Complex Analysis and Algebraic Geometry

A Collection of Papers Dedicated to K. Kodaira

edited by

W. L. Baily, Jr. and T. Shioda

University of Chicago

University of Tokyo

Iwanami Shoten, Publishers Cambridge University Press 1977

Enriques' Classification of Surfaces in Char. p, II

E. Bombieri and D. Mumford

Introduction and Preliminary Reductions

The purpose of this paper is to carry further the extension of Enriques' classification of surfaces from the case of a char. 0 groundfield to the case of a char. p groundfield. The first part of this extension was made in the paper [10] of one of the present authors. The main results of that paper are as follows¹⁾ : let X be a non-singular complete algebraic surface without exceptional curves over a field k of any characteristic. We may divide such X's into 4 classes :

- a) \exists a curve C on X with $(K_x \cdot C) < 0$
- b) \forall curve C on X, $(K_x \cdot C) = 0$, or equivalently, for any $l \neq$ char. p, the fundamental class $[K_x] \in H^2_{\acute{e}t}(X, Q_l)$ is zero.
- c) $(K_x \cdot C) \ge 0$ for all curves C and $(K_x^2) = 0$ but $(K_x \cdot H) > 0$ for all ample divisors H.

d) $(K_x \cdot C) \ge 0$ for all C and $(K_x^2) \ge 0$, hence $(K_x \cdot H) \ge 0$ for all ample H. (Other cases are excluded by using the following well-known consequences of Hodge's Index Theorem : (1) $(K_x \cdot H) = 0$ for some ample H, $(K_x^2) \ge 0$ implies $(K_x \cdot C) = 0$ all C and (2) $(K_x \cdot C) \ge 0$ all curves C implies $(K_x^2) \ge 0$). Then in [10], it is proven that

- (a) holds $\Leftrightarrow X$ is ruled, in which case $|nK_x| = \phi$, all n.
- (b) holds \Leftrightarrow either i) $2K_x \equiv 0$
 - or ii) $\exists \pi : X \to D, D$ a curve, almost all fibres of π nonsingular elliptic and hence $nK_x = \pi^*(\mathfrak{A})$, \mathfrak{A} divisor on D of degree 0, $n \ge 1$ an integer.
- (c) holds $\Leftrightarrow \exists \pi : X \to D$ almost all fibres either non-singular elliptic or rational with one cusp, hence $nK_x = \pi^*(\mathfrak{A})$ where deg $(\mathfrak{A}) > 0$, $n \ge 1$.
- (d) holds $\Leftrightarrow |nK_x|$ is base-point free and defines a birational map from X to \mathbf{P}^N , for $n \gg 0$. Moreover, in this case $|2K_x| \neq \phi$.

Our *first goal* in this paper is to prove the following result, well known in char. 0 :

Theorem 1. In cases (b) and (c), either $|4K_x| \neq \phi$ or $|6K_x| \neq \phi$. Therefore, in case (b), either $4K_x \equiv 0$ or $6K_x \equiv 0$, and in case (c), either $4K_x$ or $6K_x$ is represented by a

¹⁾ The notation used is summarized below in "list of notations".

positive divisor.

In particular, this shows that the 4 cases above correspond to the classification of surfaces by Kodaira-dimension κ , i.e.,

$$\kappa = \text{tr. deg.}_{k \bigoplus_{n=0}^{\infty}} \Gamma(X, \mathcal{O}(nK_{X})) - 1.$$

Then we see that:

In case (a), $\kappa = -1$ In case (b), $\kappa = 0$ In case (c), $\kappa = 1$ In case (d), $\kappa = 2$.

Thereafter, our *next goal* in this and a subsequent 3^{rd} paper is the further analysis of all surfaces in case (b). It turns out that these can be divided into 4 types by *their Betti numbers*. This division into 4 types is based on a rather mysterious calculation that appears again and again in all work on the classification of surfaces. This calculation is as follows:

Assume $(K_x^2) = 0$. Then by the Riemann-Roch theorem on X,

(1) 12(dim
$$H^{0}(\mathcal{O}_{X})$$
-dim $H^{1}(\mathcal{O}_{X})$ +dim $H^{2}(\mathcal{O}_{X})$)
= $c_{2,X}$
= B_{0} - B_{1} + B_{2} - B_{3} + B_{4}

hence substituting $l=B_0=B_4=\dim H^0(\mathcal{O}_x)$, we find

(2) $10+12 p_g = 8 \dim H^1(\mathcal{O}_x) + 2(2 \dim H^1(\mathcal{O}_x) - B_1) + B_2.$

Write $\Delta = 2 \dim H^1(\mathcal{O}_x) - B_1$. This is a "non-classical" term because when $\operatorname{char}(k) = 0$, then $\Delta = 0$. In fact, we know that for almost all primes l:

$$(\mathbf{Z}/l\mathbf{Z})^{B_1} \approx H^1_{i\ell}(X, \mathbf{Z}/l\mathbf{Z})$$

$$\cong \{x \in \operatorname{Pic}(X) \mid lx = 0\}$$

$$\cong \{x \in \operatorname{Pic}^0(X) \mid lx = 0\}$$

$$\approx (\mathbf{Z}/l\mathbf{Z})^{2q}$$

hence in any characteristic $B_1 = 2q$. On the other hand,

 $H^1(\mathcal{O}_X) \cong [\text{tangent space to } \operatorname{Pic}(X) \text{ at } 0].$

Thus if char(k) = 0, Pic(X), like any group scheme, is reduced, hence

$$\dim H^{\scriptscriptstyle 1}(\mathcal{O}_{x})=q$$

and $\Delta = 0$. In general, we conclude that

$$\dim H^{1}(\mathcal{O}_{X}) \geq q$$

hence $d \ge 0$, d even. We can say a bit more : if β_i are the Bockstein operators from $H^1(\mathcal{O}_x)$ to $H^2(\mathcal{O}_x)$, we know ([9], Lecture 27) that

tangent space to
$$\operatorname{Pic}_{\operatorname{red}}^{0} \cong \bigcap_{i=1}^{\infty} \operatorname{ker}(\beta_{i})$$

hence

$$\frac{T_{P}}{\dim(\widetilde{\operatorname{tang.sp.to}}\operatorname{Pic}^{0}) - \dim(\widetilde{\operatorname{tang.sp.to}}\operatorname{Pic}^{0}_{\operatorname{red}})} = \dim H^{1}(\mathcal{O}_{X}) - \dim \bigcap_{i=1}^{\infty} \ker \beta_{i} \\ \leq \dim \bigcup_{i=1}^{\infty} \operatorname{Im} \beta_{i} \\ \leq p_{g}.$$

Thus

$$\Delta = 2(\dim T_P - \dim T_{P, red}) \le 2p_g.$$

Although it is not used in what follows, it is interesting at this point to consider what happens for arbitrary *analytic* surfaces over C. The equation (2) is perfectly valid and in this case Kodaira ([4], p. 755, Th. 3) has shown that $\Delta = 0$ or 1 according to the parity of B_1 .

Now assume that the surface X has $\kappa = 0$, i.e. : $(K_x \cdot C) = 0$ for all curves C. Then not only is $(K_x^2) = 0$ but either $p_g = 0$ or $p_g = 1$ and $K_x \equiv 0$. It is then easy to list all solutions to equation (2) :

Table of Possible Invariants for Surfaces with $\kappa = 0$

B_2	B_1	c_2	$\chi(\mathcal{O}_X)$	$\dim H^1(\mathcal{O}_X)$	p _g	Δ	
22	0	24	2	0	1	0	
14	2	12	1	1	1	0	
10	0	10	1	ſo	0	0	
10	0	12	1	1	1	2	
6	4	0	0	2	1	0	
2	2	0	0	∫1	0	0	
<u>د</u>	<u></u> .	~	⁰	2	1	2	
deformation			aer 1	invariants whi only upper sem deformation	ch are i-conti	in gene	ral der

Concerning these categories of surfaces, we shall prove in this paper the following results :

Theorem 5. The surfaces with $\kappa = 0$, $B_2 = 22$, known as K3-surfaces, have the following properties:

i) for all divisors D on X, $(D \cdot C) = 0$ for all curves C implies $D \equiv 0$, hence $\operatorname{Pic}^{0}(X) = (0)$.

ii) X has no connected étale coverings, i.e.,

$$\pi_{1,\operatorname{alg}}(X) = (e).$$

No surfaces with $\kappa = 0$, $B_2 = 14$ exist. Surfaces with $\kappa = 0$, $B_2 = 10$, $p_q = 1$ cannot exist if $\operatorname{char}(k) \neq 2$. E. Bombieri and D. Mumford

Theorem 6. All surfaces with $\kappa = 0$, $B_2 = 6$ are abelian varieties.

Moreover, the following is easy to see from the above table and the results of [15]:

Proposition. If X is a surface with $\kappa = 0$, $B_2 = 2$, then $B_1 = 2$, hence Alb(X) is an elliptic curve and the fibres of the canonical map

$$\pi: X \to \mathrm{Alb}(X)$$

are either almost all non-singular elliptic curves, or almost all rational curves with ordinary cusps. The latter is only possible if char(k)=2 or 3.

We call surfaces of this type hyperelliptic or quasi-hyperelliptic surfaces, depending on which type of fibre π has. In this paper, we shall also analyze hyperelliptic surfaces. However, the analysis of the case of quasi-hyperelliptic surfaces and the case of surfaces with $\kappa = 0$, $B_2 = 10$, which we propose to call *Enriques surfaces* (regardless of whether $K \equiv 0$ or $K \equiv 0$!), we postpone to a 3^{rd} part of the paper. Since Enriques surfaces in char $(k) \neq 2$ are fairly easily seen to have the same behaviour as in char. 0, Part III of this paper will deal largely with the curious pathology of char. 2 and 3.

Finally, for use in § 2, we note that the analysis leading to the Table does not use completely the assumption $\kappa = 0$: in fact, it really only uses $(K_x^2) = 0$, $p_g \le 1$. Thus the analysis also shows:

Corollary. If X is a non-singular complete surface with $(K_x^2) = p_g = 0$, then X belongs to one of the 2 following types:

- i) $B_1 = \dim H^1(\mathcal{O}_X) = 0$, hence $\operatorname{Pic}^0(X) = (0)$; $\chi(\mathcal{O}_X) = 1$; $B_2 = 10$
- ii) $B_1 = 2$, dim $H^1(\mathcal{O}_X) = 1$, hence $\operatorname{Pic}^0(X)$ is a reduced elliptic curve; $\chi(\mathcal{O}_X) = 0$; $B_2 = 2$.

List of Notations

X usually a non-singular projective surface Alb X = Albanese variety of X Pic X = Picard scheme of X Pic⁰ X = connected component of $0 \in Pic(X)$ $q = \dim Pic X = \dim Alb X$, the "irregularity" of X K_X = the canonical divisor class on X $B_i = i^{\text{th}}$ Betti number of X $h^{p,q} = \dim H^q(X, \Omega^p)$ $p_q = h^{0,2} = h^{2,0}$, the geometric genus of X $\omega_X = \Omega_X^2$, the sheaf of 2-forms, if X is smooth = the dualizing sheaf of Grothendieck for general Cohen-Macauley surfaces.

26

1. Kx of Elliptic or Quasi-elliptic Surfaces

An elliptic or quasi-elliptic surface is a fibration $f: X \rightarrow B$ of a surface X over a non-singular curve B, with $f_*\mathcal{O}_X = \mathcal{O}_B$, with almost all fibres elliptic or rational with a cusp (by a result of Tate [15], the latter situation can occur only if char(k) = 2or 3). Note that since the function field k(X) is separable over k(B), almost all fibres are generically smooth. Also every fibre of f is a curve of canonical type¹). At finitely many points $b_1, \dots, b_r \in B$ the fibre $f^{-1}(b_k)$ is multiple, i.e.,

$$f^{-1}(b_{\lambda}) = m_{\lambda}P_{\lambda}$$

with $m_{\lambda} \ge 2$ and P_{λ} indecomposable of canonical type. We have

$$R^{\mathrm{I}}f_{*}\mathcal{O}_{X}=L\oplus T$$

where L is an invertible sheaf and T is supported precisely at the points $b \in B$ at which

dim
$$H^0(f^{-1}(b), \mathcal{O}_{f^{-1}(b)}) \ge 2.$$

To see this, note that by E. G. A. III 7.8, the sheaf $R^i f_* \mathcal{O}_X$ is locally free at b if and only if \mathcal{O}_X is cohomologically flat at b in dimension 0.

This suggests

Definition. The fibres of f over supp T are called *wild fibres*.

Noting that if C is indecomposable of canonical type then dim $H^0(C, \mathcal{O}_c) = 1$ (see Mumford [10], p. 332), we get

Proposition 3. Every wild fibre is a multiple fibre.

In the following, we consider only relatively minimal fibrations $f: X \rightarrow B$, i.e., no exceptional curve of the first kind is a component of a fibre.

Theorem 2. Let $f : X \rightarrow B$ be a relatively minimal elliptic or quasi-elliptic fibration and let $R^{i}f_{*}\mathcal{O}_{x} = L \oplus T$. Then

$$\omega_{X} = f^{*}(L^{-1} \otimes \omega_{B}) \otimes \mathcal{O}(\sum a_{\lambda}P_{\lambda})$$

where

- (i) $m_{\lambda}P_{\lambda}$ are the multiple fibres
- (ii) $0 \leq a_{\lambda} < m_{\lambda}$
- (iii) $a_{\lambda} = m_{\lambda} 1$ if $m_{\lambda}P_{\lambda}$ is not wild
- (iv) deg $(L^{-1} \otimes \omega_B) = 2p(B) 2 + \chi(\mathcal{O}_X) + \text{length } T$

where p(B) is the genus of B.

¹⁾ In the notation of [10], a curve $D = \sum n_i E_i$ is said to be of canonical type if $(K \cdot E_i) = (D \cdot E_i) = 0$ for all *i*.

Note that in the case char(k)=0 or in the complex analytic case there are no wild fibres, so that $a_i=m_i-1$; see Kodaira [4], p. 772, Th. 12.

Proof. For any non-multiple fibre $f^{-1}(y)$ we have

$$\mathcal{O}_{f^{-1}(y)} \bigotimes \omega_X \cong \omega_{f^{-1}(y)} \cong \mathcal{O}_{f^{-1}(y)},$$

hence if y_1, \dots, y_r are distinct general points of B the cohomology sequence of

$$0 \longrightarrow \omega_{X} \longrightarrow \omega_{X} \otimes \mathcal{O}(\sum_{i=1}^{r} f^{-1}(y_{i})) \longrightarrow \bigoplus_{i=1}^{r} \mathcal{O}_{f^{-1}(y_{i})} \longrightarrow 0$$

yields

$$\dim \left| \boldsymbol{\omega}_{\boldsymbol{X}} \otimes \mathcal{O}(\sum_{i=1}^{r} f^{-1}(\boldsymbol{y}_{i})) \right| \geq 0$$

for large enough r. If D is a divisor in the linear system above, we have

$$(D \cdot f^{-1}(y)) = 0$$

hence we can write

$$K_x \equiv (\text{sum of fibres}) + \Delta$$

where $\Delta \geq 0$ is contained in a union of fibres and does not contain fibres of f. Let Δ_0 be a connected component of Δ and let $C = f^{-1}(y)$ be the fibre containing Δ_0 . Then Δ_0 is a rational submultiple of C, i.e., we have

$$C = mP, \quad \Delta_0 = aP$$

where P is indecomposable of canonical type and $0 \leq a < m$. This follows from

Lemma. Let $D = \sum n_i C_i$ be an effective divisor on a surface X with each C_i irreducible. Assume that

$$(C_i \cdot D) \leq 0, \quad all i$$

and that D is connected.

Then every divisor $Z = \sum m_i C_i$ satisfies $Z^2 \leq 0$ and equality holds if and only if $D^2 = 0$ and $Z = \lambda D$, $\lambda \in \mathbf{Q}$.

Proof. Write $x_i = m_i/n_i$. We have

$$Z^{2} = \sum x_{i}x_{j}n_{i}n_{j}(C_{i} \cdot C_{j})$$

$$\leq \sum x_{i}^{2}n_{i}^{2}(C_{i} \cdot C_{i}) + \sum_{i \neq j} \frac{1}{2} (x_{i}^{2} + x_{j}^{2})n_{i}n_{j}(C_{i} \cdot C_{j})$$

$$= \sum x_{i}^{2}n_{i}(C_{i} \cdot D) \leq 0.$$

If equality holds everywhere, we have either $x_i = x_j$ or $(C_i \cdot C_j) = 0$ for all i, j; since D is connected, x_i is constant, i.e., $m_i = \lambda n_i$, $\lambda \in Q$. q. e. d.

Going back to the proof that $\Delta_0 = aP$, if Δ_{ν} are the connected components of Δ , we have

$$0 = K_X^2 = \sum \Delta_\nu^2;$$

since each $\mathcal{A}_{\nu}^{2} \leq 0$ by the previous lemma, we must have $\mathcal{A}_{\nu}^{2} = 0$ and now the equality

case of the lemma proves that Δ_{ν} is a rational multiple of the fibre containing it.

We have proved that

$$\omega_{X} = f^{*}\mathcal{O}_{B}(\mathfrak{A}) \otimes \mathcal{O}(\sum a_{\lambda}P_{\lambda})$$

for some divisor $\mathfrak{A} \in \operatorname{div}(B)$ and integers a_{λ} with $0 \leq a_{\lambda} < m_{\lambda}$. We deduce that

$$f_*(\omega_{\mathbf{X}}) = \mathcal{O}_{\mathbf{B}}(\mathfrak{A}).$$

Now the duality theorem for a map says that

$$f_*\omega_x = \operatorname{Hom}(R^!f_*\mathcal{O}_x, \omega_B)$$
$$= L^{-1} \otimes \omega_B$$

because the dual of the torsion sheaf is 0; this can be found in Deligne-Rapoport [2], pp. 19–20, formula (2. 2. 3). Hence

$$\omega_{X} = f^{*}(L^{-1} \otimes \omega_{B}) \otimes \mathcal{O}(\sum a_{\lambda}P_{\lambda})$$

The spectral sequence of the map f yields

$$\begin{split} \chi(\mathcal{O}_{\mathcal{X}}) &= \chi(\mathcal{O}_{\mathcal{B}}) - \chi(R^{\mathrm{l}}f_{*}\mathcal{O}_{\mathcal{X}}) \\ &= \chi(\mathcal{O}_{\mathcal{B}}) - \chi(L) - \mathrm{length} \ T \\ &= -\mathrm{deg} \ L - \mathrm{length} \ T, \end{split}$$

by the Riemann-Roch theorem on the curve *B*, and since $\deg(\omega_B) = 2p(B) - 2$ we obtain (iv) of Theorem 2.

It remains to prove (iii), and this follows from

Proposition 4. Let m_{λ} , P_{λ} , a_{λ} be as in Theorem 2 and let

$$\nu_{\lambda} = \operatorname{order}(\mathcal{O}_{P_{\lambda}} \otimes \mathscr{I}_{P_{\lambda}}^{-1})$$

where $\mathcal{G}_{P_{\lambda}}$ is the sheaf of ideals of P_{λ} , be the order of the normal sheaf of P_{λ} in X. Then we have

- i) ν_{λ} divides m_{λ} and $a_{\lambda}+1$,
- ii) dim $H^0(P_{\lambda}, \mathcal{O}_{(\nu_{\lambda}+1)P_{\lambda}}) \geq 2$, dim $H^0(P_{\lambda}, \mathcal{O}_{\nu_{\lambda}P_{\lambda}}) = 1$,
- iii) dim $H^{0}(P_{\lambda}, \mathcal{O}_{rP_{\lambda}})$ is non-decreasing with r.

In particular, if $a_1 < m_2 - 1$ then $\nu_1 < m_2$ and this is equivalent to the multiple fibre $m_2 P_2$ being wild.

Proof. Let us write $m, P, a, \nu, \mathcal{G}$ for $m_{\lambda}, P_{\lambda}, a_{\lambda}, \nu_{\lambda}, \mathcal{G}_{P_{\lambda}}$. If $r \geq s \geq 1$, the restriction map $\mathcal{O}_{rP} \rightarrow \mathcal{O}_{sP}$ is surjective, hence dim $H^{1}(P, \mathcal{O}_{rP})$ is non-decreasing with r. Since $\chi(\mathcal{O}_{rP}) = 0$, this proves that dim $H^{0}(P, \mathcal{O}_{rP})$ is non-decreasing too.

We have an isomorphism

$$\mathcal{O}_P \otimes \mathscr{J}^{\nu} \cong \mathcal{O}_P$$

and via this isomorphism we get an exact sequence

$$0 \longrightarrow \mathcal{O}_P \longrightarrow \mathcal{O}_{(\nu+1)P} \xrightarrow{\mathrm{res}} \mathcal{O}_{\nu P} \longrightarrow 0$$

where res is the restriction. Since constants in $H^0(P, \mathcal{O}_{(\nu+1)P})$ are mapped into constants in $H^0(P, \mathcal{O}_{\nu P})$, the cohomology sequence shows that dim $H^0(P, \mathcal{O}_{(\nu+1)P}) \ge 2$. Finally, ν divides both *m* and a+1, because $\mathcal{O}_P \otimes \mathcal{J}^{-m} \cong \mathcal{O}_P$ (trivial) and

$$\mathcal{O}_P \otimes \mathcal{I}^{-a-1} \cong \omega_P \cong \mathcal{O}_P$$

(Mumford [10], p. 333).

It is shown in Raynaud [13], Prop. 6. 3. 5, that $m_{\lambda}/\nu_{\lambda}$ is a power of the characteristic p of k. In particular the multiplicity of a wild fibre is divisible by p, and wild fibres do not occur in char. 0.

Corollary. If dim $H^1(X, \mathcal{O}_X) \leq 1$ we have either $a_{\lambda}+1 = m_{\lambda}$ or $\nu_{\lambda}+a_{\lambda}+1 = m_{\lambda}$. *Proof.* Since $\chi(\mathcal{O}_{(\nu+1)P})=0$ and dim $H^0(P, \mathcal{O}_{(\nu+1)P}) \geq 2$, using duality we find that $\dim H^0(P, \omega_{(\nu+1)P}) \geq 2$.

Now the cohomology sequence of

$$0 \longrightarrow \omega_X \longrightarrow \mathcal{J}^{-\nu-1} \otimes \omega_X \longrightarrow \omega_{(\nu+1)P} \longrightarrow 0$$

yields

$$\dim H^0(X, \mathscr{I}^{-\nu-1} \otimes \omega_X) > \dim H^0(X, \omega_X),$$

since we have dim $H^1(X, \omega_X) = \dim H^1(X, \mathcal{O}_X) \leq 1$ by hypothesis. This increase in dimension is possible only if $\nu + a + 1 \geq m$, or $1 + (a+1)/\nu \geq m/\nu$. Therefore $(a+1)/\nu = m/\nu$ or $m/\nu - 1$. q. e. d.

We conclude this section with a remark on hyperelliptic or quasi-hyperelliptic surfaces.

Proposition 5. Let $f: X \rightarrow E$, E = Alb(X) be an hyperelliptic surface. Then every fibre of f is smooth.

Moreover if $f: X \rightarrow E$ is quasi-hyperelliptic then every fibre of f is a rational curve with a cusp, i.e., there are no reducible fibres.

Proof. Since p(E)=1, $\chi(\mathcal{O}_x)=0$ and $K_x \sim 0$ (~ is numerical equivalence), Theorem 2 gives

$$(\text{length } T)f^{-1}(y) + \sum a_{\lambda}P_{\lambda} \sim 0$$

therefore there are no multiple fibres. Also since the Picard number is $\rho \leq B_2 = 2$, there are no reducible fibres. In the elliptic case the smoothness of f follows by considering the differential $f^*(\omega)$, where $\omega \in \Gamma(\Omega_E^1)$. $f^*(\omega)$ will only be zero at the points where f is not smooth and since these are finite in number,

 $c_{2,X} =$ [number of zeroes of $f^*(\omega)$ counted with multiplicity].

But $c_{2,x}=0$, so $f^*\omega$ has no zeroes, so f is smooth. In any elliptic or quasi-elliptic surface, every irreducible fibre is either a) non-singular elliptic, b) rational with a node, or c) rational with a cusp. In the quasi-elliptic case, the generic fibre is of type (c) and since such a curve cannot specialize to type (a) or type (b), every irreducible fibre is rational with a cusp.

q. e. d.

q. e. d.

2. Proof of Theorem 1

We shall prove here that if $f: X \rightarrow B$ is elliptic or quasi-elliptic, $(K_x \cdot C) \ge 0$ for all curves C and $K_x^2 = 0$, then :

(*)
$$|4K_x| \neq \phi$$
 or $|6K_x| \neq \phi$

In proving this result we may assume $p_g=0$ and use Table 1 as a list of numerical invariants. Theorem 2 implies

$$p_g = \dim H^0(B, L^{-1} \otimes \omega_B)$$

and since $\chi(\mathcal{O}_x) \geq 0$, the Riemann-Roch theorem on B shows that $p_g=0$ implies p(B)=0 or 1 and if p(B)=1 we must also have T=(0). So if p(B)=1 there are no wild fibres and $a_x=m_x-1$ in Theorem 2. If there is a multiple fibre, it is easily seen that $|2K_x|\neq \phi$. If there are no multiple fibres at all, then

$$\omega_X = f^*(L^{-1} \otimes \omega_B)$$

and deg $(L^{-1} \otimes \omega_B) = 0$, thus $K_X \sim 0$ and X is hyperelliptic or quasi-hyperelliptic.

Theorem 3. If X is hyperelliptic or quasi-hyperelliptic, then there is a second structure $f: X \rightarrow P^1$ of X as an elliptic surface over P^1 .

Proof. By the results in [10], it is sufficient to show the existence of a curve C of canonical type, transversal to the Albanese fibration, $\varphi: X \rightarrow E$ with E = Alb(X). Let F_t be the fibre $\varphi^{-1}(t)$ of φ over $t \in E$. There exists a divisor D on X such that

$$(D^2)=0, \qquad (D\boldsymbol{\cdot}F_0)>0,$$

for example some linear combination of an ample divisor and F_0 ; let

$$D_t = D + F_t - F_0.$$

There is a point $t \in E$ such that $|D_t| \neq \phi$. If not, use $\chi(\mathcal{O}(D_t)) = 0$ and the Riemann-Roch theorem to prove

$$\dim H^{\scriptscriptstyle 0}(X, \mathcal{O}(D_t)) = \dim H^{\scriptscriptstyle 1}(X, \mathcal{O}(D_t)) = 0$$

for all t. The cohomology sequence of

$$0 \to \mathcal{O}(D_t) \to \mathcal{O}(D+F_t) \xrightarrow{r_{F_0}} \mathcal{O}_{F_0} \otimes \mathcal{O}(D) \to 0$$

then gives an isomorphism

$$r_{F_0} \colon H^0(X, \mathcal{O}(D + F_t)) \cong H^0(F_0, \mathcal{O}_{F_0} \otimes \mathcal{O}(D))$$

where r_{F_0} is the restriction. Since $(D \cdot F_0) > 0$, there is a non-trivial section $\sigma \in \Gamma(\mathcal{O}_{F_0} \otimes \mathcal{O}(D))$, and let $s_t = r_{F_0}^{-1}(\sigma)$. Clearly $X = \text{closure} \bigcup_{t \neq 0} \text{div}(s_t)$ and $\text{div}(s_t) \cap F_0$ has support in $\text{div}(\sigma)$, for all $t \neq 0$. It follows that as $t \to 0$ we must have $\text{div}(s_t) \to F_0 + C \equiv D + F_0$, and $C \in |D|$, proving our assertion.

We have found a curve C>0 with $(C^2)=0$ and $(C \cdot F_0)>0$, and we claim that C is of canonical type. In fact, since $K_x \sim 0$ and $(C^2)=0$, our assertion will follow from the fact that X has no irreducible curve Γ with $(\Gamma^2) = -2$. Such a curve Γ

cannot be transversal to the Albanese fibering because Γ is rational, and cannot be a component of a fibre, since every fibre is irreducible by Proposition 5.

q. e. d.

In view of Theorem 3, we have only to examine the case in which p(B)=0. Since B is rational, the canonical bundle formula becomes

$$K_{x} \equiv rf^{-1}(y) + \sum_{\lambda} a_{\lambda} P_{\lambda}$$

where

$$r = -2 + \chi(\mathcal{O}_{\mathbf{X}}) + \text{length } T.$$

If H is an ample divisor on X, since $(K_x \cdot H) \ge 0$ we have

$$r + \sum_{\lambda} \frac{a_{\lambda}}{m_{\lambda}} \ge 0$$

Moreover

$$\dim |nK_x| = nr + \sum_{\lambda} \left[\frac{na_{\lambda}}{m_{\lambda}} \right].$$

It is now easy to see, using $\chi(\mathcal{O}_x) \ge 0$ and Proposition 4, Corollary that we can have only the following cases :

- (A) length T=0, so $a_{\lambda}=m_{\lambda}-1$, $\nu_{\lambda}=m_{\lambda}$.
 - If $\chi(\mathcal{O}_x) = 0$, then there are at least 3 multiple fibres and we can have :
 - a) there are 4 or more multiple fibres, i. e., $m_{\lambda} \ge 2$, $1 \le \lambda \le 4$, and then $|2K_x| \ne \phi$.
 - b) there are 3 multiple fibres with all multiplicities $m_{\lambda} \ge 3$. Then $|3K_x| \neq \phi$.
 - c) there are 3 multiple fibres with $m_1=2$, m_2 , $m_3\geq 4$. Then $|4K_x|\neq \phi$.
 - d) there are 3 multiple fibres with $m_1=2, m_2=3, m_3\geq 6$. Then $|6K_x| \neq \phi$.

If $\chi(\mathcal{O}_x)=1$, then there are at least 2 multiple fibres, $m_1, m_2 \ge 2$, and $|2K_x| \neq \phi$. If $\chi(\mathcal{O}_x) \ge 2$, then $|K_x| \neq \phi$.

- (B) length T=1. If $\chi(\mathcal{O}_x)=0$, then $|K_x|=\phi$, so dim $H^1(\mathcal{O}_x)=1$ and Prop. 4, Cor. applies. So if $f^{-1}(P_1)$ is the wild fibre, then we have $a_1=m_1-1$ or $a_1=m_1-1-\nu_1$ where $\nu_1|g. c. d. (m_1, a_1+1)$, while $a_2=m_2-1$, $\nu_2=m_2$ for $\lambda \geq 2$. Moreover there are at least 2 multiple fibres and we can have :
 - a') there are 2 or more multiple fibres with $a_1 = m_1 1$ and then $|2K_x| \neq \phi$.
 - b') the wild fibre satisfies $m_1=3$, $a_1=1$, $\nu_1=1$ (hence char.=3) and the tame fibre satisfies $m_2 \ge 3$. Then $|3K_x| \ne \phi$.
 - c'_1) the wild fibre satisfies $m_1=4$, $a_1=1$, $\nu_1=2$ (hence char.=2) and the tame fibre satisfies $m_2 \ge 4$. Then $|4K_x| \neq \phi$.
 - c'_2) the wild fibre satisfies $m_1 = \mu_1 \nu_1$, where $\mu_1 \ge 4$ (any positive char.). In this case, $a_1/m_1 \ge 1/2$ and $|2K_x| \neq \phi$.
 - d'_i) the wild fibre satisfies $m_1=2\nu_1$, $a_1=\nu_1-1$, $\nu_1\geq 3$ (hence char.=2) and the tame fibre satisfies $m_2\geq 3$. then $|3K_x|\neq \phi$.
 - d'_2) the wild fibre satisfies $m_1=3\nu_1$, $a_1=2\nu_1-1$, $\nu_2\geq 2$ (hence char.=3). In this case $|2K_x| \neq \phi$.

If $\chi(\mathcal{O}_x) \ge 1$, then $|K_x| \neq \phi$. (C) length $T \ge 2$, then also $|K_x| \neq \phi$.

If we specialize to the case $\kappa = 0$, then we easily get the following list of possible multiple fibres for elliptic or quasi-elliptic surfaces $f: X \rightarrow P^1$ with K_x a torsion divisor:

		length T	$\chi(\mathcal{O}_{\mathcal{X}})$	a_{λ}/m_{λ} (*=wild fibre)	order K_X	char.
î	i)	0	0	(1/2, 1/2, 1/2, 1/2)	2	
	ii)	0	0	(2/3, 2/3, 2/3)	3	
tame	iii)	0	0	(1/2, 3/4, 3/4)	4	
cases	iv)	0	0	(1/2, 2/3, 5/6)	6	
	v)	0	1	(1/2, 1/2)	2	
Ţ	vi)	0	2	none	1	
1	vii)	1	0	$(0/2^*, 1/2, 1/2)$	2	2
	viii)	1	0	$(1/2^*, 1/2)$	2	2
	ix)	1	0	$(1/3^*, 2/3)$	3	3
	x)	1	0	$(1/4^*, 3/4)$	4	2
wild	xi)	1	0	$(2/4^*, 1/2)$	2	2
cases	xii)	1	0	$(2/6^*, 2/3)$	3	2
	xiii)	1	0	$(3/6^*, 1/2)$	2	3
	xiv)	1	1	$(0/2^*)$	1	2
	xv)	2	0	one or two wild fibres $0/p^r$	1	þ

Note that each of the wild cases may be thought of as coming from the confluence of 2 tame fibres in one of the tame cases.

3. Analysis of Hyperelliptic Surfaces

In this section, we study more closely surfaces X such that :

a) $\kappa = 0$

b) the Albanese mapping is $\pi: X \rightarrow E$, E elliptic

c) almost all fibres C_x of π are non-singular.

By the Table of the Introduction, it follows also that

d) $B_2 = 2, c_2 = 0, \chi(\mathcal{O}_X) = 0.$

Moreover, by Proposition 5 it follows that

c') all fibres C_x are non-singular elliptic.

By Theorem 3, § 2, we see:

e) There is a second elliptic pencil $\pi': X \to \mathbf{P}^1$ on X.

We want to compare π and π' and see the effect of 2 simultaneous elliptic fibrations! Let C'_y be the fibres of π' . Then all the C'_y are finite coverings of E:

Hence all the C'_{y} are either non-singular elliptic or multiples of non-singular elliptic curves, and

$$p_y = \operatorname{res} \pi : C'_y \to E$$

is an isogeny. Let $S = \{y \in \mathbf{P}^1 | C'_y \text{ multiple}\}$. p_y defines a pull-back on Pic^o:

$$\operatorname{Pic}^{0}(C'_{y}) \xleftarrow{p_{y}^{*}} \operatorname{Pic}^{0}(E).$$

Choosing a base point $x_0 \in E$, we can identify $\operatorname{Pic}^0(E)$ with E by associating the sheaf $\mathcal{O}_E(x-x_0)$ with the point x. As usual, this makes E into an algebraic group with identity x_0 . Now we cannot choose base points on each C'_y varying nicely with y unless $\pi' : X \to \mathbf{P}^1$ has a section. However, we can instead note that $\operatorname{Pic}^0(C'_y)$ acts canonically on C'_y by translations : i.e., the sheaf L of degree 0 maps $u \in C'_y$ to the unique point v such that $L(u) \cong \mathcal{O}_{C'_y}(v)$. Then via the maps p_y^* , we find that E is acting by translations simultaneously on all the curves C'_y . If we stick to the non-multiple curves, it follows easily that this is an algebraic action of E:

$$\sigma_0: E \times \pi'^{-1}(\boldsymbol{P}^1 - S) \longrightarrow \pi'^{-1}(\boldsymbol{P}^1 - S).$$

But since X is a minimal model, any automorphism of the Zariski-open set $\pi'^{-1}(\mathbf{P}^1-S)$ extends to an automorphism of X so we actually get an action :

$$\sigma: E \times X \longrightarrow X.$$

To relate this action to π , say $x \in E$, $u \in C'_{y}$. Then x takes u to v where

$$\pi^*(\mathcal{O}_E(x-x_0))\otimes \mathcal{O}_{C'_{\mathbf{y}}}(u)\cong \mathcal{O}_{C'_{\mathbf{y}}}(v).$$

Let $n = (C'_y \cdot C_x) = (\text{degree of res } \pi : C'_y \rightarrow E)$. Then taking $\text{Norm}_{C'_{y'}E}$ of the 2 sides of the above isomorphism :

$$\mathcal{O}_E(nx-nx_0+\pi u)\cong \mathcal{O}_E(\pi v),$$

hence we get a commutative diagram

We can now use this action of E to describe the whole surface X as follows: let $E_0 = C_{x_0}$ be the fibre over x_0 , and let $A_n = \text{Ker}(n_E : E \to E)$ considered as a subgroup scheme of E. Then by (*) the action of A_n on X preserves the fibres of π , hence A_n acts on E_0 , and give this action the name α :

 $\alpha: A_n \rightarrow \operatorname{Aut}(E_0) = \operatorname{group} \operatorname{scheme} \operatorname{of} \operatorname{automorphisms} \operatorname{of} E_0.$ Then by restriction of the action σ of E, we get a morphism :

 $\tau: E \times E_0 \to X$

which by (*) fits into a diagram :

Note that

$$\tau(x, y) = \tau(x', y') \Leftrightarrow \sigma(x - x', y) = y'$$

$$\Leftrightarrow x - x' \in A_n \text{ and } \alpha(x - x')(y) = y'$$

hence it follows that $X \cong$ quotient $(E \times E_0/A_n)$, via the action

$$x(u, v) = (u+x, \alpha(x)(v)), x \in A_n, u \in E, v \in E_0$$

If we replace E by $E_1 = E/\text{Ker } \alpha$, this proves :

Theorem 4. Every hyperelliptic surface X is of the form : $X = E_1 \times E_0 / A, \quad E_1, E_0$ elliptic curves

where A is a finite subgroupscheme of E_1 , and A acts by

$$k(u, v) = (u+k, \alpha(k)(v))$$

for some injective homomorphism

 $\alpha: A \longrightarrow \operatorname{Aut}(E_0).$

Moreover, the 2 elliptic fibrations on X are given by :

This theorem can easily be used a) to classify such X's and b) to compute the order of K_x in Pic (X). We use the fact that choosing a base point $0 \in E_0$, Aut(E_0) becomes a semi-direct product :

 $\operatorname{Aut}(E_0) = \underbrace{E_0}_{\bullet} \operatorname{Aut}(E_0, 0)$ normal subgroup finite, discrete group of translations of autos, fixing 0

Note that $\alpha(A) \subset E_0$, or else $E_0/\alpha(A)$ would be elliptic instead of rational as required. Moreover, from the tables in Lang [5], Appendix 1, we find :

The important point here is that since A is commutative, so is $\alpha(A)$ and now even in the last 2 nasty cases, the maximal *abelian* subgroups are still Z/4Z and Z/6Z, which in all cases are cyclic.

Let $k \in A$ be such that

$$\operatorname{Im} \alpha(k) \in \operatorname{Aut}(E_0)/E_0$$

generates

$$\operatorname{Im} \alpha(A) \subset \operatorname{Aut}(E_0)/E_0$$

Then $\alpha(k) \notin E_0$, hence it has some fixed point. Replacing 0 by this fixed point, it follows that $\alpha(A)$ itself is a direct product:

$$\alpha(A) = A_0 \cdot \mathbb{Z}/n\mathbb{Z}$$
finite gp. scheme of cyclic gp. generated by k , translations $A_0 \subset E_0$ $n = 2, 3, 4$ or 6

Since A_0 and k must commute, $A_0 \subset (\text{fix pt. set } F \text{ of } k)$. Again referring to Lang to check the fix point sets, we find :

a) n = 2, (so $k = -1_E$), then $F = \text{Ker } 2_{E_0}$

b) n = 3, then #F = 3 so $F \cong \mathbb{Z}/3\mathbb{Z}$ if char $\neq 3$ $F \cong \alpha_3$ if char = 3 (because E_0 is supersingular !) c) n = 4, then #F = 2 so $F \cong \mathbb{Z}/2\mathbb{Z}$ if char $\neq 2$ $F \cong \alpha_2$ if char = 2 (because E_0 is supersingular !) d) n = 6, then F = (e)

We can now mechanically compile a list of all possible $\alpha(K)$'s, hence all possible X's:

al)	$E_1 imes E_0 / (\boldsymbol{Z}/2\boldsymbol{Z}) \; ;$	action $(x, y) \mapsto (x+a, -y)$
a2)	$E_{1}\! imes\!E_{0}\!/(m{Z}\!/2m{Z})^{2}$;	action $(x, y) \mapsto (x+a, -y), (x+b, y+c)$ (here
		$char \neq 2)$
a3)	$E_{\scriptscriptstyle 1}\! imes\!E_{\scriptscriptstyle 0}\!/(oldsymbol{Z}/2oldsymbol{Z})\!ullet\mu_{\scriptscriptstyle 2}$;	action $(x, y) \mapsto (x+a, -y)$, μ_2 acts by transl. on
		both factors.
bl)	$E_1 \times E_0/(\mathbf{Z}/3\mathbf{Z})$;	action $(x, y) \mapsto (x+a, \omega y)$ where $j(E_0) = 0, \omega$:
		$E_0 \rightarrow E_0$ an automorphism of order 3
b2)	$E_{ m I}\! imes\!E_{ m 0}/({m Z}/3{m Z})^2$;	action $(x, y) \mapsto (x+a, \omega y), (x+b, y+c), E_0, \omega$ as
		before and $\omega c = c$, order $c = 3$ (here char $\neq 3$)
cl)	$E_{\scriptscriptstyle 1}\! imes\!E_{\scriptscriptstyle 0}/(oldsymbol{Z}/4oldsymbol{Z})$;	action $(x, y) \mapsto (x+a, iy)$, where $j(E_0) = 12^3$,
		$i: E_0 \rightarrow E_0$ an automorphism of order 4
c2)	$E_1 \times E_0/(\mathbf{Z}/2\mathbf{Z}) \cdot (\mathbf{Z}/4\mathbf{Z});$	action $(x, y) \mapsto (x+a, iy), (x+b, y+c), E_0, i$ as
		before and $ic = c$, order $c = 2$ (here char $\neq 2$)
d)	$E_{\scriptscriptstyle 1}\! imes\!E_{\scriptscriptstyle 0}/oldsymbol{Z}/6oldsymbol{Z}$;	action $(x, y) \mapsto (x+a, -\omega y), E_0, \omega$ as in b.

The list obtained here coincides with the classical list in characteristic 0 (see Bagnera and DeFranchis [1], Enriques and Severi [3], pp. 283–392, Šafarevič [14], p. 181). Note here that the requirements $A_0 \subset E_0$ and $A \subset E_1$ eliminate the possibilities n=2, $A_0=$ Ker 2_{E_0} and n=3 or 4, $A_0=\alpha_3$ or α_2 . A striking feature of this list are the missing cases. From a moduli point of view, even in case a1), one may ask what happens if we start with such an X in characteristic 0 and specialize to characteristic 2 in such a way that the point a goes to $0 \in E_1$. One would hope for instance that the moduli spaces of these X's were proper over $\mathbf{Z}[j(E_0), j(E_1)]$ but this is not true. The answer seems to be that the X's become quasi-hyperelliptic ! This is an interesting point to investigate.

The order of K_x is easily obtained, since if ω is the 2-form on $E_1 \times E_0$ with no zeros or poles, then

order of $K_x = \text{least } n$ such that A acts trivially on $\omega^{\otimes n}$ and we find

order of
$$K_x = 2, 3, 4, 6$$
 in cases a), b), c), d)
and char $(k) \neq 2, 3$
 $= 1, 3, 1, 3$ in cases a), b), c), d)
and char $(k) = 2$
 $= 2, 1, 4, 2$ in cases a), b), c), d)
and char $(k) = 3$

It is interesting to check exactly which wild multiple fibres (in the sense of § 1) occur here for $\pi' : X \rightarrow P^1$. One can check that we get the following cases in the list of § 2 :

case	char. $\neq 2,3$	char.3	char. 2
a	(i)	(i)	(xv)-one or two fibres 0/2
b	(ii)	(\mathbf{xv}) -one fibre 0/3	(ii)
с	(iii)	(iii)	(xv)-one fibre $0/4$
d	(iv)	(xiii)	(xii)

4. Proof of Theorem 5

First of all, let X be a K3-surface, i.e., $K_x \equiv 0$, $B_2 = 22$, $B_1 = 0$, $\chi(\mathcal{O}_x) = 2$, $H^1(\mathcal{O}_x) = (0)$ (cf. Table in Introduction). Then

i) if $\pi: Y \to X$ were a connected étale covering of degree d, one would have $K_Y \equiv \pi^* K_X \equiv 0$, hence Y would be a surface in the Table too. But

$$c_{2,Y} = \pi^{-1}(c_{2,X})$$

hence

deg $c_{2,Y} = 24d > 24$

and there are no such surfaces in the table.

ii) Since $H^{-}(\mathcal{O}_{X})$ is isomorphic to the tangent space to $\operatorname{Pic}(X)$, it follows that $\operatorname{Pic}_{X}^{0}$ is a finite discrete group. Let $L = \mathcal{O}_{X}(D)$ represent a point of $\operatorname{Pic}_{X}^{0}$. Then $(D^{2}) = (D \cdot K_{X}) = 0$, so $\chi(L) = \chi(\mathcal{O}_{X}) = 2$, Therefore $H^{0}(L) \neq (0)$ or $H^{2}(L) \neq (0)$. But by Serre duality $H^{2}(L)$ is dual to $H^{0}(L^{-1})$. Thus L or L^{-1} is represented by an effective divisor E, but since it is in $\operatorname{Pic}_{X}^{0} = 0$. So finally $L \cong \mathcal{O}_{X}$ and $\operatorname{Pic}_{X}^{0} = (0)$.

Secondly, let X be a surface with $K_x \equiv 0$, $B_2 = 14$, $B_1 = 2$, $\chi(\mathcal{O}_X) = 1$, dim $H^1(\mathcal{O}_X) = 1$. Since $B_1 > 0$, X has a positive dimensional Picard variety. This means that X does indeed support invertible sheaves $L = \mathcal{O}_X(D)$ such that D is numerically equivalent to zero but $D \not\equiv 0$. Then $\chi(L) = \chi(\mathcal{O}_X) = 1$, so $H^0(L) \neq (0)$ or $H^2(L) \neq (0)$. As above, Serre duality shows that $H^2(L) \neq (0) \Rightarrow H^0(L^{-1}) \neq (0)$, so L or L^{-1} is represented by an effective divisor E. E numerically equivalent to 0 implies E = 0, so $L \cong \mathcal{O}_X$ contrary to our assumption.

Alternatively, we could argue that because $B_1 > 0$, X has connected cyclic étale coverings $\pi: Y \rightarrow X$ of every order d prime to the characteristic. As in (i) above, $c_{2,Y} = 12d$ and if d > 2, no such Y appears in our table.

Arguments of the above type, using μ_p or α_p -coverings of X (cf. Mumford [11]) do not quite seem to be strong enough to prove that if X is a K3-surface, then $H^0(X, \Omega_X^1) = (0)$. It remains a very intriguing open question¹⁾ whether or not

^{1) (}added in proof) Rudakov and Šafarevič have just settled this. They show that Ω_X^1 has no sections when X is a K3-surface. Moreover, P. Deligne has used their result to prove that all K3-surfaces lift to char. 0.

 $H^{0}(X, \Omega_{X}^{1})$ is (0) for every K3-surface of char. p.

Thirdly, let X be a surface with $K_X \equiv 0$, $B_2 = 10$, $B_1 = 0$, $\chi(\mathcal{O}_X) = 1$, dim $H^1(\mathcal{O}_X)$ =1. Let $\{a_{ij}\} \in Z^1(\mathcal{O}_X)$ be a non-trivial cocycle and consider the G_a -bundle

$$\pi: W \longrightarrow X$$

defined locally as $A^1 \times U_i$, coordinate z_i on A^1 , and glued by

$$z_i = z_j + a_{ij}$$

If ω is a non-zero 2-form on X with no zeroes or poles,

$$\gamma = dz_i \wedge \omega$$

is a non-zero 3-form on W with no zeroes or poles, i.e., $K_w \equiv 0$. Now since $H^1(\mathcal{O}_x)$ is 1-dimensional, there is a constant $\lambda \in k$ such that $\{a_{ij}^p\}, \{\lambda a_{ij}\}\$ are cohomologous :

$$a_{ij}^{p} = \lambda a_{ij} + b_{i} - b$$

Consider the global function f on W defined locally by

$$f = z_i^p - \lambda z_i - b_i.$$

Let Y be the 2-dimensional scheme f=0. If $\lambda \neq 0$, Y is étale over X, hence non-singular. If $\lambda = 0$, still $b_i \notin \mathcal{O}_X^p$ (or else $a_{ij} = b_i^{1/p} - b_j^{1/p}$ is cohomologous to zero), so Y is a reduced Gorenstein surface. Since $K_W \equiv 0$ and Y has trivial normal sheaf in W, in both cases $\omega_Y \cong \mathcal{O}_Y$. Thus

 $\chi(\mathcal{O}_Y) \leq \dim H^0(\mathcal{O}_Y) + \dim H^2(\mathcal{O}_Y) = \dim H^0(\mathcal{O}_Y) + \dim H^0(\omega_Y) = 2.$

On the other hand,

$$\operatorname{res} \pi: Y \longrightarrow X$$

is finite and flat and (res π) $_*\mathcal{O}_Y$ is filtered by the subsheaves :

$$\mathcal{O}_X \subset [\mathcal{O}_X \oplus \mathcal{O}_X \cdot z_i] \subset [\mathcal{O}_X \oplus \mathcal{O}_X \cdot z_i \oplus \mathcal{O}_X \cdot z_i^2] \subset \cdots \subset (\operatorname{res} \pi)_* \mathcal{O}_Y$$

The quotients here are all isomorphic to \mathcal{O}_X , thus

$$\chi(\mathcal{O}_Y) = p \cdot \chi(\mathcal{O}_X) = p.$$

Thus $p \leq 2$ as asserted.

5. Analysis of the Case Leading to Abelian Surfaces

In this section, we prove Theorem 6, that a surface X with $K_X \equiv 0$ and $B_2 = 6$ is an abelian surface. As we see from the table in \S 1, the surface X also has the properties :

a) dim $H^1(\mathcal{O}_X) = 2$, dim $H^2(\mathcal{O}_X) = 1$, $\chi(\mathcal{O}_X) = 0$,

b) $c_{2,X} = 0, B_1 = 4, q = 2.$

In particular, Pic⁰ X is reduced and 2-dimensional and its dual Alb X is 2-dimensional. Let

$$\phi: X \to \operatorname{Alb} X$$

be the Albanese mapping. First of all, we can see that ϕ is surjective as follows: if not, since $\phi(X)$ generates Alb X, $\phi(X)$ is a curve of genus $g \ge 2$. Consider the diagram :

where *n* denotes multiplication by *n* and $p \neq n$. Then $\phi(X')$ is an étale covering of $\phi(X)$ of degree n^{2g} . Also $\phi(X')$ is connected because $\phi(X') = n^{-1}(\phi(X))$ and $\phi(X)$ is an ample curve¹) on Alb X. Therefore, $\phi(X')$ has genus g' > 2. Therefore, Alb X' can be mapped onto Jac($\phi(X')$) which is an abelian variety of dimension>2 : i. e., q(X') > 2. But X' is an étale cover of X. So $K_{X'} \equiv 0$ and looking in the Table, we see that no such surface X' exists.

Therefore, ϕ is surjective, and hence of finite degree. If ϕ were separable, e.g., if char.=0, then we could quickly finish up as follows :

Let ω be the translation-invariant 2-form on Alb X. Then ω has no zeroes or poles and because ϕ is separable, $\phi^* \omega \neq 0$. But $\phi^* \omega$ has zeroes at all points where ϕ is not étale, and $K_x = (\phi^* \omega)$. Since $K_x \equiv 0$, $\phi^* \omega$ has no zeroes, hence ϕ is everywhere étale. But then by the Theorem of § 18 [12], X itself is an abelian surface. Unfortunately if ϕ is inseparable, this argument breaks down. However, when we are in characteristic p, we can use another trick and reduce the Theorem to the case where the ground field k is finite! In fact X lies in a smooth and proper algebraic family of surfaces defined over a finite field and all members of this family have the same invariants (e.g., because by the table in § 1, these surfaces are also characterized by saying $K_x \sim 0$ in étale cohomology and q=2). Therefore, if we prove that the surfaces in this family over closed points of the base are abelian, it follows that all are abelian (cf. Theorem 6. 14, [8]).

Now assume the ground field k is finite. We follow a line of argument similar to that in Tate [16]. Consider the infinite sequence of surfaces :

for all $l \ge 2$ with $p \not\prec l$. Note that deg $\phi_l = \deg \phi$ for all : call this degree d. Note that $X_i \to X$ is étale and hence X_i is a surface of the same type as X (in fact, $K_{X_i} \equiv 0$ and $q(X_i) \ge 2$, hence by table I, $q(X_i) = 2$). We can deduce quickly that ϕ and hence ϕ_i are all finite morphisms : in fact, if not, let $E \subset X$ be a curve such that $\phi(E)$ is a point $e \in Alb X$. Then considering the Stein factorization $X \to Y \to Alb$ of ϕ , we see that E can be blown down in a birational map $X \to Y$, hence $(E^2) < 0$. Now

40

¹⁾ A suitable multiple of an ample curve C on any surface Y is a hyperplane section of Y for some projective embedding and all hyperplane sections of varieties of dimension>1 are connected.

for each l, $l^{-1}(e)$ consists of l^4 points $e_i \in Alb X$, and $\phi^{-1}(e_i)$ contains a curve E_i that is contracted by ϕ_l . These curves are disjoint since $\phi_l(E_i) = e_i \neq e_j = \phi_l(E_j)$. Thus X_l has l^4 disjoint curves E_i with $(E_i^2) < 0$; thus $B_2(X_l) \ge l^4$. But for all surfaces of the same type as X, $B_2 = 6$. This is a contradiction if l > 1, hence ϕ is finite.

Next, fix L_0 , an ample sheaf on Alb X. It follows that $L_i = \phi_i^*(L_0)$ is ample on X_i , with Hilbert polynomial

$$\chi(L_l^{\otimes n}) = d \cdot \chi(L_0^{\otimes n})$$

independent of l. By the Main Theorem of Matsusaka-Mumford [7], there is also a number N independent of l such that $L_l^{\otimes N}$ is very ample for all l. Therefore the infinite set of k-varieties X_l can all be embedded in a fixed P^{M} with fixed degree. Since there are only finitely many k-varieties of this degree (as k is finite), it follows that all the pairs $(X_l, L_l^{\otimes N})$ are isomorphic to finitely many of them !

Now consider the facts-

- a) for any variety X and ample sheaf L, the group of automorphisms f of X such that f*L is numerically equivalent to L is an algebraic group; esp. it has only finitely many components (Matsusaka [6]),
- b) The group A_l of translations by points of order l acts on X_l since by definition, it is the fibre product $X \times_{Alb}(Alb, l)$; moreover each $g \in A_l$ carries L_l into a sheaf algebraically equivalent to L_l .

Let $(X_l, L_l^{\otimes N})$ be isomorphic to infinitely many other $(X_l, L_l^{\otimes N})$'s. Then A_l acts on X_l . Let $G_l \subset \operatorname{Aut}(X_l)$ be the group of automorphisms f such that f^*L_l is numerically equivalent to L_l . Then $A_{l'} \subset G_l$ which implies that the order of G_l is infinite, hence G_l^0 (the connected component) is positive dimensional. But if G_l^0 contains a non-trivial *linear* subgroup, then when this acts on X_l , it would follow that X_l was a ruled surface : since $K_{X_l} \equiv 0$, this is absurd. Therefore G_l^0 is an abelian variety. On the other hand, $A_{l'} \cong (\mathbf{Z}/l'\mathbf{Z})^4$, and subgroups of fixed bounded index in $A_{l'}$ are inside G_l^0 . Therefore dim $G_l^0 \ge 2$. It follows that X_l consists in only one orbit under G_l^0 , hence X_l is a coset space G_l^0/H , hence X_l itself is an abelian variety. Finally X itself is now caught in the middle between 2 abelian varieties :

$$X_l \xrightarrow{\text{étale}} X \xrightarrow{} Alb X.$$

With a suitable origin, $X_i \rightarrow Alb X$ is then a homomorphism, hence if K is its kernel, we find :

$$X_{l} \times_{A \sqcup b X} X_{l} = \{(x, x+k) \mid x \in X_{l}, k \in K\}.$$

But $X_l \times {}_{X}X_l \subset X_l \times {}_{AlbX}X_l$ and $X_l \times {}_{X}X_l$ is (i) étale over X_l , and (ii) the graph of an equivalence relation on X_l . (i) implies that

$$X_{l} \times_{X} X_{l'} = \{(x, x+k) \mid x \in X_{l}, k \in K'\}$$

for some subset $K' \subset K$, and (ii) implies that K' is a subgroup. It follows that $X \cong X_l/K'$, hence X is also an abelian variety.

References

- [1] Bagnera, G. and De Franchis, M. : Le nombre ρ de Picard pour les surfaces hyperelliptiques, Rend. Circ. Mat. Palermo **30** (1910).
- [2] Deligne, P. and Rapoport, M.: Les schémas de modules de courbes elliptiques, in Springer Lecture Notes 349 (1973).
- [3] Enriques, F. and Severi, F.: Mémoire sur les surfaces hyperelliptiques, Acta Math. 32 (1909).
- [4] Kodaira, K.: On the structure of compact complex analytic surfaces I, Amer. J. Math. 86 (1964).
- [5] Lang, S.: Elliptic Functions, Addison-Wesley, 1973.
- [6] Matsusaka, T.: Polarized varieties and fields of moduli, Amer. J. Math. 80 (1958).
- [7] Matsusaka, T. and Mumford, D.: Two fundamental theorems on deformations of polarized varietics, Amer. J. Math. 86 (1964).
- [8] Mumford, D.: Geometric Invariant Theory, Springer-Verlag, 1965.
- [9] ----: Lectures on curves on surfaces, Princeton Univ. Press, 1966.
- [10] ----- : Enriques' classification of surfaces I, in Global Analysis, Princeton Univ. Press, 1969.
- [11] ——: Pathologies III, Amer. J. Math. 89 (1967).
- [12] ----- : Abelian Varieties, Tata Studies in Math., Oxford Univ. Press, 1970.
- [13] Raynaud, M. : Spécialisation du foncteur de Picard, Publ. Math. IHES 38, p. 27.
- [14] Šafarevič, I.et al: Algebraic Surfaces, Proc. Steklov Inst. Math. 75 (1965).
- [15] Tate, J.: Genus change in purely inseparable extensions of function fields, Proc. AMS 3 (1952), p. 400.
- [16] ----: Endomorphisms of abelian varieties over finite fields, Inv. Math. 2 (1966).

Scuola Normale Superiore, Pisa Harvard University

(Received January 14, 1976)