below

The left hand side is just the area under this polygon so moving the points
above the polygon down onto it as shown, does not affect this expression.
Since this can only decrease the right hand side we may assume ail the p t

are on this polygon. Then the left hand expression can be calculated with
s

k
= k and it becomes



since the Newton polygon is convex. But the last expression is just
n

(p 0 + ... + p n
), hence the lemma.

n + 1

Theorem 4.14. // CcP^ is a smooth curve embedded by F (C, L)
where L is a Une bundle of degré e d, then

i) d > 2g > 0 => C linearly stable,

ii) d 2g o=>C linearly semi-stable.

Combining this resuit with Theorem 4.13 gives the main theorem of this

section :

Theorem 4.15. If Cisa smooth curve ofgenus g 1 embedded by a

complète linear System of degré e d > 2g then C is Chow-stable.

Proof of 4.14. Consider ail morphisms cp: C->C -> P" for ail n, where

(p (C) cj: hyperplane. Let us plot the locus of pairs (deg q> (C), n), where

cp (C) is counted with multiplicity if (p is not birational. Note that, if <p*(9 (1)

is non-special, then by Riemann-Roch on C :

while if (p*(9 (1) is spécial, then by Clifford's Theorem on C:



This gives us the diagram

The reduced degree of cp (C) is just d/n, the inverse of the slope of the

joining (0, 0) to the plotted point («, <i). In case (i), by assumption, the

given curve C
1 œFN corresponds to a point on the upper bounding

segment, such as * in our picture. Any projection of C corresponds to a

point (n, d') in the shaded area with d' < n. From the diagram it

is clear that the slope decreases, or the reduced degree increases: this is

exactly what linear stability means. In case (ii), we allow the given curve C

to correspond to the vertex (2g, g) of the boundary, or allow g = 0, when

the boundary line is just n = d. In thèse cases, the slope at least cannot

increase, or the reduced degree cannot decrease under projection.

Remark. Curves with ordinary double points are not, in gênerai,

linearly stable since projecting from a double point lowers the degree by 2,

but decreases the dimension of the ambient space by only 1. In fact, linear

stability is somewhat too strong a condition for most moduli problems:
Chow stability for varieties of dimension r apparently allows points of

multiplicity up to (r+ 1) ! while linear stability allows only points of multi
plicityup to r !



§5. The Moduli Space of Stable Curves

Our main resuit is:

Theorem 5.1. Fix n^s, and for any curve C ofgenus g let $
n (C)

ci p(2n-i)(*-D-i be the image o f c embedded by a basis of F (C, œ® n
).

Then if C is moduli-stable, <P
n (C) is Chow stable.

In view of the basic results of § 1, and those of [20], this shows:

Corollary 5.2. (F. Knudsen) Jd
g

is a projective variety.
Recall that C moduli-stable means

(1) C lias at worst ordinary double points (by Proposition 3.12, this is

necessary for the asymptotic semi-stability of C) and is connected,

(2) C has no smooth rational components meeting the rest of the curve
in fewer than three points:
this condition is necessary to ensure that C has only fînitely many

automorphisms.

We will call C moduli semi-stable if it satisfies (1) and

(2
r

) C has no smooth rational components meeting the rest of the curve
in only one point.

Note that if C is moduli semi-stable, then the set of its smooth rational

components meeting the rest of the curve in exactly 2 points form a finite

set of chains and if each of thèse is replaced by a point, we get a moduli
stable curve:

We will case thèse the rational chains of C.



It would be more satisfactory to hâve a direct proof of Theorem 5.1

similar to the proof of the stability of smooth curves given in § 4. But

curves with double points are not usually linearly stable (cf. the remark

following Theorem 4.14) and, in fact, the estimâtes in Corollary 4.11 do not

suffice to prove stability for such curves. We will therefore take an indirect

approach.

Proof of S A. We begin by recalling the useful valuative criterion:

Lemma 5.3. Suppose a reductive group G acts on a k-vector space V.

Let K=k ((0) and suppose xeV K
is G-stable. Then there is a finite

extension K' =k' ((*')) => X, and éléments ge GG
K >, Xe (K')* such that

the point Xg (x) e V®k K' lies in V®k k' [[t']\ and specializes as t- 0

to a point Xg (x) with closed orbit. Thus Xg (x) is either stable or semi

stablewith a positive dimensional stabilizer.

Proof. The diagram below is defined over k

The point n (x) eXK specializes to a point n (x) e X k . Let ybe a lifting
of this point to V

ss
with OGO

G
(y) closed. In the scheme V x Spec k [[t]] form

the closure Z of G
w .

OGO
G

(x). The lemma follows if we prove that yeZ.
If y$Z, then Z and OGO

G
(y) are closed disjoint G invariant subsets of

V x Spec k [[t]], hence there exists a homogeneous G-invariant / such that

/(x) = 0 but /(y) 0. Then for some n,f® n descends to a section of some

line bundle on Xx Spec k [[t]]. But then f(n (x)) =0 and f(n (x)) 0

are contradictory.
Now suppose that C is a moduli stable curve of genus g over k. Let

| W/k [[t]] be a family of curves with fibre C
o over t = 0 equal to C and

! generic fibre C
n

smooth. At the double points of C
o ,

# looks formally
! like xy = tt

n9n

9
that is has only n _ 1 -type singularities and hence is normal.

Embed C
n

inP* (N= (2n-l) (g-l)- by F (C, co Ci
® n

) and let #((?,)
dénote its image there. Then Lemma 5.3 says that by replacing k [[t]] with
some finite extension and choosing a suitable basis of F (C tp cacr,®") — this



corresponds to choosing g, À — we may assume that the closure @ in PNP
N

x Spec k [[t]] of <ï> (C
n

) satisfies

i) A, = C
n

ii) D o Chow-stable or Chow semi-stable with positive dimensional
stabilizer.

I now claim:

(5.4) Qt = <f> (#), the image of # under ak [[/]] basis of

In particular this implies D o
= C

o
= C and since C has finite stabilizer

this means £>
0 ,

hence C, is Chow stable.

The main step in the proof of (5.4) is to show that D
o

is moduli semi
stableas a scheme, and the key difficulty in doing this is to show that D o

has only ordinary double points. At first glance, this seems rather obvious,
since from Proposition 3.12 it follows easily that as a cycle D o

has no

multiplicities and has only ordinary double points. But ordinary double

points on a limit cycle arise in two ways :



In the second case the scheme D
o

has an embedded component (the first

order normal neighbourhood in the z-direction) at the double point so in

the limit scheme the double point is not ordinary. If case (ii) occurred for

D o ,
then since D o

is Chow semi-stable, it must span P^ set-theoretically.

But r(D o ,O DQ (l)) has a torsion section supported at the double point:

so D o would hâve to be embedded by a non-complete linear System £

c r(D 09
(9

Do (1)) of torsion-free sections, dim £= dim H° (D n ,
(9

Dr] (1)).

Consequently H 1

(D o ,
(9

Do (1)) (0) too. That this cannot happen in the

situation of (5.4) follows from:

Proposition 5.5. Let CcP" be a l-dimensional scheme such that

a) »+l= deg C+* (0 C )> X (#c) <0,

b) C is Chow semi-stable,

degC 8

c) < - .

77+1 7

Then i) Cis embedded by a complète non-spécial
1

) linear system,

ii) C is a moduli semi-stable curve with rational chains of length at most

one consisting of straight Unes.

deg C
Moreover ifv = — - — (where œ c is the Grothendieck dualizing sheaf) and

deg œ c

C= Q uC 2
is a décomposition of C into two sets of components such that

if = C
x nC2 and w= #iV then

iii)

Remarks. 1) It is clear that D
o satisfies the hypothèses of the lemma.

îndeed a) is satisfled by D
n

and is preserved under specialization. The key

point of the Proposition to replace this by the stronger condition i)

2) Roughly, iii) says that the degrees of the components of C are roughly
in proposition to their "natural" degrees. We will see later on that this is

enough to force Q) = cê.

Proof From b), c) and Proposition 3.1 we know that the cycle of C

has no multiplicity and only ordinary double points. Hence C reH
is a scheme

x
) Non-special means H 1 (C, Oc (1)) = (0).



having only ordinary double points and differing from C only by embedded

components.
Suppose we are given a décomposition C

red =C1 uC2; let W=Ct
n C

2 , w= # #", L; be the smallest linear subspace containing Q and

«j = diniL;. We can assume L
1

= V (X ni +1 ... JQ. For the 1-PS X given by

the associated idéal Jin 0c re d xAl i s given by «/ = (/, /(L 1 )). To evaluate

£ (</) we use an easy lemma whose proof is left to the reader

Lemma 5.6. If X' -L-.^ X is aproper morphism of r-dimensional, possibly
reducible "varieties", birational on each comportent, L is a Une bundle on

X, and J> is an idéal sheaf on X such thaï supp (0 x /t/) is proper, then

e f . iL) (f*(S)) = e L {f).

Letting J t
be the pullback of J> to C

i9
the lemma says e L (J) = eLIe

Ll (J x
)

+ e
L2 Çf 2 )- ut = É-^dxAi an( i support J>

2 contains (0) xor so

this implies 1
) e L («/) 2 deg C

1 +w. Using b) and Theorem 2.8 this gives

(5.7)

If Ci as any component of C red ,
then this implies:

a) H 1

(C l5
(P

Cl (1)) =o:if not, then by Clifford's theorem

*) This argument has a gap: see Appendix, p. 108



so by (5.7)

which implies deg C
1

£É 2, hence C
1

is rational and then H 1

(C l 5
OCI0

Cl (1))

= (0) anyway.

b) i/ 1

(C 1 ,0 Cl (l)(- = (0): indeed from (5.7) and Riemann-Roch,

The last expression is greater than 2g 1
— 2 unless w = 0, when b) reduces

to a), or g 1 =0 and w= lor2. But in this case OCI0

Cl (1) (-#") = 00
P i (e),

with e 1 - 2 = - 1
.

Together a) and b) imply i/ 1

(C, 0
c (1)) =o.ln fact, if C

red has com
ponentsC f ,

then there is an exact séquence

where M has 0-dimensional support, hence H 1

(C red , @c
T&d (1)) = an d if

J^ is the sheaf of nilpotents in OC90

C9 then Jf has 0-dimensional support and

the conclusion follows from an examination of the exact séquence

Therefore hypothesis (a) can be rewritten n + 1 = h° (® c (1)). Since C

is not contained in a hyperplane, C is embedded by a complète linear

System. But now if Jf (0), then set-theoretically C will still be contained
in a hyperplane, contradicting its Chow semi-stability; so C= C

red and

ail that we hâve said about C red above is true of C.

Using the fact that

it follows that deg C/n + 1 = 2v/2v - 1 and we can rewrite (5.7) in ternis
of v as

or equivalently



Then since

w
we obtain iii): — v deg Cl (œ c ) — deg C

1

Now suppose C has a smooth rational component C
1 meeting the rest

of the curve in w points P u ..., P
w . Then œ c |Cx is just the sheaf of dif

ferentialson C
1 with pôles at P u ...,

PwsP

w5 so if w 2, deg Cl (co c ) 0. Using

iii) this shows deg C
1 - if w = 1

, absurd, and deg C
1 f= 1 if w = 2.

Moreover, if, in this last case one of the P
x

lies on a smooth rational curve
C2C

2 meeting the rest of Cin only 1 other point, as in the diagram below

then œ c
\

CjL
(P

Cl and œ c \CI C2 so deg Cl uC2 (cp c ) =0. Using iii)

again, we find deg (C 1 u C
2

) - 2 = 1, and as this is absurd, we hâve

proved ail parts of the Proposition.
We are now ready to show that Q) = cê. Since DQD

Q
is moduli semi-stable,

it follows that Sf is a normal two-dimensional scheme with only type A
n

singularises. Moreover co%
n/k[LtUn

/k[LtU
is generated by its sections if n 3 and

deflnes a morphism from Çè to a scheme [[ ? ]]
?

where D'^ = D,
7 ,

Dq = Z)
o with rational chains blown down to points. Thus $)' is a family

of moduli-stable curves over k [[/]] with generic fibre %>

r
Since there is only

one such (cf. [6]), it follows that Q}' =
. Thus we hâve a diagram:



LetL =Gs (1). It follows that L û)|/ fc[[f]] (-£ r^), where D
f are the

components of Z>
0 . Multiplying the isomorphism by t mm(ri \ we can assume

r t
0, min r t =0. Let D

1
= u Z>

f ,

D 2D
2

= u £> If /isa local

équation of £ r t^u then /#om any component of D
1

since r f =oon
ail thèse while/(x) =0, ail xe D

t n D 2,D

2 , so

But this last degree equals (deg D± -n deg^ (co
Do )) which contradicts iii)

of Proposition 5.5 unless ail r f are zéro. Hence L= œ§ n which shows

9 = <g.

LINE BUNDLES ON THE MODULI SPACE

For the remainder of this section we examine Pic (Jiï
g

). We fix a genus

g 2 and an e 3. Then for ail stable C, cof e is very ample and in this

embedding C has degree d = 2e (g — 1), the ambient space has dimension

v-1 where v= (2e- 1) (# — 1) and C has Hilbert polynomial P (X)
= dX - (g — l). Let H c Hilbpv-i be the locally closed smooth subscheme
of e-canonical stable curves C, let CaHx p v ~ x

be the universal curve
and let

be the Chow map. Thèse are related by the diagram

If Pic (H, PGL (v)) is the Picard group of invertible sheaves on H with
PGL (v)-action, we hâve a diagram



In this situation, we hâve:

Lemma 5.8. In the séquence aboyé, p* is injective with torsion cokernel

and a is an isomorphism.

Proof. ais an isomorphism by Prop. 1.4 [14]; p* injective is easy;
coker p* torsion can be proved, for instance, using Seshadri's construction,
Th. 6.1 [19].

This lemma allows us to examine Pic (Jf
g

) by looking inside Pic (H) PGL{v)

which is a much easier group to corne to grips with.

Définition 5.9. Let A a Hbe the divisor ofsingular curves, ô = (9
H {A)

and X
n

= AA m * x
{n*{Œ> ClH ®%{n^\). We write X for X

v

The sheaves X
n

and ô are the most obviously interesting invertible sheaves

on H from a moduli point of view. The next theorem expresses ail of thèse

in terms just involving X and Ô.

(n)(
n

)

Theorem 5.10. X
n

= }T 2)T

2) ®X where pi = Xl2X
12

(g) ô~\

Proof. The proof is based on Grothendieck's relative Riemann-Roch
theorem (see Borel-Serre [4]), which we will briefly recall.

Let X and Y be complète smooth varieties over k, A (X) be the Chow

ring of X and 3F be a cohérent sheaf on X. Let c t (#") e A (X) dénote the

z
th Chern class of J% Chern (#") eA (X) ®Q its Chern character and

2T (#") e A (X) (x) Q its Todd genus. Thèse are related by:

c ( <^)2)
2

(5.11) Chern (#0 =rk +cY (&) + Al^L _Ci (jr)

+ terms of higher codimension,

+ terms of higher codimension.

Let K (Y) be the Grothendieck group of 7, /: X -» Ybe a proper map,
and /,(#") = X("l) i

[R
i/*^]e^(y).i /*^]e^(y). The relative Riemann-Roch

theorem expresses the Chern character of/, (#"), modulo torsion as



which using (5.11) gives

(5.12)

For the time being, we work implicitly modulo torsion.

Now suppose #" is a line bundle such that R*/* {3F} = 0, / > 0 and

suppose dim X = dim 7+l. Then the codimension 1 term on the left of

(5.12) (i.e. on Y) corresponds to the codimension two term on the right

(i.e. on X). Since c2c

2 {3F} = 0, this gives

(5.13)

In case / : C -» S is a moduli-stable curve over S, X = C and Y = S,

we can simplify this. Indeed I claim that if Sing C is the singular set on C

and / sing
is its idéal, then

i) codim Sing C = 2

ii) the canonical homomorphism Oc /s ~> œc/sœ

c/s induces an isomorphism
&C/S = '

œC/Sœ

C/S-

We certainly hâve the isomorphism of ii) off Sing C. At a singular point C

has a local équation of the form xy = t
n

,
where tisa parameter on S,

x and y are affine coordinates on the fibre. Moreover locally C is singular
only at the points (0, 0) in the fibres where t = 0, so Sing C has codimension
2. Near the singular point

while œc/sœ

c/s
is the invertible sheaf generated by the differential C which

is given by dx/x outside x = 0 and by — dy/y outside y = 0. Thus

Recall the following corollary to Riemann-Roch : if X is a smooth variety,
Y c la subvariety of codim r and 3F is cohérent on Y, then considering 3F

as a sheaf on X



Set X=C,Y= Sing C and &= QQ
l

CjS . The Whitney product formula
applied to the chern classes of the exact séquence

gives, taking account of the corollary

Equating ternis of equal codimension, we see that c 1 (Qc /S
) =c1 (œ) and

C2C

2 (Qc/s) = t Sin g c ] so that ( 5
-

13 ) becomes

Applying this to the map n: C -> //, when #" = cof^ gives

Settingi) «=l,we see that X= Mf!^/^) +
M"| and Kj;; ( Ci (û , c/h) 2)

= 12/1 - [A]. Plugging thèse values back in gives us the theorem up to

torsion. But in fact:

Lemma 5.14. Over C, Pic (H, PGL (v)) is torsion free.

Note that this will prove what we want because the invertible sheaves that

we are trying to show are isomorphic ail "live" on the full scheme H z over

Spec Zof stable curves. If they are isomorphic on H z , they

are isomorphic after any base change. But on the other hand, I claim that

Pic (H, PGL (v)) injects into Pic (H c ,
PGL C (v)):

x
) For «=l, jR l^ (cùc/h) is not zéro, but it is the trivial line bundle, hence doesn't

affect tt i .



If L is a line bundle on H with PGL (v) action such that L ® C is trivial

over // c ,
then

since 77
c / PGL(v)

is compact. Thus we can find a non-zero section .y

g H° (H,L) PGL(v \ which over C can be used to give the trivialization a.

Over C, s has no zéros so the divisor (s) 0 of the zéros of s on H, has support

only over the closed fibres of Spec (Z). Mumford and Deligne [6] hâve

shown that H- Spec Z is smooth with irreducible fibres, hence (s) 0

/ s\
=Yrt te"

1

(p), r t
0 i.e. (j) 0

= (ri) for some integer «. Then - is a

global section of L with no zéros so L is trivial.

Proof of Lemma. Over C, we hâve Teichmùller theory at our disposai.
Let 77 be a standard model of a group with generators {ah b

L |1?~i g]
g

mod the relation f| (ap^J
1

b^
1

) =1. Then the Teichmùller modular
i = l

group r is

The Teichmiiller space is given by

Fix a model M^ of the real surface of genus g, and identify n^ (M
g

) and
77. Then T is generated by the maps which are induced by certain auto
morphismsof M

g ,
called Dehn twists. The Dehn twist h

y corresponding to

a loop y: [0, 1] -> M
g on M

g
is given by taking an e-collar y x [-s, s]

about y, letting A = identify off the collar and letting h(y (t),rj-e)

=(y 11
1 H )

, rç —e| as shown below.
VV 2 fi ; ;



Up to inner automorphism h
y

is déterminée! by which of the pictures below
results from cutting open M

g along y. We hâve name thèse éléments of F

in the diagrams:

The Dehn twist h
y

can also be described as the monodromy map
obtained by going around a curve C

o with one double point for which y

is the vanishing cycle.

The components of A c H correspond to the différent ways of putting
a stable double point on a smooth moduli stable curve C. They are the clo
suresof the sets of curves of the forms shown below : again, we name thèse

components in the diagram:



Suppose we are given a line bundle L on H with PGL (v)-action such that

L" = (9
M .

L induces a cyclic covering H' of H plus a lifting of the PGL (v)

actionto //'. If we choose « minimal this covering is not split: we dénote

its structure group by F L . Let H' be the pullback of covering over H, and

let ZT'
g

dénote the quotient of H' by PGL (v)— this is a covering of 5~
r

Thèse coverings are related by

ZT
g

is simply connected so the cover 3T'
g

-> 3~
g splits, hence so does H'

-* H. A section of this last cover gives a map from H to H' - A' (shown
dashed in the diagram), so FLF

L
is a quotient of F, of finite order.

Let y' [resp. y e
] be a loop at a fixed base point P

o eH— A going around

A' [resp.: A
e

] but homotopic to oinH. Fix a point P
o eH over P

o . The

monodromy characterization of the Dehn twists implies that y' [resp. : y e
]

lifted to H goes from P
o to h' (P o ) [resp.: to A

e
(P o )]. Since y' [resp.: yj

are homotopic to 0 in H, and the covering H' — A' extends over H, this

implies that the image of h' [resp. : h
t
] in TLT

L
is 0. But thèse éléments and their

conjugates generate F
L , so FLF

L ={I}, hence L (P
H , proving the lemma

and the theorem.
In order to describe the ample cône on Pic (J/

g
) we prove:

Theorem 5.15. Ch* ((9 Diy (v)) - (// ® x~y {g - X)



Proof. The proof dépends on a resuit which we simply quote from

Fogarty [8] or Knudsen [12]:

Proposition 5.16. Let S be a locally closed subscheme of a Hilbert
scheme Hilbpv-i, Ch be the associated Chow map Ch:S-> Div and

Z c P v x £ hâve relative dimension r over S. Then ifn > 0, AA m * x
p 2f * (^zOO)

r+l (!)
= ® fi t

l and Ch* (0 Div (1)) = fi r +i, where fx { are suitable invertible
/ = 0

sheaves on S.

In the situation of our theorem, with S = H and Z= C, c (1) = o$fH

® n*Q where Q is the invertible sheaf determined by {n^(û®fH ) ® Q

=n* <9
C (\) = n*(9 Fv-iF v-i (1) = @

V

H ,
hence

(5.17)

On the other hand,

This has leading term in n of /i
n2c2/2 ® g 2^- 1 » 2

so

using (5.17) .

Finally, therefore, Ch* (0 Div (v)) = ff^ 9 '^ ® r 4e( «-v as required.

Corollary 5.18. If e 5, fi
e ® A" 4 (-2 12c ~4®(5~ 4 ®(5" e

) w "am/?/e o«

Jtg\ i.e. those positive powers of this bundle which are pull-backs ofbundles
on Ji g are ample on M r

Proof. This is an immédiate conséquence of the Theorem and our main

resuit: that PGL (v)-invariant sections of Ch* (0 Div (1)) defîne a projective

embedding of Ji g .

Remark 5.19. A similar argument using the facts that

(1) w® e is base point free for ail canonical curves when e 2

(2) smooth curves are stable if d > 2g,

shows that if e 2, the sections of Xl2eX
12e 4®ôeon Ji g separate points

on Jt
g .

To get a good picture of the ample cône on Ji g
we need to use the

realization via 0 functions se gA
—^~^ PNP

N of the moduli scheme se gA of



principally polarized abelian varieties. More precisely, let / : Jt
'

g
-> stf

gA

be the map taking a curve C to its Jacobian. Then we hâve :

Theorem 5.20. In characteristic 0, the morphism Ji
g — -> se 9il — --> PNP

N

extends to a morphism jfg — -_ P^ so that for some m, 0*((P p jv (1)) = À m
.

Proof. See Arakelov [1] or Knudsen [12].

Remark. This should also hold in characteristic p, but it seems to be

a rather messy problem there.

Putting together 5.18 and 5.20, we get a whole sector in the (a, Z?)
suchthat X

h
® ô~ a is ample for (a, b) in this sector. This is depicted in the

diagram below:

The fact that X and XllX
11

(g) ô i
are not ample can be seen by examining

the following 2 curves in J^:

(1) If S
1

is a curve in M g composed of curves of the form



where CC
g _ 2

is a fixed genus (g — 2) component, then X|Sl= (9
Sv hence

sections of X always collapse such familles.

(2) If S2S
2

is a curve in Jt g composée of curves of the form

where CC
g _ l

is a fixed genus (g —1) component, then XllX
11 ®ôl| St)

= (9
S

2

i.e. XllX
11

® ô' 1

collapses thèse families.
We omit the détails.

APPENDIX

We wish to fill in the gap in the proof of Proposition 5.5 on page 95.

The difficulty occurs if the support of ./, i.e. (0) xLu contains some of the

components of C2C
2 meeting C

x . In this case, the inequality

is not clear. Indeed, if D u ..., D
k are the components of C2C

2 meeting Cl,C
1 ,

w t
= # {D^C^, and jf \ is the pull-back of J 2J

2 to D h then



Now suppose C
1

is irreducible and D
t Ç L

x . Then (5.7) is modified to

Since C
x spans L l9 n 1 < deg Cl.C

1 . Substituting this, we find

hence deg D
t < deg C

1 (except in the lowest case deg C
t

= 1; in this

case, C
1

is a line, so C
1 =Lx and Supp C/f {=Dt nLx <= /).). Now the

reverse of this inequality cannot be true too. This means that if we apply

the same arguement to

then the linear span MofDt cannot contain C v Therefore

This proves (5.7) if C
1

is irreducible, hence (a) and (b) that follow are

correct. In particular, (b) shows that O
Cl {\){-iV^) always has sections,

unless C
x

is a line and #iV=2. The next paragraph shows that C is em
beddedby a complète linear System. So when JT (0 Cl (1) (--jF)) # (0),

there is a hyperplane containing ail components of C except Cl.C
1 . Returning

to the gênerai case of (5.7) where C
1

is any subset of the components of C,

it follows that the linear span L
±

of Q contains only C
l and the Unes D

t

which meet C
1

in 2 points. For thèse, # (DinC^ = 2degD h so in ail

cases it is true that e L (j^ 2 ) > was required.
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