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Enriques' Classification of Surfaces in Char. p, II 

E. Bombieri and D. Mumford 

Introduction and Preliminary Reductions 

The purpose of this paper is to carry further the extension of Enriques' classifi-
cation of surfaces from the case of a char. 0 groundfield to the case of a char. 
p groundfield. The first part of this extension was made in the paper [10] of one of 
the present authors. The main results of that paper are as follows') : let X be a 
non-singular complete algebraic surface without exceptional curves over a field k of 
any characteristic. We may divide such X's into 4 classes : 

a) 3 a curve C on X with (Kx • C) <0 
b) V curve C on X, (Kx •C) = 0, or equivalently, for any 1 char. p, the 

fundamental class [Kx ] E 14(X, Q1) is zero. 
c) (Kx •C)>0 for all curves C and (K1)=0 but (lc •H)>0 for all ample di-

visors H. 
d) (Kx •C) > 0 for all C and (K2x)> 0, hence (Kx  . H) > 0 for all ample H. 

(Other cases are excluded by using the following well-known consequences of 
Hodge's Index Theorem : (1) (Kx•H)=0 for some ample H, (1q)>0 implies 
(ICX•C) =0 all C and (2) (Kx•C)>0 all curves C implies (K5,-) >0). Then in [10], 
it is proven that 

(a) holds <#. X is ruled, in which case InKx1=0, all n. 
(b) holds <=> either i) 2Kx  -== 0 

or 	ii) 3 it : X D, D a curve, almost all fibres of IC non- 
singular elliptic and hence nic=r* (%), 	divisor 
on D of degree 0, n> 1 an integer. 

(c) holds <=>3 7r : X D almost all fibres either non-singular elliptic or 
rational with one cusp, hence nKx=i-c* (%) where deg (91) > 0, 
n>1 

(d) holds <=> InKx1 is base-point free and defines a birational map from X 
to pN, for n>>0. Moreover, in this case 12Kx1#0. 

Our first goal in this paper is to prove the following result, well known in char. 0 : 

Theorem 1. In cases (b) and (c), either 14K xl#95 or 16K,1#0. Therefore, in case 
(b), either 41(1_.. 0 or 6Kx-== 0, and in case (c), either 41c or 6K, is represented by a 

1) The notation used is summarized below in "list of notations". 
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positive divisor. 

In particular, this shows that the 4 cases above correspond to the classification 
of surfaces by Kodaira-dimension K, i.e., 

= tr. deg.40  r(x, 0(nK,))-1. 

Then we see that : 
In case (a), K = —1 

In case (b), x = 0 
In case (c), K =1 
In case (d), x = 2. 

Thereafter, our next goal in this and a subsequent 3rd  paper is the further analysis 
of all surfaces in case (b). It turns out that these can be divided into 4 types by 
their Betti numbers. This division into 4 types is based on a rather mysterious calcula-
tion that appears again and again in all work on the classification of surfaces. This 
calculation is as follows : 

Assume (K1)=0. Then by the Riemann-Roch theorem on X, 

(1) 12(dim H°(Ox) —dim H'(01)+dim H2  (OA ) 

= C2, 2, X 

= Bo—B,+B2—B3+B4 

hence substituting 1 =B0=B4=dim H°(0,), we find 

(2) 10+12 pg  = 8 dim H'(0x)+2(2 dim H'(01)—B1)+B2. 

Write 4 = 2 dim HI(Ox)—B,. This is a "non-classical" term because when 
char(k) =0, then 4=0. In fact, we know that for almost all primes I: 

(ZI1Z)Bi HVX, Z/1Z) 
{x E Pic(X) I lx = 

E Pic°(X) I lx = 0} 
(ZI1Z)2g 

hence in any characteristic B,=2q. On the other hand, 

H'(01) ;1= [tangent space to Pic(X) at 0]. 

Thus if char(k) =0, Pic(X), like any group scheme, is reduced, hence 

dim H'(0,) = q 

and 4=0. In general, we conclude that 

dim H'(0,) > q 

hence 4>0, 4 even. We can say a bit more : if p, are the Bockstein operators from 
H'(0,) to H2(0,), we know ([9], Lecture 27) that 

00 

tangent space to 	ker((3i) 
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hence 

Tp 	 TP,red 

dim(tang.sp.to  Pic°) —dim(tang.sp.to  Pic?„) = dim H' (C) „)— dim n ker pi  

CO 

<dimUIm i9  
i=1 

< pg. 

Thus 

4 = 2(dim T,„ —dim T,,, ) < 

	

re 	2bd, 	.‘ fr 

Although it is not used in what follows, it is interesting at this point to consider 
what happens for arbitrary analytic surfaces over C. The equation (2) is perfectly 
valid and in this case Kodaira ([4], p. 755, Th. 3) has shown that 4=0 or 1 ac-
cording to the parity of B,. 

Now assume that the surface X has K=0, i.e. : (Kx• C).= 0 for all curves C. Then 

	

not only is (K1)=0 but either pg=o or pg=1 and 	It is then easy to list all 
solutions to equation (2) : 

Table of Possible Invariants for Surfaces with x=0 

B2  B1 	c2 	2C(0x) dim Hi(ox) 	pg  

22 0 	24 2 0 	1 	0 

14 2 	12 1 1 	1 	0 

10 0 	12 1 
0 	0 	0 {1

1 	2 

6 4 	0 0 2 	1 	0 

2 2 	0 0 
0 	0 {1 

2 	1 	2 
invariants under 

deformation invariants which are in general 
only upper semi-continuous under 
deformation 

Concerning these categories of surfaces, we shall prove in this paper the following 
results : 

Theorem 5. The surfaces with K=0, B2=22, known as K3-surfaces, have the follow-
ing properties : 

i) for all divisors D on X, (D •C) =0 for all curves C implies D-=-=0, hence 

Pic°(X) = (0). 

ii) X has no connected elate coverings, i.e., 

= (e). 

No surfaces with K=0, B2=14 exist. 
Surfaces with K=0, B2=10, pg=1 cannot exist if char (k) 2. 
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Theorem 6. All surfaces with 7=0, B2 =6 are abelian varieties. 

Moreover, the following is easy to see from the above table and the results of 
[15] : 

Proposition. If X is a surface with =0, B2 =2, then B,=2, hence Alb(X) is an 
elliptic curve and the fibres of the canonical map 

: X—* Alb(X) 

are either almost all non-singular elliptic curves, or almost all rational curves with ordinary 
cusps. The latter is only possible if char(k) =2 or 3. 

We call surfaces of this type hyperelliptic or quasi-hyperelliptic surfaces, depending 
on which type of fibre it has. In this paper, we shall also analyze hyperelliptic sur-
faces. However, the analysis of the case of quasi-hyperelliptic surfaces and the case 
of surfaces with IC= 0, B2=10, which we propose to call Enriques surfaces (regardless 
of whether Ks0 or Ks0 !), we postpone to a 3rd part of the paper. Since Enri-
ques surfaces in char(k) =2 are fairly easily seen to have the same behaviour as 
in char. 0, Part III of this paper will deal largely with the curious pathology of 
char. 2 and 3. 

Finally, for use in § 2, we note that the analysis leading to the Table does not 
use completely the assumption K=0 : in fact, it really only uses (K2x)=0, p,<1. 
Thus the analysis also shows : 

Corollary. If X is a non-singular complete surface with (KU= pg=0, then X be-
longs to one of the 2 following types : 

i) B, = dim H'(0 x) = 0, hence Pic°(X) = (0) ; x(0,) = 1 ; B2  = 10 
ii) B, = 2, dim H'(0,) =1, hence Pic°(X) is a reduced elliptic curve ; X(07) = 0 ; 

B2  = 2. 

List of Notations 

X usually a non-singular projective surface 
Alb X = Albanese variety of X 
Pic X = Picard scheme of X 
Pic° X = connected component of 0 E Pic(X) 
q = dim Pic X = dim Alb X, the "irregularity" of X 
Kx  = the canonical divisor class on X 
B, = ith Betti number of X 
hP'° = dim Hq(X, S2P) 
pg = h0,2 n the geometric genus of X 
w = Q2x, the sheaf of 2–forms, if X is smooth 

= the dualizing sheaf of Grothendieck for general Cohen-Macauley surfaces. 
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1. 	Kx of Elliptic or Quasi-elliptic Surfaces 

An elliptic or quasi-elliptic surface is a fibrationf : X-43 of a surface X over a 
non-singular curve B, with 	with almost all fibres elliptic or rational with 
a cusp (by a result of Tate [15], the latter situation can occur only if char(k) =2 
or 3). Note that since the function field k(X) is separable over k(B), almost all 
fibres are generically smooth. Also every fibre off is a curve of canonical type'). 
At finitely many points b„•••, b,. E B the fibre f -i(b,) is multiple, i.e., 

.f -'(b2) = m2Pa 
with m,>2 and P, indecomposable of canonical type. We have 

= T 

where L is an invertible sheaf and T is supported precisely at the points b E B at 
which 

dim H°(f -'(b), O f-i (5) ) 	2. 

To see this, note that by E. G. A. III 7. 8, the sheaf R'f,Ox  is locally free at b if 
and only if Ox  is cohomologically flat at b in dimension 0. 

This suggests 

Definition. The fibres off over supp T are called wild fibres. 

Noting that if C is indecomposable of canonical type then dim H°(C, 0,)= 1 
(see Mumford [10], p. 332), we get 

Proposition 3. Every wild fibre is a multiple fibre. 

In the following, we consider only relatively minimal fibrations f : X—›B, i.e., 
no exceptional curve of the first kind is a component of a fibre. 

Theorem 2. Let f : X--B be a relatively minimal elliptic or quasi-elliptic fibration and 
let R1  f,,0 x=LeT. Then 

wx = f* 	(0B) 0 o(z a2 p2) 

where 
(i) m,P, are the multiple fibres 
(ii) 0 	a, < m, 

(iii) a, = m1-1 if m,P, is not wild 
(iv) deg (L-' CD (0B) = 2P(B) —2±x(0x) +length T 

where p(B) is the genus of B. 

1) In the notation of [10], a curve D=EniE j  is said to be of canonical type if (K•E1)=(D•E1)=0 for 
all i. 
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Note that in the case char(k)= 0 or in the complex analytic case there are no 
wild fibres, so that ai=mi-1 ; see Kodaira [4], p. 772, Th. 12. 

Proof. For any non-multiple fibre f -1(y) we have 

0.1-1(y) O Wx 	f -1(y) 	°.1-1(v),  

hence if y„•••, yr  are distinct general points of B the cohomology sequence of 

0 	co, 0 0(E f -'(y,)) 	Or  Of -z(yi) 	0 
z=1 	z= 

yields 

WI 0( if -1CM)✓ i=1 
for large enough r. If D is a divisor in the linear system above, we have 

(Thi-'(Y)) = 0  

hence we can write 

K, -a (sum of fibres) +4 

where J> 0 is contained in a union of fibres and does not contain fibres off Let Jo  
be a connected component of J and let C=f -'(y) be the fibre containing 4 
Then Jo  is a rational submultiple of C, i.e., we have 

C = mP, do =aP 

where P is indecomposable of canonical type and 0-.a<m. This follows from 

Lemma. Let D= E niCi  be an effective divisor on a surface X with each CC  irredu-
cible. Assume that 

(Ci•D) 	0, 	all i 

and that D is connected. 
Then every divisor Z=EmiCi  satisfies Z2<0 and equality holds if and only if D2=0 

and Z=AD, 2EQ. 
Proof Write xj•=mi/ni. We have 

Z2  = E xixinin f(C, • C,) 

Ex.2ini(Ci•Ci)± E —1 
(x?±x2.)n.n •(Ci•C ) 

i4; 2 	' " 
= E 4/4(C, • D) < 0. 

If equality holds everywhere, we have either xi -- --xj  or (Ci•C;)=0 for all i, j ; 
since D is connected, xi  is constant, i. e., mi =2/2„ 2E Q. 	 q. e. d. 

Going back to the proof that zlo=aP, if dv  are the connected components of 4, 
we have 

dim >0 

0 = K2x  = EJ?, ; 

since each 	0 by the previous lemma, we must have J2„=0 and now the equality 
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case of the lemma proves that 4, is a rational multiple of the fibre containing it. 
We have proved that 

cox = f*OB(2f)00(Ea,P,) 

for some divisor ?.t E div(B) and integers a, with 0_a,<mi. We deduce that 

f*(wx) = 0B(%)• 
Now the duality theorem for a map says that 

La), = Hom(R'f*0 x, o),) 
= L-1  (OB 

because the dual of the torsion sheaf is 0 ; this can be found in Deligne-Rapoport 
[2], pp. 19-20, formula (2. 2. 3). Hence 

mx = f* (L-1  CD con) C) (Ea2131). 
The spectral sequence of the map f yields 

X(0x) = X(OB) — X(Rf*Ox) 
= x(0B) — X(L) — 

 length T 
= —deg L—length T, 

by the Riemann-Roch theorem on the curve B, and since deg(m„) =2p(B) —2 
we obtain (iv) of Theorem 2. 

It remains to prove (iii), and this follows from 

Proposition 4. Let m„ P„ a, be as in Theorem 2 and let 

= order (Op, C) 5,7.1) 

where .S1,2  is the sheaf of ideals of P„ be the order of the normal sheaf of P, in X. 
Then we have 

i) v, divides m, and a,±1, 
ii) dim H')(Pa, 0(,,,+1)p1) 	2, dim H°(P„ 	= 1, 

iii) dim H°(P„ P„,) is non-decreasing with r. 
In particular, if aa<m,-1 then va<ma  and this is equivalent to the multiple fibre m,P, 
being wild. 

Proof. Let us write m,P,a,v, ,9 for m„P„aa,v,,,Szi,„ If 	the restriction map 
Orp—>08, is surjective, hence dim H' (P, 0,p) is non-decreasing with r. Since x 
0, this proves that dim H°(P, Or p) is non-decreasing too. 

We have an isomorphism 

OP o'C''  OP 

and via this isomorphism we get an exact sequence 
res 

0 --+ Op-3 av+ + Ovp 0 

where res is the restriction. Since constants in H°(P, ()(,„p) are mapped into con- 
stants in H°(P, O„,), the cohomology sequence shows that dim H°(P , 	2. 
Finally, v divides both m and a+1, because OpC)5-m;-_-'0, (trivial) and 

Op C) 	l = (Op =-='- Op 
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(Mumford [10], p. 333). 	 q. e. d. 

It is shown in Raynaud [13], Prop. 6. 3. 5, that m,/v, is a power of the character-
istic p of k. In particular the multiplicity of a wild fibre is divisible by p, and wild 

fibres do not occur in char. 0. 

Corollary. If dim H'(X, 	we have either 

= m, or v,+a,+1 = m,. 

Proof Since x(0,„,)P)=0 and dim H°(P , 	2, using duality we find that 

dim H°(P, w(„,)P > 2. 

Now the cohomology sequence of 

0 —> wX —> 	co,--> co,„+,,—> 0 

yields 

dim H°(X, 5-9-' wx) > dim H°(X, wx), 

since we have dim H'(X,o),,) =dim H'(X,Ox)1 by hypothesis. This increase in 

dimension is possible only if 1)-k a-F-1- ni, or 1+ (a+1)1v> m/v. Therefore (a+1)1v= 
m/i) or m/v —1. 	 q. e. d. 

We conclude this section with a remark on hyperelliptic or quasi-hyperelliptic 
surfaces. 

Proposition 5. Let f : X—*E, E=Alb(X) be an hyperelliptic surface. Then every 
fibre off is smooth. 

Moreover if f : X—>E is quasi-hyperelliptic then every fibre off is a rational curve with a 
cusp, i.e., there are no reducible fibres. 

Proof. Since p(E)=1, x(0,)=0 and K,-0 (— is numerical equivalence), 

Theorem 2 gives 

(length T)f -'(y)+Ea,P, — 0 

therefore there are no multiple fibres. Also since the Picard number is p_._.B2 =2, 
there are no reducible fibres. In the elliptic case the smoothness off follows by 
considering the differential f * (w), where co E (QA. f * (w) will only be zero at the 

points where f is not smooth and since these are finite in number, 

C2, X = [number of zeroes of f* (w) counted with multiplicity]. 

But czx  =0, so f*w has no zeroes, so f is smooth. In any elliptic or quasi-elliptic 
surface, every irreducible fibre is either a) non-singular elliptic, b) rational with 
a node, or c) rational with a cusp. In the quasi-elliptic case, the generic fibre is of 
type (c) and since such a curve cannot specialize to type (a) or type (b), every 
irreducible fibre is rational with a cusp. 

q. e. d. 
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2. Proof of Theorem 1 

We shall prove here that iff : X—*B is elliptic or quasi-elliptic, (Ks  • C)._ 0 for all 

curves C and K2,=0, then : 

(* ) 
	

I4K, cb or I6KxI 95. 

In proving this result we may assume p5=0 and use Table 1 as a list of numeri-
cal invariants. Theorem 2 implies 

p, = dim H°(B, L-' 0  co,) 

and since x(0x) -1), the Riemann-Roch theorem on B shows that p9=0 implies 

p(B) = 0 or 1 and if p(B)= 1 we must also have T= (0) . So if p(B)= 1 there are no 
wild fibres and a,=m2-1 in Theorem 2. If there is a multiple fibre, it is easily 
seen that I2Kx  #0. If there are no multiple fibres at all, then 

cax = f * (L-' ® cos) 

and deg (L-'00,B) =0, thus K„ —0 and X is hyperelliptic or quasi-hyperelliptic. 

Theorem 3. If X is hyperelliptic or quasi-hyperelliptic, then there is a second structure 
f : X— P' of X as an elliptic surface over P. 

Proof By the results in [10], it is sufficient to show the existence of a curve C of 
canonical type, transversal to the Albanese fibration, co : X— >E with E= Alb (X) . 
Let F, be the fibre co-' (t) of co over t E E. There exists a divisor D on X such that 

(D2) = 0, 	(D • F,,) > 0, 

for example some linear combination of an ample divisor and F,; let 
D, = D±F,—F°. 

There is a point tE E such that ID, #0. If not, use x (0 (A)) = 0 and the Riemann-
Roch theorem to prove 

dim H°(X, C(D,)) = dim H'(X, 0(D,)) = 0 

for all t. The cohomology sequence of 
74.0  

0 —> C (D t) —>C (D F ,) —' OFo 0C  (D) 
then gives an isomorphism 

rFo: 11°(X, 0(D +Ft)) 2;" 11°(F°, OF, ® 0(D)) 

where rFo  is the restriction. Since (D•F„)>O, there is a non-trivial section GE 
I' (0,000(D)), and let st=r;(0.). Clearly X= closure U div(st) and div(s,) n F, has 

two 
support in div(a), for all t# 0. It follows that as t—>0 we must have div(st)--FO -FC 

D±F„ and CE iDJ, proving our assertion. 
We have found a curve C>0 with (C2) = 0 and (C •Fo) >0, and we claim that 

C is of canonical type. In fact, since K,-0 and (C2) =0, our assertion will follow 
from the fact that X has no irreducible curve F with ([2) = —2. Such a curve F 
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cannot be transversal to the Albanese fibering because is rational, and cannot 
be a component of a fibre, since every fibre is irreducible by Proposition 5. 

q. e. d. 

In view of Theorem 3, we have only to examine the case in which p(B)=0. 
Since B is rational, the canonical bundle formula becomes 

Kx 	 a,P, 

where 
r = — 2 +x (0,) +length T. 

If H is an ample divisor on X, since (Kx•H)0 we have 

	

r+E 	a'> 0. 

Moreover 

dim InKil = nr+E[ nma2 	]. 

It is now easy to see, using x(0x)__0 and Proposition 4, Corollary that we can have 
only the following cases : 
(A) length T=0, so a,=m,-1, v„=ma. 

If x(0,)=0, then there are at least 3 multiple fibres and we can have : 
a) there are 4 or more multiple fibres, i. e., m,,> 2, 1 <2<4, and then 12K11 

0. 
b) there are 3 multiple fibres with all multiplicities m,,>3. Then 13K11 #0. 
c) there are 3 multiple fibres with m1 =2, m2, m3>4. Then 14KA1 #0. 
d) there are 3 multiple fibres with mi =2, m2 =3, m3>6. Then 16K11 *0. 

If x(0A).=  1, then there are at least 2 multiple fibres, ml, m2 >2, and 12-KA1 #0. 
If x(CA)_2,  then  1K11 #0. 

(B) length T=1. If x(0,)=0, then 1KA1 =0, so dim H1 ( 1)=1 and Prop. 4, Cor. 
applies. So iff -'(/),) is the wild fibre, then we have a,=m,— 1 or a,=m1-1 —1)1 
where 7.),1g. c. d. (m1, ai +1), while a,=m,-1, vA =m2  for 2>2. Moreover there 
are at least 2 multiple fibres and we can have : 

a') there are 2 or more multiple fibres with ai=m,-1 and then 121c1 #cb. 
b') the wild fibre satisfies m,=3, a,=1, v,=1 (hence char.=3) and the tame 

fibre satisfies m2 >3. Then 13KA1 #0. 
c;) the wild fibre satisfies m1=4, a,=1, 7.),=2 (hence char.=2) and the tame 

fibre satisfies m2>4. Then 14K11 #0. 
c;) the wild fibre satisfies m1=-111'1, where til >4 (any positive char.). In this 

case, 	1/2 and 121c1 #0- 
d',) the wild fibre satisfies m1=21)1, a,=1,1-1, v,>3 (hence char.=2) and the 

tame fibre satisfies m2 >3. then 13K11 #0. 
,21;) the wild fibre satisfies mi=31)1, =22.),— 1, p2 >2 (hence char.=3). In this 

case 12Kx1 #0. 
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If x(01) >1, then 1K11 #cb. 
(C) length T>2, then also 11(11 #95. 

If we specialize to the case =0, then we easily get the following list of possible 
multiple fibres for elliptic or quasi-elliptic surfaces f: X--->P` with Kx  a torsion 

divisor : 

length T x(0x) 
aalml  

(* =wild fibre) 
order K, char. 

i) 0 0 (1/2, 1/2, 1/2, 1/2) 2  

ii) 0 0 (2/3, 2/3, 2/3) 3 

tame iii) 0 0 (1/2, 3/4, 3/4) 4 

cases 	iv) 0 0 (1/2, 2/3, 5/6) 6 

v) 0 1 (1/2, 1/2) 2  

vi) 0 2  none 1 

vii) 1 0 (0/2*, 1/2, 1/2) 2 2 

viii) 1 0 (1/2*, 1/2) 2 2 

ix) 1 0 (1/3*, 2/3) 3 3 

x) 1 0 (1/4*, 3/4) 4 2 

wild 	xi) 1 0 (2/4*, 1/2) 2 2 

cases 	xii) 1 0 (2/6*, 2/3) 3 2 

xiii) 1 0 (3/6*, 1/2) 2 3 

xiv) 1 1 (0/2*) 1 2 

xv) 2 0 one or two 
wild fibres 0/p' 

1 P 

Note that each of the wild cases may be thought of as coming from the conflu-
ence of 2 tame fibres in one of the tame cases. 

3. Analysis of Hyperelliptic Surfaces 

In this section, we study more closely surfaces X such that : 
a) I = 0 
b) the Albanese mapping is r : X—* E, E elliptic 
c) almost all fibres CC  of r are non-singular. 

By the Table of the Introduction, it follows also that 
d) B2 	2, c2 = 0, X(0x) = O. 

Moreover, by Proposition 5 it follows that 
c') all fibres C,, are non-singular elliptic. 

By Theorem 3, § 2, we see : 
e) There is a second elliptic pencil r' : X 13' on X. 

We want to compare r and Tr' and see the effect of 2 simultaneous elliptic fibra-
tions ! Let C; be the fibres of ir'. Then all the C; are finite coverings of E: 
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P1  

y 

7r' 

  

 

xl 
 

   

E 

  

X2 

 

Hence all the C; are either non-singular elliptic or multiples of non-singular ellip-
tic curves, and 

= res 7r : C ' 	E 
is an isogeny. Let S= {y E 	C; multiple} . py defines a pull-back on Pic° : 

13 
Pic°(C„' ) <—: Pic° (E). 

Choosing a base point x0 E E, we can identify Pic°(E) with E by associating the 
sheaf CE (x—x0) with the point x. As usual, this makes E into an algebraic group with 
identity x,. Now we cannot choose base points on each C; varying nicely with y 
unless 2r' : X--->P1  has a section. However, we can instead note that Pic°(Cy) acts 
canonically on C; by translations : i.e., the sheaf L of degree 0 maps u E C; to the 
unique point v such that L(u)=0,;,(v). Then via the maps p:, we find that E is 
acting by translations simultaneously on all the curves C. If we stick to the non-
multiple curves, it follows easily that this is an algebraic action of E : 

a,: Ex 7r' (P' — S) 	7'1  (P' ---S). 
But since X is a minimal model, any automorphism of the Zariski-open set 
rr'-' (PI —S) extends to an automorphism of X so we actually get an action : 

a: ExX—+ X. 

To relate this action to 7r, say xE E, u€ Cy. Then x takes u to v where 

7*  (OE  (X —  X0)) ® OcL(U) 	OcL(V). 

Let n= (Cy  • C ,)= (degree of res it : C y' —>E) . Then taking Normc,;,, of the 2 sides of 
the above isomorphism : 

E (nx — nx,±7ru) = 0 E (7rv), 
hence we get a commutative diagram 
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action of x  
X 	 X 	 EXX 	

a 	
> X 

(*) 	
7r 	 1 X 7r1 	 7r 

E 	  E 	 EXE 	 > E 
translation 
by n(x—x0) 	 x,y 	 > nx+y 

We can now use this action of E to describe the whole surface X as follows : let E0= 

Go  be the fibre over x„ and let An  =Ker (n, : E---E) considered as a subgroup 

scheme of E. Then by (*) the action of An  on X preserves the fibres of 7, hence An  

acts on E0, and give this action the name a : 

a : An  —> Aut (Eo) = group scheme of automorphisms of E0. 

Then by restriction of the actionQ of E, we get a morphism : 

7 : E X E, X 

which by (*) fits into a diagram : 

EX Eo  

nE  • 

z- 

Note that 

(x , y) = (x' , y') <=> (x — , y) = 

> x— E An  and a(x—x')(y) = y' 

hence it follows that X = quotient (E X Eal An) , via the action 

x(u, v) = (u+x, a(x)(v)), x E An, u E E, V E E0. 

If we replace E by E, =E/Ker a, this proves : 

Theorem 4. Every hyperelliptic surface X is of the form : 

X = E, x Eol A, 	E„ E0  elliptic curves 

where A is a finite subgroupscheme of E„ and A acts by 

k(u, v) = (u+k, a(k)(v)) 

for some injective homomorphism 

a: A—> Aut (Eo). 

Moreover, the 2 elliptic fibrations on X are given by : 



36 	 E. Bombieri and D. Mumford 

E1 xEol A 	 E1  x Eol A 

I 	I 
E,IA 	 E.°la(A) 

(elliptic) 	 211 
P1  

This theorem can easily be used a) to classify such X's and b) to compute the 
order of K, in Pic (X). We use the fact that choosing a base point OE E0, Aut(Eo) 

becomes a semi-direct product : 

Aut (E0) = E0•Aut (E0  0) 

normal subgroup 	finite, discrete group 
of translations 	of autos, fixing 0 

Note that a(A) E0, or else Eola(A) would be elliptic instead of rational as re-
quired. Moreover, from the tables in Lang [5], Appendix 1, we find : 

Aut (E0, 0) = {1E,-1E} 	Z/2Z if j(E0) # 0, 123  
Z/4Z 	 if j(E0) = 123, char # 2, 3  
Z/6Z 	 if j(Eo) = 0, char # 2, 3 
semi-direct product ZI4Z.Z13Z, Z/3Z normal, i E Z/4Z acting 
by mult. by (-1) zi 

if j(E,) = 0, char = 3 
semi-direct product (Quat. gp. of order 8) • Z/3Z, Quat. gp. 
normal, Z/3Z permuting cyclically i,j,k E Quat. gp. 

if j(E„) = 0, char = 2 

The important point here is that since A is commutative, so is a(A) and now even 
in the last 2 nasty cases, the maximal abelian subgroups are still Z/4Z and Z/6Z, 
which in all cases are cyclic. 

Let k E A be such that 

Im a (k) E Aut (E0)/E0 

generates 

Im a(A) c Aut (E0)/Eo. 

Then a(k)E0, hence it has some fixed point. Replacing 0 by this fixed point, it 
follows that a(A) itself is a direct product : 

a(A) = Ao• ZInZ 

finite gp. scheme of 	cyclic gp. generated by k, 
translations Ao  c Eo 	n = 2, 3, 4 or 6 

Since Ao  and k must commute, Ao  c (fix pt. set F of k). Again referring to Lang to 
check the fix point sets, we find : 

a) n = 2, (so k = —11), then F = Ker 2E0 
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b) n = 3, then #F = 3 so F 
F 

c) n= 4, then #F = 2 so F 
F 

d) n = 6, then F = (e) 

We can now mechanically compil 
X' s. 

al) E,x Eo/(Z/2Z) ; 
a2) E, X Ed (Zi2Z)2  ; 

a3) E, x E01(Z12Z) • P2 ; 

bl) E, x E01(ZI3Z) ; 

b2) E, x Eol (Z I 3Z)2  ; 

cl) E, x E01(Z 14Z) ; 

c2) E1  x 	(Z/2Z) • (Z /4Z) ; 

d) E, x Eol Z I6Z ; 

Z I3Z if char # 3 
a3  if char = 3 (because E, is supersingular !) 

Z I2Z if char # 2 
a2  if char = 2 (because E, is supersingular !) 

e a list of all possible a (K)' s, hence all possible 

action (x,y)H (x+a, —y) 
action (x,y)H (x+a, --,), 	y+c) (here 

char # 2) 
action (x, y) 1—> (x+a, —y), P2 acts by transl. on 
both factors. 
action (x,y)H (x+a, wy) where j(E0) = 0, w : 
E,—* E, an automorphism of order 3 
action (x, y) 1—> (x+a, wy), (x+b,y+c), E0, w as 
before and we = c, order c = 3 (here char # 3) 
action (x,y)1—> (x+a, iy), where j(E0) = 123, 
i : E, E, an automorphism of order 4 
action (x,y)H (x+a,  iy), (x+b,y+c), Eo, i as 
before and is = c, order c = 2 (here char # 2) 
action (x,y)i—> (x+a, —wy), E0, w as in b. 

The list obtained here coincides with the classical list in characteristic 0 (see 
Bagnera and DeFranchis [1], Enriques and Severi [3], pp. 283-392, ‘a.farevie' [14], 
p. 181). Note here that the requirements AocE, and ACE, eliminate the possibili-
ties n=2, A,— Ker 2E, and n=3 or 4, Ao=a, or a2. A striking feature of this list are 
the missing cases. From a moduli point of view, even in case a 1), one may ask 
what happens if we start with such an X in characteristic 0 and specialize to charac-
teristic 2 in such a way that the point a goes to OE E,. One would hope for instance 
that the moduli spaces of these X's were proper over Z [j(E„),j(E,)] but this is not 
true. The answer seems to be that the X's become quasi-hyperelliptic ! This is an 
interesting point to investigate. 

The order of Kx  is easily obtained, since if w is the 2-form on E, x E, with no 
zeros or poles, then 

order of K, = least n such that A acts trivially on w®n 

and we find 

order of lc = 2, 3, 4, 6 in cases a), b), c), d) 
and char(k) # 2, 3 

= 1, 3, 1, 3 in cases a), b), c), d) 
and char(k) = 2 

= 2, 1, 4, 2 in cases a), b), c), d) 
and char(k) = 3 
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It is interesting to check exactly which wild multiple fibres (in the sense of § 1) 
occur here for 'r' : 
list of § 2 : 

One can check that we get the following cases in the 

case char. # 2,3 char. 3 char. 2 

a (i) (i) (xv)-one or two fibres 0/2 

b (ii) (xv)-one fibre 0/3 (ii) 

c (iii) (iii) (xv)-one fibre 0/4 

d (iv) (xiii) (xii) 

4. Proof of Theorem 5 

First of all, let X be a K3-surface, i.e., Kx -.0, B2=22, B1 =0, x(0x)=2, H1 (0 x ) 

= (0) (cf. Table in Introduction). Then 
i) if 7r : 	X were a connected etale covering of degree d, one would have 

KY  _= r* K A, = 0, hence Y would be a surface in the Table too. But 

C2.y = 	1 (c2,x) 

hence 

deg c2,,, = 24d > 24 

and there are no such surfaces in the table. 
ii) Since H-(0x ) is isomorphic to the tangent space to Pic(X), it follows that 

Pic is a finite discrete group. Let L=Ox(D) represent a point of Pic°x. Then 
(D2) = (D • K x) =0, so x(L) = x(0 ,) =2, Therefore H° (L) # (0) or H2(L)# (0). 
But by Serre duality H2(L) is dual to H°(L-'). Thus L or L-' is represented 
by an effective divisor E, but since it is in Pic°, E=0. So finally L:=_Z x  and 
Pid= (0). 

Secondly, let X be a surface with Kx=0, B2=14, B,=2, x(Cy) =1, dim I-P(0x ) 
=1. Since B, >0, X has a positive dimensional Picard variety. This means that X 
does indeed support invertible sheaves L=C (D) such that D is numerically equiv-
alent to zero but D*0. Then x(L)=x(C)=1, so H°(L)# (0) or H2(L) (0). 
As above, Serre duality shows that H2(4# (0)H°(L-')# (0), so L or L-' is 
represented by an effective divisor E. E numerically equivalent to 0 implies E=0, 
so Li- Ox  contrary to our assumption. 

Alternatively, we could argue that because B, >0, X has connected cyclic etale 
coverings 7 : Y-+X of every order d prime to the characteristic. As in (i) above, 
c2x =12d and if d>2, no such Y appears in our table. 

Arguments of the above type, using pp  or ap-coverings of X (cf. Mumford [11]) 
do not quite seem to be strong enough to prove that if X is a K3-surface, then 
H°(X, S21,)= (0). It remains a very intriguing open question') whether or not 

1) (added in proof) Rudakov and Safarevic have just settled this. They show that nix  has no sections 

when X is a K3-surface. Moreover, P. Deligne has used their result to prove that all K3-surfaces lift to 

char. 0. 
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H°(X, Qix) is (0) for every K3-surface of char. p. 
Thirdly, let X be a surface with Kx:=_O, B2=10, B,=0, x(0,) =1, dim H'(0,,,,) 

=1. Let {a1 ) E Z' (Cs) be a non-trivial cocycle and consider the Ga-bundle 

77 : W--) X 

defined locally as A' x U„ coordinate zi  on A', and glued by 

zi = 

If w is a non-zero 2-form on X with no zeroes or poles, 

= dzi A w 

is a non-zero 3-form on W with no zeroes or poles, i.e., KH,-0. Now since H'(Cx) 
is 1-dimensional, there is a constant 2 € k such that {af f }, {xao} are cohomologous : 

= 2a jj-b,—b1  

Consider the global function f on W defined locally by 

= zf —Az,- bi. 

Let Y be the 2-dimensional scheme f=0. If 2#0, Y is etale over X, hence non-sing-
ular. If 2=0, still bi“?4, (or else aii=bliP—byp is cohomologous to zero), so Y is a 
reduced Gorenstein surface. Since K,„- -0 and Y has trivial normal sheaf in W, 
in both cases cuy:-'0,. Thus 

X(Cy) < dim H°(0,) -I-dim H2(0,) = dim H°(C2,) + dim H°(wy) = 2. 

On the other hand, 

res 7r : Y —4 X 

is finite and flat and (res 7r),,0, is filtered by the subsheaves : 

Cx c [Ox J Ox • zi c [Cx 0 Ox • zi Ox • zl] c • • • c (res rc)*Cy. 

The quotients here are all isomorphic to C„,,, thus 

X(0y) =P•X(0x) = P. 
Thus p<2 as asserted. 

5. Analysis of the Case Leading to Abelian Surfaces 

In this section, we prove Theorem 6, that a surface X with 1(x _.0 and B2 =6 is 
an abelian surface. As we see from the table in § 1, the surface X also has the prop-
erties : 

a) dim H1 (0x) = 2, dim H2(0x) = I, x(0x ) = 0, 
b) c2, x 	0, B, = 4, q = 2. 

In particular, Pic° X is reduced and 2-dimensional and its dual Alb X is 2-dimen-
sional. Let 

: X —> Alb X 

be the Albanese mapping. First of all, we can see that cb is surjective as follows : 
if not, since cb (X) generates Alb X, 0(X) is a curve of genus g>2. Consider the 
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diagram : 

X'=XXA1b Alb 	* > Alb X 

X 	 > Alb X 

where n denotes multiplication by n and p k n. Then 0(X') is an etale covering of 
0(X) of degree n2g. Also 0(X') is connected because 0(X')=n-t(0(X)) and 0(X) is 
an ample curve') on Alb X. Therefore, cb(X') has genus g' > 2. Therefore, Alb X' 
can be mapped onto Jac (0(X')) which is an abelian variety of dimension> 2 : i. e., 
q(X')>2. But X' is an etale cover of X. So 	0 and looking in the Table, we 
see that no such surface X' exists. 

Therefore, 0 is surjective, and hence of finite degree. If 0 were separable, e.g., 
if char. 	then we could quickly finish up as follows : 

Let w be the translation-invariant 2-form on Alb X. Then w has no zeroes or 
poles and because 0 is separable, 95*w O. But 0*w has zeroes at all points where 95 is 
not etale, and K ,== (0* co). Since Kx,=_O, cb*w has no zeroes, hence 0 is everywhere 
etale. But then by the Theorem of § 18 [12], X itself is an abelian surface. Unfor-
tunately if 0 is inseparable, this argument breaks down. However, when we are in 
characteristic p, we can use another trick and reduce the Theorem to the case 
where the ground field k is finite! In fact X lies in a smooth and proper algebraic 
family of surfaces defined over a finite field and all members of this family have 
the same invariants (e.g., because by the table in § 1, these surfaces are also char-
acterized by saying Kx-0 in etale cohomology and q =2). Therefore, if we 
prove that the surfaces in this family over closed points of the base are abelian, it 
follows that all are abelian (cf. Theorem 6. 14, [8]). 

Now assume the ground field k is finite. We follow a line of argument similar to 
that in Tate [16]. Consider the infinite sequence of surfaces : 

= X X Alb Alb 

X 	 

  

01 
) 	Alb X 

1 
Alb X 

 

0 

 

   

for all 1>2 with p X 1. Note that deg 95i = deg 0 for all : call this degree d. Note 
that X, -->X is etale and hence X is a surface of the same type as X (in fact, Kx  =0 
and q(X,) >2, hence by table I, q(A',) =2). We can deduce quickly that 0 and 
hence 0, are all finite morphisms : in fact, if not, let EcX be a curve such that 
0(E) is a point e E Alb X. Then considering the Stein factorization X-->Y--Alb of 0, 
we see that E can be blown down in a birational map X-->Y, hence (E2) <0. Now 

1) A suitable multiple of an ample curve C on any surface Y is a hyperplane section of Y for some 

projective embedding and all hyperplane sections of varieties of dimension>1 are connected. 
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for each 1, 1-1(e) consists of l4  points e, E Alb X, and 0-1  (ei) contains a curve E, that 
is contracted by 0,. These curves are disjoint since 0, (E,)—e,#ei=0,(EJ ). Thus X, 
has l4  disjoint curves E, with (E1) <0 ; thus B,(X,) -> V. But for all surfaces of the 
same type as X, 13,--• 6. This is a contradiction if 1> 1, hence 0 is finite. 

Next, fix L0, an ample sheaf on Alb X. It follows that 1,,---op(Lo) is ample on Xi, 
with Hilbert polynomial 

Z(LP") = d•Z(Lr) 
independent of 1. By the Main Theorem of Matsusaka-Mumford [7], there is also 
a number N independent of 1 such that L®N is very ample for all 1. Therefore the 
infinite set of k-varieties X, can all be embedded in a fixed Pm-  with fixed degree. 
Since there are only finitely many k-varieties of this degree (as k is finite), it follows 
that all the pairs (x„ LpN) are isomorphic to finitely many of them ! 

Now consider the facts 
a) for any variety X and ample sheaf L, the group of automorphisms f of X 

such that f*L is numerically equivalent to L is an algebraic group ; esp. 
it has only finitely many components (Matsusaka [6]), 

b) The group A, of translations by points of order 1 acts on X, since by defini-
tion, it is the fibre product X x Alb(Alb,  1) ; moreover each g E A, carries 
L, into a sheaf algebraically equivalent to 1,1. 

Let (X, Lr) be isomorphic to infinitely many other (X,,, Lr)'s. Then A,, acts on 
X,. Let G, Aut(X,) be the group of automorphismsf such that f *L, is numerically 
equivalent to L,. Then A,,GG, which implies that the order of G, is infinite, 
hence G° (the connected component) is positive dimensional. But if G° contains 
a non-trivial linear subgroup, then when this acts on X1, it would follow that X, 

	

was a ruled surface : since 	this is absurd. Therefore G° is an abelian 
variety. On the other hand, A (Z(1' Z)4, and subgroups of fixed bounded index 
in A,, are inside G. Therefore dim (4> 2. It follows that X, consists in only one 
orbit under G°, hence X, is a coset space G° 1H, hence X, itself is an abelian variety. 
Finally X itself is now caught in the middle between 2 abelian varieties : 

etale  x  	->Alb X. 

With a suitable origin, X, Alb X is then a homomorphism, hence if K is its ker-
nel, we find : 

Xx AibxXi = {(x, x+k)1 X E X,,  kEK}. 

But X, x ,X,GX,xX and X, x ,X, is (i) etale over X„ and (ii) the graph of A IbX- 

an equivalence relation on X,. (i) implies that 

	

X/ X 	= {(x, x+k) E X„ k E 1(7} 

for some subset KicK, and (ii) implies that K' is a subgroup. It follows that 
hence X is also an abelian variety. 
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