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THE PROJECTIVITY OF THE MODULI SPACE
OF STABLE CURVES
I: PRELIMINARIES ON ¢det” AND “Div”

FINN KNUDSEN and DAVID MUMFORD

Introduction.

This paper is the first in a sequence of three. In the last paper Mum-
ford will prove that the coarse moduli space of ’stable” curves is a pro-
jective variety. The proof is a direct application of the very powerful
Grothendieck relative Riemann-Roch Theorem.

The notion of a stable curve was introduced by Deligne and Mum-
ford [1]. A stable curve is a reduced, connected curve with at most
ordinary double points such that every non-singular rational compo-
nent meets the other components in at least 3 points.

In this first paper we deal with some essential preliminary construc-
tions which may also have other applications.

In the first paragraph we give the details of a construction whose
existence was asserted by Grothendieck and described in the unpub-
lished expose of Ferrand in SGA ’Theorie des Intersections —. The
construction is to assign to every perfect complex & an invertible sheaf
det & in such a way that det becomes a functor from the category of
perfect complexes and isomorphisms (in the derived categorical sense)
to the category of invertible sheaves and isomorphisms. Roughly det #~
is the alternating tensor product of the top exterior products of a locally
free resolution of %'. However in making this precise a certain very
nasty problem of sign arises. The authors’ first solution to these sign
problems was described by Grothendieck in a letter as very alambicated*
and he suggested to use the ’Koszul rule of signs’” which we follow in
this paper.

The second paragraph deals with a generalization of Chow’s construc-
tion assigning a ’chow form’ to every subvariety of P*. We functorialize
this and analyse the invertible sheaves involved, following some ideas
in an unpublished letter of Grothendieck to Mumford (1962) and in

*) This apparently means similar to an alchemical apparatus.
Received April 10, 1975.
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[3, p. 109]. Finally we must mention that we have several overlaps with
J. Fogarty “Truncated Hilbert functors’” [4]. He analyses the relation
between Div and Chow in the case & is an 0-dimensional perfect com-
plex, i.e. a coherent sheaf of finite Tor. dimension. In his notation Div
and Chow correspond to V and  respectively.

Chapter I: det.

Let X be a scheme. We denote by #x the category of graded inver-
tible 0 x-modules. An object of #x is a pair (L,x) where L is an inver-
tible @ x-module and « is a continouus function:

x: X->2Z.

A homomorphism h:(L,x) - (M,B) is a homomorphism of @ x-modules
such that for each z € X we have:

o(x) + B(x) = h,=0.
We denote by Zisx the subcategory of &5 whose morphisms are iso-

morphisms only.
The tensor product of two objects in Py is given by:

(Lyo) @ (M,B) = (LM, +) -
For each pair of objects (L,«),(M,B) in #x we have an isomorphism:
va, o0 (L) ® (M,p) —— (M,B) @ (L,x)
defined as follows: If l € L, and m € M, then
v(I®m) = (—1)@+@.;m Q1.

Clearly:
Var,p,@, 0" VYE,o,01.0 = Lz, 00010 -
We denote by 1 the object (0x,0). A right inverse of an object (L,«)
in # 5 will be an object (L',«’) together with an isomorphism
8: (Lo) @ (I',o') —> 1.
Of course ' = — .
A right inverse will be considered as a left inverse via:

(L'a') ® (Lyx) ——i—» (L) @ (L',o') ——'i—> 1.
We denote by € x the category of finite locally free O'x-modules, and by

€isx the subcategory whose morphisms are isomorphisms only.
If K € ob(¥ x) we define:

det*(F) = (AmsxF rank F)
(where(A™*=F), = AmkFzF )
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It is well known that det* is a functor from %isy to Pisy.
For every short-exact sequence of objects in € x

0>F 25> F-F L F">0
we have an isomorphism :
i*(x,f): det*F’ @ det*F'' —~— det*F
such that locally,

i*(o, )((ex A o . AE) @ (BfiA ... ABSfS)) = ey A ... AggAfyA ...

for e, I'(U,F’) and f;e I'(U,F).
The following proposition is well known :

ProrosrTION 1. i) i* 48 functorial, i.e., given a diagram:

O>F —2*s>F -, F"50

TR |

0@ 2025050

21

where the rows are short-exact sequences of objects in € x, and the columns

are i1somorphisms, the diagram:

det*F’ @ det*F’" b, det*F

lldet‘ Y@ det* A7 Zldet‘ 2

det*G’' @ det*G"’ T det*G
commutes.

ii) Given a commutative diagram of objects in € x
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where each row and each column is a short-exact sequence, the diagram

— det*F ® det*H

det*F’ @ det*F"” @ det*H’ ® det*H"" DO

llma', BY®i* (o, B”) + A @vdet* I, det* H' ®1) Zlv(a, 8)

det*@’ ® det*G"’ — det*@

6,
commutes.
iii) det* and i* commute with base change.

The isomorphism i* is a special case of a more general canonical iso-
morphism: suppose Z is a locally free @ x-module and:

0)=FEcFEc..<FE=E

is a filtration such that FE/F-1E are all locally free. Then there is a
canonical isomorphism:

i*({FE}): @', det*(FiE[Fi-1E) —=— det*(E) .

Moreover these isomorphisms satisfy the following basic compatibility
generalizing (ii) above: suppose {F°E} and {G°E} are 2 filtrations on
such that for all 7,j

G = F'E n G'E[(F*E n GE)+ (FE n G/-1E)

is locally free. For each fixed 4, the G%4 are the graded objects associated
to a filtration on F!E[Fi-1E, and for each fixed j, they are the graded
objects associated to a filtration on G/E/G/-1E. Thus the i’s give us a
diagram:
®y,jdet*(G49) —~— @, det*(FE[F-1E)
ol l

¥ -
®; det*(G'E|/GI-1E) = det*E

This then commutes. We will not enter into the details here however,
because the general isomorphism ¢ can be defined inductively as a com-
position of the special isomorphisms ¢ associated to short filtrations:

(0)=FE < F'E < F°E =E,
which is then just the ¢ associated to the exact sequence:

0->FE >E—->E|F'E~>0.




THE PROJECTIVITY OF THE MODULI SPACE OF STABLE CURVES 23

Moreover, the general compatibility property is just a formal consequence
of the special one — (ii) above.

Next we consider the category € x of bounded complexes of objects
in ¥x, morphisms being all maps of complexes. A map of complexes
which induces an isomorphism in cohomology will be called a quasi-
1somorphism. The subcategory of € x whose maps are quasi-isomorphisms
will be called € is.

DerFiNITION 1. A determinant functor from €'is to Pis consists of
the following data:

I) For each scheme X a functor {5 from €'isx to Pisx.

IT) For each scheme X and for each short-exact sequence:
0>F' 2> F L F"50
in €’ x an isomorphism:
ix(e,B): £(F") QEF") —— £(F") .

This data is to satisfy the following requirements:
i) Given a commutative diagram:

0>F'—*>F —F F"50

ok

0@ 2o @ sG>0

where the rows are short-exact sequences of objects in 'y and 4,4 and
A" are quasi-isomorphisms, the diagram:
{(F) @ H(F") —ZLD, §(F)
) @147 i
H(67) @ H@") —Z2 H(&)

commutes.
ii) Given a commutative diagram:
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0

0 0
+ '
0>F' @' L, H' >0
Y lr

¥
I
0-F @ LS5 H >0

N

0 __)F‘II;G'_) G'"—ﬁ'—> H-/I -0
} ' }
0 0 0

where each row and each column is a short-exact sequence, the diagram:

1(F) QIF ") QIH") @ {(H"") ZLDXY D), {(F) Q(H')

Uix(, B)Rix(=", ) Q1 Qvi(F), (A @1 Uix(, B
HE") @ £(G) e - (@)

commutes.

iii) f and i both commute with base change.
iv) f and i are normalized as follows:
a) f(0)=1
b) For the exact sequence:
0-F X, L0050
the map
f(F)Q1 1z, 0 HF)
is the canonical one,
b’) For the exact sequence:
00 —F- L. F 0"
the map
f(Fryel e f(F")
is the canonical one.
v) We consider ¥is as a full subcategory of €'is by viewing objects
of €is as complexes with only one nonvanishing term, this term being
placed in degree zero. Then for such objects:

£(F) = det*F
ix(e, ) = i*(x,B) .
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The main theorem of this chapter is

THEOREM 1. There is one and, up to canonical isomorphism, only one
determinant functor (£,1), which we will write (det,i).

Let X be a scheme, H' an acyclic object in €" . If (f,i) is a determinant
functor, we have an isomorphism :

£(0): £(H') 1.

If
0>H'—*~H L H" >0

is an exact sequence of acyclic objects it follows from Definition 1, i)
and iva) that the diagram

f(H") @ {(H") 220, {H")

| |

1 ® 1 mult. -1

~

commutes.
Let o: F* — G’ be an injective quasi-isomorphism such that the coker-
nel is again an object of € x, i.e., we have a short-exact sequence:

0>F ‘@G —LH S0

such that H is acyclic.
From the diagram:

O>F —F—0 -0
P
O>F <@ —LtH >0
we get a commutative diagram:
f(F)®1 —22 s f(F)
Zl Zl
f(F) @ (H') —5=2 £(@)

hence we see that f(«) is determined by the mapsix(«,8) and£(0): f(H’) » 1.
Let A: F' —+ G" be an arbitrary quasi-isomorphism. We denote by Z,’
the following complex:
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Zji=Fi@ @@ Fin

o —1
dig, = [0 df 2+
0 0 —di+
Consider the diagram:

8

F'-5—>ZA'<~—__—’G'

1 0
x = (0), B = (1) B = (2,1,0).
0 0

We leave to the reader to check that these are all quasi-isomorphisms
and furthermore,

where

Box=14 pof=1g.
Hence we have:

£(2) = £(8)ok(a) = £(8')of(B)of(B)ot(w)
= 1(8'0B)of(B)Pok(x) = £(B)tot(w).

Hence, since both &« and g are injective quasi-isomorphisms, the map
f(A) is determined by the maps i and £(0) from f(H") - 1 for acyclic H'.
We summarize this in the following:

Lemma 1. Let (f,i) and (g,j) be two determinant functors from €'is to
Pis. Suppose we are given 0 as follows:

i) For each scheme X and each object F' in € x we have an isomorphism:
Ox,p: §(F) —— g(F") .
ii) For all acyclic H' the diagram:
HH') 5 g(H)
lJi(O) e

l e ———— 1
commutes.

iii) For all short-exact sequences:
0O-F 2@ L H 0

with H' acyclic, the diagram :
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. . 1x(x, B .
f(F)®f(H)——‘:,—‘>f(G')
Uox, 7 R6x, B llex, @

g(F) ® gH') —Z2P, g(@)
commutes.

iv) 0 commutes with base change.
Then for all quasi-isomorphisms A: F' — G the diagram:
f(F) -2 £(&)
l|ox, 7 ljox, e
g(F) <2 g(@)
commutes.

As a side remark, notice that these methods prove:

ProposrTIoN 2. Let (f,i) be a determinant functor from € is to Pis, and
let
Au 3@

be two quasi-isomorphism such that locally on X, A is homotopic to u, then

@) = f(u) .

Proor. Two maps being equal is a local property, and since f commutes
with base change we may assume that X is affine. However in the affine
case locally homotopic maps are homotopic so let H be such a homo-
topy, i.e.,

A—pu =dH+Hd .

We leave to the reader to check that we have an isomorphism of comple-
Xes:

given by the matrix:

such that the diagram
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Zy

commutes. But we have already seen that
£(2) = £(B)of(x) and f(u) = £(8)1oi(y)
hence the proposition.
Lemma 2. Suppose we are given a pair (£,i) satisfying all the axioms of
definition 1 except:

I) 4s replaced by:
I') For each scheme X we have a map

such that £5(0°) =1 and for each acyclic complex H' on X an isomorphism:

£2(0): fx(H')—=1.

i) s replaced by
i’) For each scheme X and for each short-exact sequence of acyclic objects:

O-H'—*>H L H" 50

the diagram
HH") @ {(H") —XZP {(H')
lli(m@:w) llfw)
1®1 mak. 1

commules.
(The rest is left unaltered.)
Then there exists up to caninical t1somorphism a umque determinant functor

(f i) such that for all F* we have
fF) = #(F")
and for each quasi-isomorphism
H—50.
we have:

£(0) = £(0) .

Proor. Uniqueness follows immediately from Lemma 1. Suppose we
have defined f for all affine schemes, then since f commutes with base
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change, the maps patch together to give f on all schemes, hence we may
assume that X is affine.

Let F*—*— G be an injective quasi-isomorphism. We will say that «
is good if the cokernel of « is again in € 5. Let H = cokernel of x. Then
we get a short-exact sequence of complexes

0>F =G —L-5H >0
such that H is acyclic. We define {'(x) via:

f(F) <Dt f(7) @ 1 2§77y @ §(H') <222 (@)

f'(2)
~

Let «: E' -~ F" and 8: F" - G". be two good injective quasi-isomorphisms.
We have a commutative diagram:

0 0 0

\ \ +

0->F ‘- F-—Y>H->0

R

0>E- L2, @2 K—>0

Lok

v Y v
0 0 0

so by axiom ii), iv) and i’) we have:
(**) f'(B)of'(x) = f'(Box) .
If A: F' - @ is an arbitrary quasi-isomorphism, we have a diagram:

B

F—z .G

f) o oef)

Clearly & and g are both good injective quasi-isomorphisms, and we define

) =#8)1f() .

where
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To see that f is functorial, let
ME - F and u:F -G
be quasi-isomorphisms: we define a complex W" as follows:

Wi=E@F®G6@E+H@ Pt

d00 -1 0
0d0 A -1
dy=]00d 0 pu
000 —d 0
000 0 —d

We then have a commutative diagram :

Z, « F
/" N\ N
B e ¢ z,
N /
Z 2+ G
where

100 000 100
010 100 000
p=]ooo|, g=[010], r=]010].
001 000 001
000 001 001

The fact that ﬂyol):f(p)of(l) now follows from this diagram and the
functoriality of f’. We leave to the reader to check axiom i): this is not
hard. It is also easy to check that f=1" where f' is defined, but this is
not needed.

For each scheme X and each object L in 2y we fix a right inverse
L1 of L, i.e., an isomorphism

8 L@L1 1.

If x: L —=» M is an isomorphism in #y we denote by x-! the unique
isomorphism making the diagram :

L®L—=1

o]

MQIM1=s1
commutative.
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For every pair of objects L, M we denote by 6 ,; the unique isomor-
phism making the diagram

(ML) ® (M®L)™ 2 1
211®0M.L Zl(o.d)—l
(MSL) @ (M1QL-Y)—2M® | o M1QLL-

Then -1 is a functor from Zis to Zis which commutes with base change,
and for each pair L, M the diagram:

(ML)t — "L, g1 L1

Zl(vm, ! llvu—l,r‘

LRM)? —2— L @ M
commutes.
If F is an indexed object of ¥y we define:

o _ | det*(FY) for ¢ even
det(F) = det*(F%)-1 for s odd
If ' )
(N LN LN | N

is an indexed short-exact sequence of objects in € 5, we define
o qoony | 1¥(ad,BY) for ¢ even
o) = {i*(ai,ﬂi)—l for i odd
If F' is an object of €'y we define
det(F') = ...Qdet(Fitl)Rdet(F)Qdet(F-1)Q. ..
Finally if

O>F'—*>F -2 F">50

is a short exact sequence of objects in € ¢ we define

i(x,B) : det(F')Qdet(F"') — det(F")
to be the composite:
det(F')Q@det(F"') = ...Qdet(F)Qdet(Fi-1)Q...
QRdet(F¥')Qdet(Fi-1")Q. .. —~ ...Qdet(F*)Qdet(F*’)
Aok, g
@det(Fi-1)@det(Fi-1")®. .. —22D | @det(F¥)

® det(Fi-1) ® ... = det(F).
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the most amazing thing is that we can construct for each acyclic object
H' in €’ x an isomorphism:

det(0) : detx(H') ——1

such that all the axioms of lemma 2 holds.

These axioms are all trivially verified execpt for I') and i’). We will
verify these simultaneously and we use induction with respect to the
length of the complexes.

STEP 1. Complexes of length 2.
Consider first an acyclic complex

H=..-0oH-S%H150->,,,

with ¢ an odd integer. Since d is an isomorphism we get an isomorphism:

det(H.) = det*Hi-)—l) ®dﬁt*(H‘t) -1 l®de:(d)'l

det*(Hi)@det*(H+1)-1 —~» 1,

We define this isomorphism to be det(0).
Given a short exact sequence of acyclic length 2-complexes:

'

0 Fitl— +1 2, i+l , 0

N

00— 0———>0—0

¢ ¢ ¢

we get a diagram:
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—— det(F')@det(H') i€ ) det(@")
z |
1
det*(Fi+l)Qdet*(H ) Rdet*(F)1Qdet*(H?)-1 =~ > det*(G*+1)@det*(G¢)-1
1| det(0)® det(0) U 1® 1®det*(d)~! ®det*(d)~1 11 | 1®det*(d)~ det(0)

det*(Fi+1) ®det*(Hi+1)®det*(Fi+1)—1®det*(Hi+l) -1 —~ det*(Gi+1)®det*(G’l+1)—1

v U@ 0o(1Q v®1) 111 Zld v

11 o~ — 1 «

The square I is commutative by the definition of ¢, and the squares IV
and V are commutative by the definition of det(0). The square III is
commutative by the definition of i-! and finally II is commutative by
axioms iii) of definition 1. Hence the whole diagram commutes. If

H=..50>H 9% sH+H 05, .,

is an acyclic complex with i even we define det(0) to be the composite

det(H') = det*(Hi+1)-1@det*(H?) —2ur® getr(Hi+)-1@det*(Hi+)
—¥ > det*(Hi+l)Q@det*(Hi+1)-1 —2 -1 ... .

Given a short-exact sequence of acyclic length 2-complexes

0->0 — 0 -0 =0

with 1 even we get just as before a commutative diagram.

Math. Scand. 39 — 8
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det(F")@det(H') —=2, det(G")
ldet(O)@det(O) det(0)

1®1 ~ 1

Hence I') and i’) holds for all acyclic complexes of length 2.

StEP 2. Suppose I') and i’) hold for all acyclic complexes of length <n,
and let

H=...>0->H > H+ > H+2 5 > Hi+n 50 .,

be an acyclic complex of length n+ 1. We then get a short-exact sequence
of complexes:

o {
0

0—->0 -0 0
+ + +

O>Hi=H—s 0 —0
} + +

0 > Hi - Hi+l  Hi+1[Ht > 0
+ 4 {

0> 0 > H+2 5 H42 0
by
+ } +

0> 0 - H+n Hitn 5 (
i i +

0->-0 -0 0 — 0
{ i i

il I
O —*H.I:) H.LH.II-—T) 0
Since H'; and H'y; are of length <n we define det(0) so as to make the
diagram
det(H';)@det(H ;1) — <2 det(H')
‘det(o)@det(o) det(0)

1®1 m,‘ll,t' — 1

commutative. It is then easy to check that i) follows from axiom ii)
of definition 2. Now by Lemma 2, the pair (det,i) is a determinant
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functor €is to Pis. Now say (f,j) is any determinant functor. If E-
is any complex we define an isomorphism

0,: (&) —— {(TE")?

in such a way that the diagram:

$(E)RUE) —L~ f(B)QE) ! —> 1

1on

f(E')—léf(TE')—l —= £(C"y,.) 1 O 1

commutes. Here 7' stands for the shift operator defined by
(TE')» = E*t' and Td = —d.
C" is the mapping cylinder complex. Inductively we define
0,(B) =0, (TE)1-6,(E) and 6_,(E)= 0,(T"E)1

(note this -1 is the functor mentioned on p. 31.)
It is straightforward to check that given a short-exact sequence

0O>FE —*5F 2,60 50

the diagram .
f(E) ® §(&) P {(F)
1101(901 Z¢01
{(TE) QTG )t —T=T0™ | 7)1
commutes.
And for any quasi-isomorphism
A B> F
the diagram
f(B) —D s {7
1101 U6
§(TE)- I, §(rF)
commutes.

We proceed to define an isomorphism of functors:
n: (£,j) ——— (det,i) .

First consider a complex E° concentrated in degree i.
We define % as follows:
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{(B') —2s {(TE" Y-V —— det(E")
1

n
~

It is then obvious that restricted to all complexes which are concentrated
in a single degree, n is an isomorphism of functors. If

F =...o0E s F+l 5, - Fi+n 50

is a complex of length n+ 1, we get a short-exact sequence of complexes

i 4 {

0—-0 0 0 0
\ V {

00 — E'—> E' — 0
{ \ i

0> EFi+tl > Fi+l 50— 0
) ) \

0> EFi+2 5> Fi+2 50— 0
A
{ ¢ {

0> Ei+n > Fitnr 5> 0 —— 0
{ \ {

0->0 0 0 0
) s N

I i I
0>E12*>E-L-E,;-50

Inductively we can define » such that the diagram
{(ED) @ {(E'y) —22— {(F)
IJ( Qn lln
det(E'y)@det(E 1) —%20, det(E")

commutes.

Using axiom ii) it is easy to check that for all short-exact sequences of
complexes
) 0O>-E 2> PF L .30

the diagram
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f(E)QHG) —22— £(F)
lln(an n
\:
det(E')@det(d") —2P_, det(F")

commutes. ,
Finally we want to show that for each acyclic complex H" the diagram

f(H') —2—— det(H')
2

£(0) det(0) |2
—— l —_

commutes.

By induction we only have to prove this in case of a length 2 acyclic
complex. Note that any such complex is the mapping cylinder of an
isomorphism of pointed complexes, say:

H =0C, where 1: A4 ——-B".
We have then a short-exact sequence
0+>B —>H -L>T4 >0
and £(0) is given as the composite:
H(H) P (B)RATA) 2250 ((B)@f(4) OO
f(B)®f(B)1 —%— 1

The same formula holds for det, and so by Lemma 1 % is an isomorphism
of functors.

We can in fact extend det even further. We need some preliminaries
concerning derived categories for this.

Let o7 be an abelian category; we denote by 27, the following category.

i) The objects of o7, are sequences of the form

En « E ___&__) El
such that -« =0.

ii) The morphisms in 27, are triples of maps in &/ making the resul-
ting diagram commute.

DeriniTioN 2. The subcategory of D(&/;) whose objects are short-
exact sequences of complexes will be denoted by VT(«&/) and, we will
call it the category of true triangles of D(%).
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REMARK. Let
X=0-E"—*>EFE -t ,E">50
be a true triangle. Taking the mapping cylinder of the first map we get
an ordinary triangle
>E">E->C, ~>~TE" >TE -~TC, — ...
If 1. is the identity map on E"’ we have a short-exact sequence

0—>C’;E.,,—->C'a' *>E'->0.

But O, . is acyclic so u is a quasi-isomorphism, and hence the compo-
sition
—~1
E' 0, >TE"

gives us a triangle which we call
X)=->E"—*>E P E'>TE">....

In fact § is a functor from true triangles to the category TD(%/) of tri-
angles in D(2/). Note that the homomorphism

d: HomVT(d,(X Y) - HOIDTD(m(a(X),(S( Y))

is in general neither injective nor surjective.

ProrosiTION 3. Let f: X — Y be a morphism of schemes and let Mod(X),
Mod(Y) be the category of Ox- and Op-modules. Then left and right derived
functors

Lf* : VT(Mod(Y))- - VI(Mod(X))~
Rf, : VI (Mod(X))* - VI(Mod(Y))*
exists.

Proor. According to Hartshorne: Residues and Duality, Chapter I,
Theorem 5.1, the proposition follows if each true triangle bounded below
allows a quasi-isomorphism into a true triangle consisting of injective
Op-modules, respectively each true triangle bounded above is quasi-
isomorphic to a true triangle consisting of flat @ x-modules. The fact that
such quasi-isomorphisms exist follows from the following:

i) A short-exact sequence of injective @)x-modules is an injective
object in the category Mod(X)s, and every object of Mod(X), with
the first map injective admits an embedding into a short-exact se-
quence of injectives.

ii)" Every object of Mod(X), with the last map surjective is the quo-
tient of a short-exact sequence of flat @ x-modules.
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This proves the proposition.

Recall the definition of a perfect complex #  on a scheme X [2].
This means that #  is a complex of @x-modules (not necessary quasi
coherent) such that locally on X there exists a bounded complex ¥’ of
finite free @ x-modules and a quasi isomorphism:

G >F'|ly
We denote by Parfy the full subcategory of D(Mod X) whose objects

are perfect complexes. We leave the proof of the following result to the
reader.

PROPOSITION 4. a) Let X be any affine scheme and F" a perfect complex
on X. Then there exists a bounded complex of locally free, finitely generated
0 x-modules 4" and a quasi-isomorphism :

G >F
(i.e., globally on X:)
Let o: F  —F "' be a map in the category Parf ., and suppose we are given
quasi-isomorphisms:
P9 >F and PG >F"'
where G' and F' are bounded complexes of locally free Ox-modules, then
there exists up to homotopy a unique map
B: 9 ~>9"
such that p'f=«p in Parfy.
b) If
0>F'>F >F " >0

18 a true triangle of perfect complexes there exists a true triangle of bounded
complexes of finite locally free O x-modules.

0-9">9 >9" >0
and an isomorphism in the category VI(Parfy)
09" -9 >9" >0
lp’ lp lp'l
0>F ' >F >F " >0

Moreover if
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0>F' >F F'" >0
Ny
0" > " -0
18 any morphism in VI(Parfx) and
O->H">AH" >H"" >0
ay
0> > > >0

18 an isomorphism with X', A" and XA~ bounded complexes of locally
Jree O x-modules. Then there exists up to homotopy a unique map:

09" -9 9" -0
o ln o
Jr +
O->H">H" >H" >0

"o rn

such that &'p'=q'f’,ap=qf and «''p"' =q''p"" in Parfx.
c) Same for diagrams of the form

0 0 0

X + V
0->F ' >F >-F'" >0

X i Y
09" -9 9" -0

l \ X
0>H" > >H#" -0

{ } +

0 0 0

DEeriNiTION 4. An extended determinant functor (f,i) from Parf-is
to Zis consists of the following data: g
I) For every scheme X a functor

fx : Parf-isxy > Pisx
such that f5(0)=1.
II) For every true triangle in Parf-isy

0O->F 2@ N H->0
we have an isomorphism:

ix(xf) : £x(F)@ix(H) —=~ (@)
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such that for the particular true triangles

0>-H—=H->0->0
and
0-0>H=——H-->0
we have:
ix(1,0) = ix(0,1) = 1; (m
We require that:
i) Given an isomorphism of true triangles*:

0-F —*>G -2 H >0

Pk

O>F —*“>q —FSH 50

the diagram
fx(F)@fx(H) — 22~ f2(®)
l lfx(u)(@fx(w) llf x(®)
Ex(F)@1x(H) — o> 1x(6)
commutes.

ii) Given a true triangle of true triangles, i.e. a commutative diagram

0 0 0
¥ + +
0>F —*>@ —F>H 50

lu {u’ lu"
¢ ’
0>F —*“, ¢ —F ,H 50

’”

0 — F// o Gn B’ Hr/ -0

N ¥ ¥
0 0 0
the diagram:
£x(F)@fx(H)@fx(F")@fx(H'") —2&2OXE) () @ix(G")
Zlix(um)@lx(u", )RURYRL) U ixw,v)
tx(F')@f x(H') W5 (&)

* This means this diagram commutes as Ox-modules and not just v-a=oa'-4 in
D(Mod X): in fact, even assuming v« and w-# homotopic to «’'-u and f’-v respecti-
vely and all sheaves locally free this property will not hold for det!
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commutes.
iii) f and i commute with base change. Written out this means:
For every morphism of schemes

g: X->Y
we have an isomorphism

n(g) : fx-Lg* —— g*ix
such that for every true triangle
0O->F 2@ —"-H >0
the diagram:
tx(Lg*F )@ x(Lg*H') —X 52 £ (L)
Unn Un
gy (F )@y (H) — 52— g*ip(6)

commutes. Moreover if
X',y *,7

are two consecutive morphisms, the diagram:

£ (Lg*LA*) — 22 gi Li* 2P, gxpaf,
fo«» , b4
fx(L(g-h)*) = (9-h)*tz

commutes where 0 is the canonical isomorphism
6 : Lg*-Lh* ——~— L(g-h)*,
iv) On finite complexes of locally free @ x-modules,

f=det and i=i.
Then using Proposition 4, one proves easily:

TrEOREM 2. There is one, and, up to canonical isomorphism, only one
extended determinant functor (f,i), which we will write (det,i) again.

REMARE. If & is a perfect complex and you filter it with subcomplexes
such that the successive quotients gr*(#°) are all perfect, then there is
a canonical isomorphism:

det(F ') —2s @ det(grF") .
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This is constructed easily by induction on the number of steps in the
filtration, using the isomorphisms ¢(x,3) at each stage and it has the
compatibility property described after Proposition 1 above for ordinary
det*. In particular: .
a) if each #™ is itself perfect, i.e., has locally a finite free resolution,
then
det(F') » ®,det*(Fn)-"

b) if the cohomology sheaves H™( &) of the complex are perfect —
we call these complexes the objects of the subcategory Parf®<Parf —
then

det(F') ~ R, det*(HMF )",

This has various easy consequences:

COROLLARY 1. LetF and & be two objects of Parf®x and suppose « and
.f: F Y
are two quasi-isomorphisms such that H (o) = H¥(B) for each i. Then det(x)=
det(B).

COROLLARY 2. Let
9«?1. L fz. ? f3. v Tfl' -

be an ordinary triangle in Parfy such that the F; are in Parf®x. We then
have an isomorphism

det(F,) ® det(Fy) —X“2 det(F;)

which 18 functorial with respect to such triangles.

Proor.
det(F,)R@det(Fy) = [@det*(H*(F,))V"1@[@det*(HYFy')) V"]
and
det(Fy) >~ @det*(HY(F,)) D",
But the long exact cohomology sequence H'(u,v,w) is an acyclic com-
plex with perfect sheaves at each stage, so
1y —=— det(H (u,v,w))
~ ® det*(nth sheaf of H'(u,v,w))-D"
~ [® det*(HMF,))-2"1Q[® det*(HMF,))-0"""]
B[® det*(H™Fy))-V"].
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We tried for some time to extend ¢ to ordinary triangles, but in general
this is not possible. It is true that for each ordinary triangle we can find
an isomorphism but it is by no means functorial or unique (cf. footnote
to Definition 4 above). We have seen that i extends when the complexes
are good, we will now see that it also extends when the schemes are good
(i.e., reduced).

ProrosiTioN 6. Let X be a reduced scheme F' and G perfect complexes,

o and B two quasi-isomorphism
o F 3G

such that

a) For each integer i there are finite filtrations

F(HYF')) and F(HY9Y)).
b) For each generic point x € X, the maps
Hix) @ 1 and  HYB) @ Ly

are compatible with the induced filtrations on H(F ' )Qk(x) and H(ZG ) Qk(x).
(Note that k(x)=0x ,) and we have

gr(HY (o) ®1yw) = gr(H () ®1um)
for each .
Then
det(x) = det(g) .

Proor. Since X isreduced and det commutes with base change, we may
as well assume X =Spec(k) where k is a field. However in this case we

have
Parfy, = Parf,

and so the proposition follows from the last one.

ProrosITION 7. Let X be a reduced scheme, then for each triangle of per-
Ject complexes:

F G " s TF
we have a unique isomorphism.
ix(u,v,w): det(F )Qdet(s# ) —~— det(¥")

which is functorial with respect to isomorphisms of triangles.
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Proor. First we represent the mapping w by a diagram of real maps

T-Y#") F

s [

I

where I’ is injective.
The mapping cylinder of x gives us a true triangle:

D TYH)>T -C) > T —~ ...
I v I v
DTN F G - H > TF .
By the second axiom for triangles there exists a map (necessarily an
isomorphism) 1: C° - %" making the diagram above into an isomorphism

of triangles. By Proposition 6 the map det(1) does not depend on the
choice of 1. If we represent w by a different diagram say:

T-Y5¢") F

I'I

uw

we get a homotopy commutative diagram

)
T-Y(H") .
‘ w — }-'

If H is a homotopy we get a commutative diagram
0>I —C,——H" >0

GO

0>I"—— Cy—— H >0

1

ie., a map of true triangles. It follows that if A’ is a map from C,, to &’

making
I'——C,——

Lo

F ——n G —

into an isomorphism of triangles, then the diagram:
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det(2)

det(F")@det(#") —— det(I')Rdet(H#") —— det(C,) —=2, det(¥')

| ; ; |

det(F")@det(# ") —— det(I"”)@det(H# ") —— det(C,) —— det(¥')

commutes.

The composite map above we define to be i(u,v,w). It is clearly func-
torial.

Let p: X — Y be a proper morphism of finite Tor-dimension with ¥
noetherian. Recall that if #° is a perfect complex on X then R'p, %" is
again perfect (cf. Proposition 4.8, SGA 6, expose 3 (Lecture Notes in
Mathematics 225, p. 257, Springer-Verlag, Berlin-Heidelberg-New York).
Hence to every perfect complex on X we can associate a graded inver-
tible sheaf on Y

det(R py(F)) .

True triangles on X have injective resolutions so R'p* maps true tri-
angles to true triangles. Hence for every true triangle

0-F 2> L ¢ 0
on X we have an isomorphism:
ip(x,0) : det(R'p,F )Rdet(Rp, o) — det(Rp,¥’)

which is functorial with respect to isomorphisms in VT(Parfy).
This operation commutes with base change too, i.e., given a morphism
of noetherian schemes, g: Y’ - Y, let

X' =XxgY',
g =p: XxpY' > X,
P =py: Xxp¥' > 7Y'.

Then there are canonical isomorphisms:
¢*(dety(Bpu(#)) & dety,(L*(Rpu(F))) = doty,(Rp's(Lg™*F) .
The last result of this chapter we state in the
ProrosrrioNn 8. Let p: X -~ Y be a proper morphism of noetherian

schemes and suppose that Y i8 a regular scheme. We then have a functorial
tsomorphism :

det(R'p*gf-') —_— ®p,¢d°t(qu*HF(f‘))(—1)M .
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Proor. The proof is easy by observing that on a noetherian regular
scheme we have:
Parfy = Parfo,

and using the spectral sequence

Rip*(HP(F")) = RPHp, (F) .

Chapter II: Div and Chow.
Let X be a notherian scheme, and
AMF -9

a map of perfect complexes in the derived categorical sense. We define
the open set U(4) as follows:

U(A) = {x € X | there exists a neighbourhood V of z
in X such that A restricted to V
is an isomorphism in D(Mod(¥))} .

We define the support of 1 to be the closed set:
Supp(l) = X-U(4) .

Finally we say that 4 is a good map if Supp(4) contains no points of depth
0 or equivalently U(4) contains all points of depth 0.

Let again 4: %" — ¥ be a good map of perfect complexes, and let «
be a point in X. By the very definition of a perfect complex, we can find
a neighbourhood ¥V containing « and two bounded complexes of coherent
free 0 x-modules, say &," and &, plus, restricted to V, quasi-isomorphisms

Eyly—=—>Fly and &ly——Fyp.
By choosing basis for the various &;*’s we get an isomorphism:

~ . det(x) . det(d)
0X’VnU(A) —= det(&,)| vaU@R) —~ det(F )IVnU(A) —

. det(8)—1 . ~
det(¥ )anU(A) __e_~___* det(&, )anU(z) —_ 0x|VnU(z)

and this isomorphism determines a section s € I'(V n U(4),0x*).

Since VnU(4) contains all points of depth 0 in ¥, 8=0 defines a Cartier
divisor 4(s) in V. Clearly é(s) does not depend on the choice of &," and
&4, 80 we have defined a global divisor via the formula:

Div(A)|y = 4(s) .
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It follows immediately from the definition that the canonical map on
U()
det(2) : det(F )|y —=— det(Z) |y

extends to an isomorphism on the whole of X:

det(2) : det(F )(Div(2)) —=— det(¥’) .
In particular:

(i) Supp(Div(4)) = Supp(4)
(i) O(Div(2)) ~ det(¥’) ® (det(F"))-1 .

If #" is a perfect complex on X such that the zero map:
0 ->F
is a good map of complexes, we simply write
Div(#") = Div(0" -ZF")
and we have a canonical map:
det(0) : O(Div(F")) —=— det(F") .
This association of a divisor to every good map of perfect complexes
satisfies some properties which we will summarize in the following:
THEOREM 3. (i) Let A: F" - G and u: G' — 5#" be two good maps of perfect
complexes, then the composition is good too and we have:
Div(u-4) = Div(u)+Div(4) .
(ii) Consider a strictly commutative diagram of short-exact sequences of
perfect complexes:
0>-F —— G ——H# -0
Pk
0>F ' — %' — > H#"'—>0.
Then of any two if the vertical maps are good, so s the third and we have:

Div(«x)—Div(g) + Div(y) = 0.
(iii) Let
0-F A g L, # 50
be a short exact sequence of perfect complexes such that A is good, then 0" —~

18 good and we have:
Div(1) = Div(s#").
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(v) Let f:X - Y be a morphism of noetherian schemes, A:F - " a good
map of perfect complexes on Y. Suppose that for each z € X of depth 0,
f(x) € U(A), then the map:

Lf*(3) : LfXF") > Lf(9")
18 good too, and we have:
Div(Lf*(1)) = fDiv(3)) .

(vi) Let X be a normal noetherian scheme and F* a good perfect complex
on X. For every point x in X of depth 1 recall that Ox is a discrete rank 1
valuation ring, and since F' is good HYF )x 18 a torsion Ox-module of
Sfinite length, say:

length (H{(F),) = r,i(F") .

We define the number:
T(F7) = Zie ool — 1IHF) .

Since X 18 a normal noetherian scheme the group of Cartier-divisors injects
into the group of Weil-divisors and we have

(*) Div(#) = J,ex  I(F ) {w}.

depth(z)=1

Proor. Everything is obvious except for v. Since a divisor is deter-
mined by its values at points of depth 1 we may assume that X =Spec(0)
where @ is a regular local ring of dimension 1.

For every good perfect complex %" on X we define:

Div(F') = r(F ')z

where z is the unique closed point of X. Clearly Div satisfies (i), (ii), and
(iii). Since every coherent sheaf # on X with Supp(#)<{x} can be con-
sidered as a perfect complex, it follows by induction that we can reduce
the proof of the equality (*) to the case where % is a complex of length
1, that is F =M in degree 0 and 0 otherwise where M is a torsion 0-
module. By the structure theorem for such modules we can find integers
Ny, 1=<¢<s such that
M~ 3;,0[2M0 .

We then have a free resolution of M
0->0 . 4, 0 g —> M0

where d is given by the matrix

Math. Scand. 839 — 4
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70 0 0
0 nAm0 O

0 0 a™mo

0 0 0..n™

Tt follows that the local equation of Div(M) is det(d) =n"". Since length
M =3n,, the equality (*) follows.

Let f: X - Y be a morphism of noetherian schemes, and #" a perfect
complex on X. We put:

Supp(#) = U, Supp(H*F")) .
For any point y € Y consider the fibre product

Supp(F ')y — Supp(F")

l

Spec( k(y)) —— Y

DerintrioN. Let f,X,Y and & be as above. We will say that &~
satisfies condition @, if the following holds:

1) For each point y € Y of depth0
dim(Supp(F°),) <.
2) For each point y € Y of depth1
dim(Supp(#7),) =r+1.

ProposrrioN 9. Let f: X — Y be a proper morphism of finite Tor-di-
mension. If F 18 a perfect complex on X satisfying condition @y, for the
morphism f, then '

a) Div(Rf (F")) ts defined,

b) for all line bundles S on X,

Div(Rfo(F7)) = Div(Rf((F ' Q)) .
Proor. a) is clear and to prove (b), we may make a base change and

replace Y by Spec®, i, where y € Y has depth 0 or 1. Then Supp(#")
is finite over Y, hence there is an open neighborhood U

Supp(F)<c U < X
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and an isomorphism of 5|y with 0. Therefore there is a sheaf of ideals
S <0x such that Supp0x/# <X — U and a homomorphism ¢ as follows:

O0>SF >H# >HA -0

Supp(H) =« X-U.

Then F R@L0Ox/SF and F QLA are acyclic, hence F R is quasi-
isomorphic first to # QLS and second to & . This proves (b).

Let f: X - Y be a morphism of noetherian schemes, &%  a perfect
complex on X and consider the function ¥ — Z given by

y - dim(Supp(%"),) .

It will be convenient to compute this function in a slightly different
manner. Consider the fibre product:

X ! X

Yy

I

Spec( k(y)) —— Y

LeMMA 1. With the notations as above we have:

dim(Supp(#°),) = dim Supp(Li*#") .

Proor. We may assume X and Y affine, so let X =Spec(S), Y =Spec(R),
and let Y =[p]. Let &k be the field k(y)

k(y) = R,[p'R,
we then have:
X, = Spec(S Qg k) .

Also we may assume that % =M where M is a bounded complex of
finite free S-modules, hence Li*% " is represented by M Qg(SQgrk)=
M’ R pk. But there is a spectral sequence:

Ez—p,q —_ Torsp(Hq(M.),S®Rk)$ Hn(M'®R’c) .

If z € USupp(HY M )®gk), let iy be the maximum of the indexes ¢ such
that:
z € Supp(HY(M )@ zk) -
Then
x € Supp(TorS,(H{ M), SQgk))

for ¢ > 4,. Consequently we have
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z € Uy gmq, Supp(E,#9)
for all r, and hence
z € Supp(HW(M @zk))

Conversely, if # € USupp(HYM Qzk)) we have z € U, ,Supp(&,»9) for
all r, Since
Supp(TorS,(HYM'), SQgk)) < SuppHUM ')@xk

we are done.

Now we come to the main application of our techniques, namely to
”Chow points”. Let Y be a noetherian scheme, and E a locally free rank
n + 1 sheaf of Oy-modules. These define:

P = P(E), a P*-bundle over Y,

n: P — Y the projection,

0,(1), the tautological”’ line bundle (s.t. 7,0,(1)=E),

P= P(E) the dual, Op(1) its tautological line bundle,

H < Px Y15 the universal hyperplane, i.e.,

EQ®F ~ 0y @ [trace zero subsp. of EQE] canonically,
and if 1 € I'(0y) corresponds to
8e I'(Y,EQE) = I'(P x x P, p,*0(1)®p,*0(1))
then H = V(6). .
X qy: the complex on P x yP:

0 - p*Op(—1)@py*Op(—1) —2° Op,p > 0

Xy CXG
which resolves 0.
Px y(ﬁ)k =the fibre product over Y,
o4y the complex @41 p (o) on P x 7 Px.
This complex is a resolution of O, where
H, = N} prYH)
So much for the "universal’ elements of our construction. Now say &~

is a perfect complex on P and define:

Fp(n) = Lp*(F (n)) @ Ay, on Px v P*,
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.?(k)(n) = det(RpZ*f'(k)(n)), on j;k ,
ZL(n) = det(Rwy,F'(n)), on Y.

LemMma 2. If & satisfies condition @, for the morphism n: P -~ Y, and
rzk—1, then F ',y satisfies condition Q,_y,for the morphism py: P x 171‘5"
—~ Pk,

Proor. By induction it is sufficient to prove the Lemma in case k=1
(with Pk-1 g5 the new Y and & ‘-p 88 the new F’). If z is a point of
P, let y=n(z) e ¥ and let k= k(y).

Identifying the fibre of P over y with I;k”, we get the diagram:

Spec(k(z)) —— p»— P

-

Spec(k) — Y

Since p, is flat, it follows from E.G.A., Chapitre IV, Proposition 6.3.1
that:
depth(0Oy,,) + depth(0s,s ,) = depth(0p ,) .

From this and the previous lemma it follows that we may assume ¥ =
Spec(k), P=P,"k a field, in which case the Lemma is straight-forward.

CorOLLARY-DEFINITION. If & satisfies condition @y, then F (.
satisfies Q_y), hence we can define the Chow divisor

Chow(ZF') = Div(RpsF (r11)

on Pr+1, Then Chow(#"(n)) =Chow(ZF ") and there is a canonical isomor-
phism:
or+1(Chow(F 7)) = Zip(n), for every n.
Next, we would like to compute Z,(n) in another way: since X7,
i8 locally free, each term & ®JX ) is perfect, hence there is & canonical
isomorphism

Loo(n) = det(RpgsF go(n) = o det(RpauLpy*F (n) QLA 35 .

On 13", let 5#; be the invertible sheaf @»(1) pulled up from the it factor.
Then by definition:

f@; = p1*(0p(~l))®1’a* 21<i,<...<i;sk';fi_ll® .o -®-”’i-;1
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hence if %: P¥ » ¥ denotes the projection:
Lw(n) = ®{‘=0®1<,-1<m<,-lskdet(Rp2*(Lp1*f (n—1)
®p*(H;'®. .. ;"))
= ®{c=0®1<i1<...<£;§kdet(L;’*(R”*'?.(n"l))
RF Q... @5 )V

On the other hand, it is easy to check that for any perfect complex and
invertible sheaf:
det(9' R.%F) =~ det(¥)Q.L1rk(¥') .
Note that
k(L (n)) = 7(F ()

i.e.=the continuous function ¥ - Z given by
¥ > 2(— 1)idimy HY(F QL Pyy,)) .
We abbreviate this to y(n). Therefore we have canonical isomorphisms:
ZLi(n) = ®f=o®1gi1<...<izgk;‘*$ (n— l)(_l)l®(-9f 4Q ... QF t,)(_l)mx("_z) .
Now defined by induction:
a) “difference’’ sheaves:

AL () = Ln)QRQL(n—1)1
A L (n) = A 1L (n)QA*1FL (n—1)-1
~ A2 L (n)Q4%-2.L (n—1)2Q4%-2.L(n — 2)

= &L n—1)-v'0
b) difference functions:
nln) = y(n)—xn-1)
16(n) = g-1(n) = Ax—a(n—1)
= Sho(=ViE(n =)
Then it follows easily that:
Luo(n) = 745 L (n))R(H1® . . . Q) )k—1n=D

Combining this with above Corollary, if & satisfies @,), then we find

2-(n) is independent of n
Up to canonical isomorphisms, #*(47+1.#(n)) is independent of n.
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Since 7,(05,) = O, this implies that:
Up to canonical isomorphisms, A™1.%(n) independent of n. Going

backwards, this implies that y is a polynomial of degree at most » and
that £ (n) can be expanded as in the following final Theorem :

THEOREM 4. Let Y be a noetherian scheme, E a locally free sheaf of rank
n+1 on Y,P=P(E) and &  a perfect complex on P satisfying condition
Qi for w: P -~ Y. Then there are sheaves M, . . ., M, ., on Y and canonical
and functorial isomorphisms:

det(RayF ' (n)) = Q4L M0 .
Moreover the leading term M, is related to the Chow divisor by a canonical
1somorphism :
¥ My ® (H19. .. QH 1 11) = Opria(Chow(F))
where %: Pr+1 > Y is the projection,
H, = ith sheaf Op(1) on Pra,
d(}) =leading term of the Hilbert polynomial y(F (n)).
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THE PROJECTIVITY OF THE MODULI SPACE
OF STABLE CURVES, II:
THE STACKS M, ,

FINN F. KNUDSEN

Introduction.

This paper is the second in a sequence of three papers by D. Mumford and
myself, containing the results of my thesis and leading to a proof of the
projectivity of the moduli space of stable curves. The story is as follows: after
investigating the stack M, , with Deligne, Mumford got interested in the
question of whether or not it was projective. His original idea was to study the
Torelli map:

Satake’s compactification of the
t: My, . . -
moduli space of abelian varieties.

and use the fact that Satake’s compactification was a projective variety (defined
over Z by use of f-functions in [12]). In my thesis, I then investigated the line
bundles on M, , and showed that the line bundle §~! (defined in section 4) was
ample on all fibres of t. The map ¢, however, has only been constructed in
characteristic 0. Seshadri then suggested that the problem could be attacked
directly without the use of Jacobians by using instead the stability of Chow

points of curves proven in [9], theorem 4.5. Mumford realized that it was
necessary for this proof to introduce curves with basepoints, i.e. the stacks M, ,

(cf. section 1 for definition). In this paper we study the stacks M, ,, and certain
maps between these stacks, that is:

1) contraction: M, ,., > M, ,

. M - M
2) clutching: { Entd g+l
Mg,,n,+l X MSZv"z"'l - Mgl+82v"1+"z .

In the first three sections of this paper we investigate these maps and prove
that they are representable. The crucial point is to prove that M, ,,, = Z, ,
the universal curve over M, , hence contraction is representable. The
clutching maps factor through the contraction map.

Received August 6, 1979; in revised form November 23, 1981.
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In sections 1 and 2 we prove that we have an isomorphism of functors
M, ,.\~Z,, where Z  is the universal curve over M, , (i.e. the functor of
n-pointed stable curves with one extra section without any smoothness
condition). The main steps of this proof are Lemma 1.6, Theorem 1.8, and the
results in the appendix. We then use this result and an inductive argument to
prove that M, , is an algebraic stack, proper and smooth over Spec (Z), and
that the substack S, , consisting of singular curves is a divisor with normal
crossings relative to Spec (Z) (cf. Theorem 2.7.).

In section 3 we study the clutching morphisms ° and Be, g, H k> and prove
that they are representable (Lemma 3.7), finite and unramified and almost
always closed immersions (Corollary 3.9).

The clutching sequence Theorem 3.5 is used in section 4 to compute the
pullback of the basic line bundles on M, , by B. Actually what we are doing
here is computing the self-intersection of the divisor at infinity S, , of M, ,
(section 4).

1. n-pointed stable curves.

Let S be a scheme, and let g, n be non-negative integers such that 2g—2+n
>0.

DerFINITION 1.1. An n-pointed stable curve of genus g over S is a flat and
proper morphism n: C — S together with n distinct sections s;: S — C such
that

i) The geometric fibres C; of n are reduced and connected curves with at most
ordinary double points.
i) C; is smooth at P,=s;(s) (1<iZn).
iii) P;# P; for i#j.
iv) The number of points where a nonsingular rational component E of C,
meets the rest of C; plus the number of points P; on E is at least 3.
v) dimH'(C,,0c)=g.

Note that if n=0 and g=2, then C is a stable curve in the sense of [3].

Before we start with the technicalities, we briefly state some facts about the
basic sheaves on a stable curve. Let : C — S be a stable curve with sections s;,
1 <i<n. Since n is flat and the geometric fibres are reduced with only ordinary
double points, n is locally a complete intersection morphism [8]. Therefore
there is a canonical invertible dualizing sheaf w¢s on C. For reference, see [6],
where w5 is also denoted by n'0s.
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A way of constructing wc/s is via the theory of determinants [7]. The sheaf
Qs of relative Kéhler differentials is flat over S (see section 3, Proposition 3.2)
and locally on C we can find a two-term free resolution

0) = &' — &° > Qcsly — 0).

This means that Qs considered as a complex supported only in degree 0 is a
perfect complex, so we may form its determinant. We then have canonical
isomorphisms

Amaxéw@AmaX(éﬁl)v ~ det QC/S'U x (DC/SlU :

Since the fibres of n are reduced and one-dimensional, rank £° =rank &! + 1
=k+1. Let & be an element of Qc/s,,, where x € U and let v € &2 be an element
which maps to . Choose a basis w,,w,,...,w, of &' and let w),w),. .., w; be
the duaj basis. Considering the elements w; as elements of &° as well, we get
an element

VAWLAW,A .o AWRW, AWy A .. AW E (A™FE D A (£1)),
which is independent of the choice of ¢ and the w;’s. Composing with the
isomorphisms above, we see that we have a canonical homomorphism

¥ Qcs — ogs -

In general, this homomorphism is neither injective nor surjective, but it is an
isomorphism near every point of C where = is smooth. Since Qs is flat over §,
we have compactibility with any base change; i.e.,

a) For any morphism T — S we have a commutative diagram

P¥(Qcis) = Qcxgrt
ptv] V]

pi(wcis) = wcxsTT

b) If S=Spec (k), where k is an algebraically closed field, f: C — C is the
normalization of C, and x,,...,X,, Vy,- - .,V, are the points of C such that z;
=f(x)=f(:), L £i<m, are the double points of C, then w(/s is the sheaf of 1-
forms # regular on C except for simple poles at the x’s and the y’s and such that

Res, (n)+Res, (1) = 0 for 1<i<m.

c) If S is locally noetherian and of finite Krull dimension, and & is a
coherent sheaf on C, then

Homg (R'n, #,0) ~ Homy. (F,wc)s)

(cf. [6, VII, Corollary 4.3.])
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DEeFINITION 1.2. We denote by M, , the category of n-pointed stable curves.
Morphisms in this category are diagrams of the form

c-Lc
s, (L s (ln
S 25§
where
(1) fsi=s,g for 1<Zign.
(1) £, induce an isomorphism
C = CxgsS'.

We denote by Z, , the category of n-pointed stable curves with an extra section
4. Morphisms in Z, , are diagrams as above such that fA'=Ag.

The category M, , is a stack fibred in groupoids over the category of
schemes. For a definition of stack, see [3, Definition 4.1]. In the next
paragraph we prove that M, , is a separated algebraic stack, smooth and
proper over Spec (Z).

The following definition plays a central role in this whole paper.

g,n

DEerINITION 1.3. A morphism of pointed stable curves over S:

ct e
.\,Cln s;(ln'
§ =S5

is called a contraction of

(i) Cisann+ 1-pointed curve, C' is an n-pointed curve and fs;=s;for 1 <i<n.
(ii) If we consider the induced morphism on a geometric fibre C,, we have one
of two possible cases:

a) f;: C, — C; is an isomorphism.
b) There is a rational component E < C, such that s,,,(s) € E, f,(E)=x
is a closed point of C;, and

fi i CNE — C\ {x}
is an isomorphism.

The picture in Figure 1 below shows the only two non-trivial contractions over
Spec (k), where k is an algebraically closed field.
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E Pn ) v X
L gp;‘

E Pn+l Pk

Figure 1.

REMARK. We leave to the reader to verify that when S=Spec (k), k an
algebraically closed field, then for every C over S, there is one, and up to a
unique isomorphism, only one contraction C — C'. In fact, we have an
equivalence of categories:

M, i1 (k) = Z, (k).

In order to prove that there is an isomorphism of stacks M, ,,, = Z, ,, we
need the following results, which are corollaries of [5, III 4.6.1].

LeMMA 1.4. Let Y be a locally noetherian scheme, f: X — Y a proper
morphism, F a coherent sheaf on X, and y a point on Y. Suppose f~'(y)=
X xySpec (k(y)) is an n-dimensional scheme and that

H"(f—l(y)’gr®0yk(y)) = (0) .
Then:

i) There exists a neighbourhood U of y in Y such that R"f |y =(0).
ii) For each integer p=0 the canonical morphism

(R F)y = HH T ), F @0, 0,/m) ™)

is surjective.
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Proor. Consider the diagram

/') —— X' — X
l | 1
Spec (k(y)) — Spec (0,) 4 Y.

Since i is flat, we can reduce the proof of the lemma to the case, where Y is
affine and y is a closed point of Y. Since R"f, & is coherent, the first assertion is
equivalent to (R"f,%),=(0).

By [5, III 4.2.1], it suffices to prove that

HY(f'(¢), # ®,0,/me*Y) = (0) forall p.

It is true for p=0, so we proceed to prove it by induction.
Let X ,=X xySpec (0,/mb* '). Then X,_, is a closed subscheme of X, with
the same underlying topological space. Hence by induction hypothesis we have

H'(X,,F®¢, 0,/m)) = H'(X,_, F ®¢,0,/m}) = (0).
On X, we have an exact sequence of sheaves
0) > mF/me '\ F - Fimb ' F > FimbF — (0).
So from the long exact cohomology sequence it suffices to prove that for each p
(* HY(X ,,m;F m* ' F) = (0).

If we denote by Z the fibre /! (y)= X, then m?#/m?*' % may be considered
as an (z-module and we have:

+1 — n +1
H"(X ,,myF/my™ ' F) = H'(Z,mbF [m)™ " F) .
Let Q, denote the kernel of the surjection
FImF @ymbimb*t — mbF mbt 1 F

We then have an exact sequence

.= H(Z,F Im,F ®@ymb/m>* ") - H(Z,m0F Imb* ' F) > H" Y(Z,Q,) .
The sheaf #/m,F ®,,, m;’/m;’+1 is just a direct sum of #/m %’s and therefore
its nth cohomology group vanishes by the hypothesis. The last term vanishes
since Z is n-dimensional. This proves the first assertion. For the second
assertion we replace # by ¥ =m!Z. By (*) we see that ¥ satisfies the condition

of the lemma so by the first assertion we have (R"f,%),= (0).
From the long exact sequence of cohomology sheaves we get

(R F)y = (R (F/mF)), > (RS (m§F)), = (0).
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But R"'f (F/mbF) is a skyscraper sheaf, whose stalk at y is
H" '(f~'(y), #/mbF). This completes the proof of the lemma.

COROLLARY 1.5. Let S be a scheme, X and Y S-schemes and f- X — Y a proper
S-morphism, whose fibres are at most one-dimensional. Let & be a coherent sheaf
on X, flat over S, and consider the following two conditions:

(1) For each closed point y € Y,
HY(f7'0), F ®cyk(y) = (0).

(2) For each closed point y € Y, the sheaf # ®,k(y) is generated by its global
sections.

Then if F satisfies (1), we have
i) RYf, 7 = (0).
ii) f«Z is S-flat .
iii) For any morphism T — S we have canonical isomorphisms
FeF Ros O "> (f*x 1), (FReO7) -

If & satisfies both (1) and (2) we have
iv) The canonical map f*f,F — F is surjective.

Proor. We may assume Y and S affine. Let U be a finite affine covering of X.
The first three assertionsv follows immediately by considering the sheaves
£, 65U, #) of alternating Cech cochains on Y. By the second part of the pre-

vious lemma and condition (2) it follows that, for each closed point x € X, we
have a surjection

f*f*'gr - 'gb.@@xk(x) ’

so iv) follows by Nakayama’s lemma.

Let f: C — C' be a contraction of an n+ 1-pointed stable curve over S, s;
(1Zi<n+1) the sections of C over S, and t;=s;f (1 £i<n) the sections of C’
over S. For every open U in C’, a regular function on U with at least simple
zeros at the sections t; pulls back to a regular function on f~!(U) with at least
simple zeros at the s;’s (1<i<n). Hence we have a canonical morphism of
sheaves on C’

w: Oc(—ty— ... =) > fL0c(=s,— ... —s,) .

By definition, the geometric fibres of C — C’ are at worst P's. Since they all
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have at least one rational point via one of the compositions s;on’ (1<i<n+1),
all fibres are at worst P'’s. Each such fibre has at most one s; (1 <i<n) on it, so
Oc(—s,—...—s,) satisfies condition (1) of Corollary 1.5. Therefore the
formation of f, commutes with base change over S. When S=Spec (k), u is
easily seen to be an isomorphism. Since an extension of fields is faithfully flat, u
is an isomorphism at every point of C’, so by Nakayama’s lemma u is always
surjective. By Corollary 1.5 ii), f,Oc(—s,—...—s,) is flat over S, so by the
same reasoning u is an isomorphism. The inverse of the isomorphism u induces
an isomorphism of sheaves on C':

J%M(vc(gcys, SiOc(—s,— ... —s,) J%m(vc(gc/s, Oc(—t;—...—t,).
By the general theory of sheaves of modules there is a canonical isomorphism

Horreg(Qeys, [LO(—51— ... =58,) = fyHormo([*Qess Oc(—51— .- —s,) -

Combining this with the natural map f*Qc/s — Q¢/s We get a morphism
fuHorrg (Qciss Oc(—5y— ... —=8,)) = Homeg (Qcys; Oc(—t;— ... —1,).
For a stable curve n: X — S, let # be the cokernel of the morphism y: Qy g

— wys. We have
Ass Hormp, (#,0x) = Supp F N AssOyx

[2, Chapt. IV, § 1, Prop. 10.]

Since X is flat over S, the associated points of Oy lie over the associated
points of O5. However, 7 is smooth at the associated points of the fibres and &
is supported on the closed set where n is not smooth, so w;/s — Q}/s is
injective. Consider the diagram

SyHorr o (Rc/s5,Oc(—s,— ... =5,)) = Homep.(Rcys, Oc(—t;— ... —t,)
Al 3 1
f*((l)c/s(sl + ... +S") ) wc'/s(tl +... +t")
and let 2 denote the subsheaf of Hose.(Rc/s, Oc(—t;— ... —t,) generated

by wcs(ty+ ... +t,)  and the image of {*(wc/s(s1+ ...+s,) ). On the
nontrivial fibres of C — C’, wcs(s;+ ... +s,) is non-canonically isomorphic
to Op, so it satisfies both conditions of Corollary 1.5. Therefore, on the
geometric fibres of C' — SL the map f, (w¢/s(s; + - - . +5,) ) — PR g,k factors
through wcs(t; + ... +t,) . By Nakayama’s lemma, then wc st + ... +1,)
~ P, so we get a global factorization which again by Nakayama’s lemma is an
isomorphism. Pullback by f gives us

f*(ocs(ti+ ... +ty)) < f*f (ocssi+ ... +s,) ) > oS+ ... +5,)
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By checking on the geometric fibres we see that the surjection on the right is an
isomorphism. Since for locally free sheaves f* commutes with dualization we
get an isomorphism

f*wC'/S(tl +... +tn) - wc/s(s, +... +S") .
By the general theory of sheaves there is an induced map
wC'/S(tl +.t ) f*wc/s(sl +...+s,).

Again wc/s(s, + ... +s,) is trivial on the fibres of f so we may apply Corollary
1.5 and Nakayama’s lemma to show that this map, too, is an isomorphism. We
sum this up in

LEMMA 1.6 (MAIN LEMMA). Consider a contraction f: C — C' as in Definition
1.3. We denote by & and F' the sheaves wcs(s;+ ... +s,) and wc5(si+ ...
+s,) respectively. Then for all k>0 we have:

a) There are canonical isomorphisms

FO = [(FP

and
[rF O =, gk,
b) R, (F® = (0).
) Rin, (F® ~ Rin (#F®% for i20.

Proor. The isomorphism f*F'® ~, F®k follows from what we have just
done. Pushing this down we at least get a map

FEk s £ M FEH = f(FO.

Since # is trivial on the fibres of £, so is # ®* and Corollary 1.5 applies.to F Ok
On the geometric fibres the above composition is an isomorphism and f, (¥ ®ky
is flat over S. The same reasoning as before then proves a). b) is exactly the first
assertion of Corollary 1.5 and ¢) follows from a) and the Leray spectral
sequence which is degenerate by b).

DEFINITION 1.7. Let & be a coherent sheaf on a scheme X. We will say that
F is normally generated if the canonical map
[(X, %)% - (X, 7%

is surjective for k= 1.
For any pair of Ox-modules &#,9, let S(#,¥) denote the cokernel of the
map
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rX,#)®rX,4 — rX,7e%).

Clearly, & is normally generated if and only if (%, # ®%) = (0) for all k= 1. We
shall need the following result of [13].

GENERALIZED LEMMA OF CASTELNUOVO. Suppose & is an invertible sheaf on a
complete scheme X of finite type over a field k such that I'(X,.¥) has no base
points and suppose F is a coherent sheaf on X such that

HX,FQL ) = (0) forix1.

Then
(@) H(X, Q%) = (0) for i+j=0, i=1.
(b) S(FRZL, L) = (0) for i20.

THEOREM 1.8. Let C be an n-pointed stable curve over Spec (k) with
distinguished k-valued points P,,. .., P,. We denote by ¥ the invertible sheaf

Z = ocy(D),

where D=P,+P,+ ... +P
Then we have

n

a) H'(C, #®™=(0) for m=2.
b) I'(C, £®™) is base-point-free for m=2.
c) £®™ is normally generated for m>3.

Proor. By the Kiinneth theorem we may assume that k is algebraically
closed. Let x be a node of C. We will call x a disconnecting node if B,(C), the
blowing up of C with center x, is disconnected. We first prove the theorem in
case C has no disconnecting nodes. Let x be a node of C. From the exact
sequence

0) > Oc — pyOgcy— k— (0),
we get x(O¢c)=x(Op () — 1. Since B,(C) is connected, we have

From this formula we see that a curve of genus 0 without disconnecting nodes
is nonsingular, i.e., P* and a curve of genus 1 is either nonsingular or a “ring” of
PVs as in Figure 2 below.

For g=0, C=P" and the theorem is clear. When g=1 and C is nonsingular,
the theorem is classical. Consider, then, a “ring” of P"’s. In a noncanonical way,
wcix=0c, and since there are lots of distinguished points spread around, &
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N/

Figure 2.

restricted to each P! has degree =1. Hence I'(C,.?) is base-point-free and
H'(C, %)= (0). The theorem then follows from Castelnuovo’s Lemma. When
g=2, we have the following result. If E is an effective divisor on C, then

I'(wc(E)) is base-point-free for deg E=0 or degE=2,
H'(wc(E)) = 0 if degE=1.

PrOOF. Let x be a k-rational (closed) point of C. From the short exact
sequence

0) » mw(E) > w(E) > o(E)®k — (0)
we get the long exact sequence
— I'(w(E)) > I'(w(E)®k) — H'(m.w(E)) 2> H'(w(E)) — (0).

Hence I'(w(E)) is base-point-free if and only if & is an isomorphism for all
points x € C. By duality, a is an isomorphism, if and only if

dim =}fom@c(mx,(Q(—E)) = dim I'(C,0(—E)) .
But we have

dim I'(C, O(— E +x)), x nonsingular

dim 2 yO(=E) =< ..
im Hoszep(my, O(— E)) {dlmr(B,(C)a(OB,(C)(_E))’ x singular .

The result follows, since B, (C) is connected.

This proves a) and b) of the theorem. To prove c), consider the diagram
I (" (kmD)®@T ()@ T (0™~ ! (mD)) — I'(w*"(kmD))®T (w™(mD))

la ly
[ (kmD)@T (@™~ (mD) £ I(w**"((k+1)mD)).
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By Castelnuovo’s Lemma, o is surjective, since I'(w) is base-point-free and
H'(w*~'(kmD)) = (0) for k=1 and m>3.
B is surjective, since I'(w™ ' (mD)) is base-point-free for m>2 and
H'(w"((k—1)mD)) = (0) for r=2.

Hence y is surjective for all k=1 and m=3.

We now prove the theorem by induction on the number of disconnecting
nodes. Let x be a disconnecting node of C, C,, and C, the two connected
components of B, (C). If x,; (respectively x,) is the point of C, (respectively C,)
which maps to x, and if we take x, (respectively x,) to be an extra distinguished
point on C, (respectively C,), we see that C, is an [+ l-pointed stable curve
and C, is an [, + l-pointed stable curve, where I, + 1, =n. Let £, (respectively
Z,) be the sheaf w¢ (D,) (respectively wc,(D,)), where D, (respectively D,) is
the distinguished divisor of C; (respectively C,). If i; and i, are the closed
immersions of C, and C, into C, we have by property b) of the dualizing
sheaves

if(£®" ~ 28", Bp=1,2.

Moreover, both C, and C, have fewer disconnecting nodes than C, so the
theorem holds for &, and &, by the induction hypothesis.
We have an exact sequence

0) > I'(L™ > [(LNOI (LT " k(x) > H'(L™) —» H(LT)@H' (L)
- (0).

For m22, a,, is surjective by part b) of the theorem and H'(£})= (0) for g
=1,2 by part a) of the theorem. This proves a) for .Z. Part b) of the theorem is
clear, since a section of #™ is the same as a pair of sections (s,t) with
se I'(¥7) and t € I'(£75) such that s(x,)=t(x,). To prove part c) let m=3 and
k=1 and consider a section s of I'(£L** ™) such that s(y)=0 for all points
y € C,. Let s4,. . .,s, be sections of I'(£%™) and ¢,,. . .,t, be sections of I'(L7)
such that s|¢ is the image of s, ®t; + ... +5,®t, by the canonical map. Since
I'(£7) is base-point-free we can find sections u of I'(#%™) and v of I'(#7) such
that u®v (x,)=* (0). Hence there are scalars a,,...,q,, b,,...,b, such that

au(xy) = s;(x;) and bw(x,) = t;(x,), 1=isr.

The sections §; defined as s; on C, and as q;u on C, and the sections ¢; defined
as t;on C, and as b,y on C, are global sections of #*™ and #™, respectively. By
the canonical map the section

5@+ ... +5@1 € (L™ (L™
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maps to s because Y a;b,=0. This argument holds just as well for a section s of
r(Z**Hm) which vanishes on C,. It follows that the image of the map

r(ng)®r(_¥)M) — r(g{ki»l)m)

contains all sections which vanish at x. The theorem will follows, if we can
show that there is at least one section in the image that does not vanish at x,
but this is clear since £¢ is base-point-free.

COROLLARY 1.9. If C and & are as in Theorem 1.8, then #™ is very ample for
k=3.

ProoOF. & restricted to each irreducible component has positive degree and
is therefore ample. Furthermore, it is clear that a normally generated ample
sheaf is very ample.

CoRroLLARY 1.10. Let C be an n+ 1-pointed stable curve over a field k with
distinguished points P,,...,P,,, and such that 2g—2+n>0. Then the sheaf
wci(Py+ ... +P,) satisfies a), b), and c) of Theorem 1.8.

ProoF. Clear by Lemma 1.6 and the theorem.

CoROLLARY 1.11. Let n: C — S be an n+ 1-pointed stable curve with 2g—2

+n>0. Then the sheaf n,(wc/s(s,+ - .. +5,)%®") is locally free of rank (2g—2
+nm—g+1 for m=2.

Proor. Clear, since C is flat over S and

R'n (wcs(si+ ... +5)®") = (00  for m22.

2. Contraction and stabilization.

In this paragraph we will constantly make use of the following fact:
Let & be a coherent sheaf on a scheme Y, then we have a one to one
correspondence:

Triples consisting of:
Il)amapf:SﬂY, l

2) an invertible sheaf % on S / -
l3) an epimorphism a: f*# — £

S-valued points
>
of Prof(Sym F)

Two triples (f, £,a) and (f', &’',a') are equivalent, if f=f" and kera=kero'.
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ProposITION 2.1. Given any n+ 1-pointed stable curve X over S with2g—2+n
>0, there is one and up to canonical isomorphism only one contraction.

Proor. Let n: X — S be the curve and define
yi = n*(a)x/s(sl + ... +S")®i)
¥ = 6—) S

i20

By Corollary 1.11, &' is a locally free sheaf on S for i=2.
We define

X(‘

I

Proj(F)

Y = Puoj(Sym F3) .

I

By Theorem 1.8. and Corollary 1.5. we have a surjection:
(L) > ocsls; + ... +5,)?

ie. a morphism p: X — Y. But since wy;(s;+... +5,)% is normally
generated by Corollary 1.9, X¢ is exactly the image of this morphism, and X* is
flat over S, since &' is flat for i>2.

For uniqueness consider a diagram:

X
p| .
X S, X
s (x| l
S = S

where ¢q is a contraction. We have to prove that a map f exists making the
diagram commutative.
By Lemma 1.6 ¢) we have an isomorphism:

mewxs(si+ ... +5)%% & W oxssi+ ... +5,)8%.
Hence by Corollary 1.5 and Theorem 1.8 a surjection:
¥ (mewxs(sy+ ... +s,,)®k) — wxs(si+. .. +s;)®k
and this is f.
In the language of stacks, the proposition says that contraction is a 1-

morphism of stacks:
c: M1 Z,,.
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The rest of this paragraph will be devoted to the construction of an inverse to ¢
which we call stabilization:

S Zyn— M, iy

LEMMA 2.2. Let S be a noetherian scheme, and n: X — S a flat family of
reduced curves with at most ordinary double points. Let A: S — X be a section
defined by an Ox-ideal ¢. Then

1) # is stably reflexive with respect to m [see appendix].
2) The subsheaf ¢’ of the total quotient ring sheaf K x consisting of sections

that multiply ¢ into Oy is isomorphic to the dual of ¢, that is '~ §
= fmwx(f, (9x).

3) A*(F /Oy) is an invertible sheaf on S.

Proor. The theorem is of local nature so let s be a point of S such that x
=A4(s) is an ordinary double point of the fibre =~ !(s), o the completion of the
local ring O5 ,, with residue field k. We consider the category A of Artin local o-
algebras with residue field k and the functor G on A defined by:

Cartesian diagrams of the form
k[[x,y1)/(x"y) <+ B
G(4) = |1 W1 / modulo

isomorphisms
ke—2—4

where g(x)=g(y)=0 and gp=ph

It follows from the general theory of deformations that there exists a versal
deformation

k[[x,y11/(x"y) < %
sl1 kT

k —2— of

where #=o[[s,t,x,y]]/(xy—st), & =0o[[s,t]], and h(x)=s, h(y)=t.
This means that there exist two element b,c in o such that @x,x
~o[[x,y]]/(xy—bc) and ¢ corresponds to the ideal generated by x—b and y

—c. The Lemma now follows from Proposition 6 of the appendix and the
example.
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DEFINITION 2.3 (The stabilization morphism). Consider an S-valued point of
Z, ,ie. an n-pointed stable curve n: X — S together with n sections s,,. . .,s,
and an extra section 4. Let ¢ be the O y-ideal defining 4, and define the sheaf
X on X via the exact sequence

0 Ox % # ®Ox(s;+5,4+...+5) > A >0
where ¢ is the “diagonal” o(t)= (t, ¢).
Then

X* = Puj(Sym X) .

It is clear by Lemma 2.2 that for any T— S we have a canonical
isomorphism

Yrs: (X)r— (X7

and that the y’s satisfy the “cocycle” condition for any pair of morphisms
U->T T S

THEOREM 2.4. With notations as in Definition 2.3 the sections s,,. . .,s, and 4
have unique liftings s},5%,. . ., S, +1 to X* making X* an n+ 1-pointed stable curve
and p: X* — X a contraction, i.e. the assignment X° to X is a 1-morphism of
stacks

St Zyn—> Mgy

gn

Proor. The theorem is local on S. We must study the map p in the
neighbourhood of points, where 4 meets non-smooth points of the fibre and in
the neighbourhood of points, where 4 meets one of the other sections. Since n
is smooth near the s’s we may study these cases separately.

Cask 1. 4 meets a non-smooth point x in the fibre.
In this case we have a completed fibre-product diagram

Xpr9 = X°
Pl rl

X, = X

X

0, ~ o[[x,y]]/(xy—bc)
and we have an exact sequence
0.0, 0,00, (#,) -0,

where
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.= ()

(note that in this case we have ¢ = .X).
Therefore X‘IP»I(X) is covered by two affines Spec f(R,) and Spec f(R),),
where

R,
R,

0.{s}/(x+bs,c—ys)
O {t}/(xt+b,ct —y)

o[[y11{s}/(ys—c)
o[[x]1{t}/(xt+b) .

Hence we see that X°* — S is a flat family of reduced curves with at most
ordinary double points.

The surjection A*(A) — A*(H/O)=A*(F /Ox) gives us a lifting of the
section 4. Recall Lemma 2.2 that 4*(¢ /Oy) is an invertible sheaf on S.

In the coordinates we have chosen s, , ; (p(x)) is the point given by s=t= —1.
In particular X* — § is smooth at s, ,(p(x)).

Il

Il
Il

Caske I In this case 4 is a divisor. Assuming only one section s we have
0> Ox > Ox(DHBOx(s) > A — 0.

It is therefore clear that the fibres of p are at most projective lines, so by
Corollary 1.5, X* — S is a flat family of curves with at most ¢ rdinary double
points.

The composition

F L0, ST DOx(s,+ ... +5,) > A >0

gives us an injection # <=- J and it is clear that the cokernel is simply Oy (s,
+5,+ ... +s,)lUr_, 5. Hence for each i we have surjections s* (X)) — sF0Ox(s,
+ ... +s,) and this defines the liftings of the s;’s. The picture for = Spec (k)
looks as follows in Figure 3.

1
Case (I) SN\ P .,
/ S’n+l \_— A
Case (II) P!
- s5;=4
Figure 3.

Math Scand 52 12
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LEMMA 2.5. Consider a diagram

Y ‘o xs
al rl

g x = X |
! !
S = S

where q is a contraction and p is as in Theorem 2.4. Then there is a unique
isomorphism f: Y — X* making the diagram commutative.

Proor. By Corollary 1.5 we have isomorphisms
Ox = 4,0y
and
0){(_51_ cee “"S,,) - q*@Y(_tl_ e _tn) .
Letxe X,a€e #,,beq,Oy(t,+y—1t;—...—t,) Then a may be considered as
an element of q,0y(—t,4+,) and so
abe q,Oy(—t;—...—t) = Ox(—s,—...—5,),

i.e. we have a morphism of sheaves

q*(pY(trH—l_tl—" . —tn) - j (_sl_ cee _Sn) .

We leave to the reader to check that this is an isomorphism on the geometric
fibres of n so by flatness it is an isomorphism. We may put this together in a
commutative diagram with exact rows.

0) = q,0y(—t;—...—t,) —ALb, 40yt —t;— ... —1,)®q,0y BN q4,0y(ty1) = (0)
& Q Q
O = Ox(=s;—...=5) —— F(=s5,—...—5)DC0y X - (0).

By Corollary 1.5 the composition
*H — q*q,Oy(t, 1) = Oy(t,s1)
is a surjection and this defines a morphism
f: Yo X5

f is easily seen to be an isomorphism on the geometric fibres of n so by
flatness f is an isomorphism everywhere. For uniqueness we simply mention
that an automorphism of P! fixing three distinct points is the identity.
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CoROLLARY 2.6. Contraction and stabilization are inverse to each other.

THEOREM 2.7. For all relevant g,n, M, , is an algebraic stack, proper and
smooth over Spec (Z). The substack S, , consisting of singular curves is a divisor
with normal crossings relative to Spec (Z). (We refer to [3] for definitions.)

Proor. For g=2, n=0 the result is proved in Theorem 5.2 of [3]. We
consider first the cases g=0, n=3, and g=1, n=1, M, ;=Spec (Z), so here is
nothing to prove. For g=1, n=1 we make use of the clutching morphism of the
next paragraph. Consider the 3-pointed elliptic curve E having three rational
components as in Figure 4 below.

Figure 4.

Clearly E has no non-trivial automorphisms leaving the dstinguished points
fixed, and so clutching defines a closed immersion M, ; = M, ,.
Assuming for the moment that the theorem is proved for M, ,, we see
that M, , in M, , is the intersection of four branches of S, ,, and S, , is the
intersection with a fifth branch. See the example at the end of section 3. This
proves the theorem for M, ;. We then proceed by induction with respect to n,
having in mind that M, ,,, is the universal n-pointed curve. The divisor

Sewer = 7 (S U U St

where a “point” in S{7# 1} corresponds to a curve of the type in Figure 5.
Since n: M, ,., — M, , is smooth near the sections Séf’,,"fll}, we only have to
prove that n“(S“) has normal crossings. Near a singular point of n"(Sg_,,)

the morphism 7 looks formally like

o[[t; ... 1] = o[[x,yty. .. tio .t d] s

where t; — x-y. S, , has local equation t,t, ..., so n~!(S,,,) has local
equation x-y-t; ... & ...t
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Figure 5.

3. The clutching morphism.

In this section we will study families of curves without stability conditions.

DEeriNITION 3.1. A prestable curve is a flat and proper morphism n: X — S
such that the geometric fibres of n are reduced curves with at most ordinary
double points. No connectedness is assumed.

Recall that for any morphism X — S Lichtenbaum and Schiessinger [§]
have defined the notion of a cotangent complex L.(X/S). In general this
complex is defined only locally on X, but it is unique up to homotopy, so it
defines cotangent sheaves. For any coherent # on X, we have for 0<i<2

T{(X/S,F) = H'(#oreg, (L. (X/S), F))
T,(X/S,#) = Hi(L.(X/9)®o, F) -

ProposiTiON 3.2. If n: X — S is a prestable curve, then

a) To(X/S,0x)=QY s is flat over S,
b) Ti(X/S,F) = Tor{ Qx5 F),
c) T,(X/S,F)=(0) for all #.

Proor. Since a reduced curve with at most ordinary double points is locally
a complete intersection and the morphism = is flat, it follows that = is locally a
complete intersection morphism. That means that we have factorisations

XDUCi—>A"'/
L
SoV

where the ideal defining U, .#, is generated by a regular sequence. By [8] we
have T>=T,=0 and
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(*) 0) > i*(#) H i*Q;.V/VH )

is a cotangent complex for the morphism U — V.
To prove a) and b) we have to show that d is universally injective. i*(.#)
and
i*Q‘A-V/y are flat over ¢, and the cotangent complex commutes with base
change, since =n is flat so in fact all we have to prove is that d is injective.
Let X" =T,(U/V,0y)=kerd. By the Jacobian criterion of smoothness, %",
= (0) for all x € U, where = is smooth. So if 4= U is the closed subset of U,
where n is not smooth, we have

Supp(X) < 4.
Since i*(#) is locally free and " ci*(.#), we have
Ass (X)) = Ass (U).
Since U is flat over V we have [2, Chap. IV, 2.6.2]

Ass(U) = |J Ass(U)).
yeAss (V)

Therefore since the fibres of n are reduced
ANAss(U) = & .
Hence & = (0) and d is injective.
COROLLARY 3.3. Let n: X — S be a prestable curve, &, a locally free sheaf on
X,and dy: &, — Qf\,/s a surjection. Then & =ker (d,) is locally free and d,: &,

— &, — (0) is a cotangent complex for the morphism .

Let n: X — S be a prestable curve, and s;,5,: S — X two non-crossing
sections such that = is smooth at all points s;(t) (t€S).

THEOREM 3.4. With the notations above there is a diagram

X 2 X'
.s,(ln n'l)s
S =S

such that

(1) ps,=ps, and p is universal with respect to this property.

(2) p is a finite morphism.

(3) Ift is a geometric point of S, the fibre X, is obtained from X, by identifying
the two points s,(t) and s,(t) in such a way that the image point is an ordinary
double point.
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(4) As a topological space, X' is the quotient of X under the equivalence
relation s, (t)~s,(t) for all t € S.
(5) If U is open in X' and V=p~ ' (U), then

ru,0x) = the L (V,0x) | s¥(h)y=s$(h)} .

(6) The morphism ©': X' — S is flat, so by (3), n’ is again a prestable curve.

Proor. Properties (4) and (5) determine X’ as a ringed space. To show that
X' is a scheme satisfying (1), (4), and (5), all we have show is that X’ is locally
affine.

If x € X', and p~!(x) does not meet any of the sections, we can clearly find
an affine neighbourhood of x.

Suppose therefore that x = p,s, (t). Since = is flat and any curve is projective,
we may assume that = is locally projective. Hence we can find an affine Uc X
containing s,(t) and s,(¢). Let V=S be an open affine contained in
s;1(U)Ns; 1(U) and containing t. The restriction of n to W=UNxn"!(V)
yields an affine morphism W — ¥ with two disjoint regular sections. Localizing
further, if necessary, we may assume that W==Spec (B), V=Spec (4), and that
the sections are defined by two principal ideals (f;) and (f;) of B.

We have two split-exact sequences of A-modules

©0—>BJLsB A (0, i=1,2.

Since the sections do not cross, we have (f,)+ (f2)=B, so (f})N (f2)= (/1.£2),
and the ring of invariants is given by

B = A®(/,/))B.

B’ is isomorphic to B as an A-module, hence B’ is flat over A. It is easy to check
that Spec (B') satisfies (1), (4), (6) of the theorem for the morphism W — V.
Suppose B=A[x,,...,x,] and write

X; = ay;+fiby = ay+foby;

with a;;€ 4, b;; € B .
The elements y;=x? — (a,; +a,;)x; are in B', hence

Aly,,....y.] =B < B c B.

B is a finite B”"-module, and since A is noetherian, B’ is a finitely generated A-
algebra and B is a finite B'-module. This proves (2).

To show (3), note first that the construction of B’ commutes with base
change, hence we may assume that 4 =k is an algebraically closed field. If B
denotes the completion of B with respect to the ideal (f;-f,) we have an
isomorphism.
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k[[x11®KID1] ~ B

sending x to f; and y to f,. The completion of B’ with respect to the ideal
f1 /2B, corresponds then to the kernel of the map

) KIxT1@KIT — k
sending (a,b) to a—b and this is just k[[x,y]]/(x"y).

THEOREM 3.5. (The clutching sequence). We consider the diagram as in 3.4

X 2 X
“ln W]y
S =38

and denote x" the conormal bundle of S in X via the section s,
x = s*(Qys) = s¥(wys) = s¥(Ox(=D)),

where D, is the divisor on X defined by s;.
Then on X' we have a short exact sequence (the clutching sequence)

0) - 5,(x@x%?) = Qx5 — P Qx5 — (0).

PRrOOF. It turns out to be a bit messy to define the map s, (¥ ®x?) - Qx5
so we take double coverings
Y - Y
o o
X X

where Y=X[]X,

s, in first factor ~ s, in second
Y =X[[x/[". 2 .
s, in first factor ~ s, in second

The section s: S — X’ lifts to two sections ¢, and ¢, in Y.
The picture is given by Figure 6.
Assuming everything to be affine we have

S = Spec(T), X = Spec(R), Y = Spec(R®R).

The Z/2Z action simply interchanges the factors. The four sections of Y are
defined by non-zero-divisors (f;, 1) and (1, f}), i=1,2.
The affine sets
Y, = Spec (R, ®R,)
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Figure 6.

are invariant sets for the map g. Clutching the sections of Y, and Y, gives us an
affine covering Y| and Y’ of Y’, where

Y; = Spec(S) i=1,2
and
S, = {wv) e R, DRy, | s¥w)=st©®)}
S, = {(uve R,®OR,, | stw)=sf@)}.

S, is an R -algebra via u — (u,m*s3u) and an R, -algebra via v — (n*sfv,v).
Hence we have a homomorphism

R, ®TR;, — §; .
We leave to the reader to check that
0) - (/2®f)) > R, ®1R;, > §; — (0)
We leave to the reader to check that
0) - (2®f) = R, ®TR;, — §; — (0)

is exact.
Similarly we have the exact sequence

0) — (/1®f) — sz®TRf1 - 5, — (0).

By flatness f, ® f, is not a zero-divisor in R; ®R,, so we have

* 0= (LN (2®))* = 2, or,/T®R, R, 51 = 257 0.
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Using the canonical isomorphism

Qr, or, )T ® R, ®@T7Qp 1@ 1®TR,,
where d(u®v)= (u®dv, du@v).
We may write (*) in the form

(9 (0 > (LOM(LO) - (5@, U, 1)@ @k, T®R, S) — Q57— (),

where d(f,® f})= ((/2,0)®df,,df, ®(0,f})) .

Hence in Qg we have

(/2,00 (0, f;) = —(0,/))d(/>,0) .

From the canonical isomorphism
QR/.@RIZ/T ~ QRII/T®QRIZ/T
(module multiplication componentwise), we see from (**) that the natural map

QSl/T - QR,.@R,Z/T

is surjective and that the kernel is generated by the element (0, f)d(f,,0)=
—(f5,0)d(0, f) that is we have a right exact sequence

SiRp/fiR,® aRy [f 3Ry, = Qs 1 — Qi @r, T — (0),

where a, (u® v)= (0, u)d(v,0).
The kernel of Q5 ;v — Qg _gr, /ris a flat T-module and the left hand side of
the sequence above is a locally free rank 1 T-module. Hence a, is injective.
On Y, we have a similar exact sequence

©) = (iR /fIR)® (2R /f3R;) <= Q51— Qr, @r, T 0,

where a, (u®uv)=(u,0)d(0, v).
Since both a, and o, vanish on Y N Y?, they patch up to give a global map

(0) = (£ @X) D (¢,), (V@ %) 2 Qyis — q,Qy;s — (0)

o*s, (¥ @x?) .

By definition we see that a is Z/2Z invariant and is therefore induced by a map
o 5, (N @%Y) > Qyys .
Since étale morphisms are faithfully flat
0) > 5, (V%) - Qx5 — pLx;s — (0)

is exact.
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REMARK. Let ¢ be the sheaf of ideals on X' defining the section s. We have
natural maps

Pri FIF? = pu( I/ IT) = s, x

pr: FIFP— pu(FfI) = 5,6
One checks that these maps give an isomorphism

15 ~ 5,06V Dx?).
Hence we have an isomorphism
A (F1F7) = 5, (V@)
defined by
UAD P pU@p0—p0@pyii .

The map o is the composition

5. V@x) x A2(F/F%) L Qs

where f(i A D) =udv.

DEFINITION 3.6. Let

H = {hyhphy,.. by}, hi<hy<...<h

ny
and

K = {kpks. . kn)y  ky<ky<...<ky,

be disjoint subsets of {1,2,...,n}, n,+n,=n.
Let g, and g, be two non negative integers with g, + g, =g. Then for each
quadruple g,,g,, H, K we have a morphism of stacks

Vg8, H.K : Mgn»”n"’l X Mgz’"z'*'l - MG-""‘Z ’

%Ml

n, n,+1

h n+1

n+2

Figure 7.
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This is obtained by attaching a pair of projective lines and renumbering the
sections as best described by the picture in Figure 7.
We define
Yor Mg_ 1 ns2 = Mg oy

as described by Figure 8.
n+1 n+l

k n+2

Figure 8.

Contracting the two last sections gives a morphism

Mg,,H_2 — Mg'" .

Tnt1,n+2 -

We denote by B the composition f=m,, ,4,07.
THEOREM 3.7. y is a closed immersion and B is finite.

Proor. Clearly g is quasifinite and 7, ,, , . is proper, so it suffices to prove

that y is a closed immersion.
Let n: C — S be an n+2-pointed stable curve with sections s,,...,Ss, .

Contracting s, ,, S,4+, and both s,,, and s,,, gives us a diagram
cC 2 ¢C
rl e
CN p'"’ CIII n'’’ S .
On C' and C” we have extra sections 4’ =peos,, , and 4" =p’os, . ,, respectively.
On C"” we have two extra sections namely

1 11 / Ui "
P'PSpsr = PP'Snsr = P4

and
P'PSprz = PP'Sprr = P4’

We define three closed subschemes of S via the cartesian diagrams:

T < § T < S T < §

1 4 1 e 1 e

C;ing =~ C C,s'ing = C" S C"—A’ c"”
pa”
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and finally
T=T’XST"XST”’.

Note that for any stable curve X — S, X, is defined by the sheaf of ideals
image of Qy s®wy/s in Oy.

Let 4" denote the section of C"”’ x ¢T, and let .#, #”, and #" be the sheaf of
ideals defining the sections 4', A", and 4" over T, respectively.

By uniqueness of stabilization we have

E, = p~'(4) ~ Proj (Fym(F |5 F))
E, = p~1(4") ~ Proj(Fyme(S" |55
E3 — p/l/—l(Allr) ~ E4 = p///—](A/I/) ~ PI‘Oj (yym(jwlv/juljurv)) .

Over T we have the picture in Figure 9.

E;

A/u

Figure 9.

Consider the general situation where X — S is a stable curve with a section 4.
Let s be a point in S and x=A4(s) a point in X such that X has a double point
with rational tangents at x. If .# is the ideal defining the section in the local ring
R=0y ,, we have a map

SRrF — R.
We denote by ## the image of this map. Clearly Fc.£5 .
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If we take completions with respect to the maximal ideal m=m, in R we have
by general theory of Zariski rings

FIF )Y 2SI (F) 2SI .
So we have a diagram
S eI I =UFFY
U U
S SIS .

By the example in the appendix # =.# (#") and so since R is a faithfully flat
R-algebra .# =.# . The exact sequence

(*) 0 —> R/F—> F/FF — F /R (0)

shows that .# /## s locally free of rank 2. If X, does not have rational
tangents at x, there is an étale neighbourhood S" — S of S such that the
sequence (*) is exact on Xg; hence (*) is exact in any case, and the E’s are flat
over T. p and p' induce proper maps E; — E; and E, — E,. On the geometric
fibres they are isomorphism, so by Nakayama’s lemma they are closed
immersions. By flatness they are isomorphisms.

The isomorphisms E, ~ E;~ E,~E, shows that they all have exactly three
sections. Hence they are all isomorphic to P¥. In particular we have three extra
sections t,, t,, and t; in Cr, that is in Figure 10.

Figure 10.

The three schemes Cy\ t,(T), E,, and E, patched along their common open.
sets yields a stable curve C; over T with n+4 sections. Contracting the two
last sections in Cr gives us a morphism:
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T—>M=M,_,.,U M, x‘MM+l

and the diagram
T = §

! !
M S Mg,n+2

commutes by the universal property (1) of the clutching construction. It is
cartesian by the very definition of T.

DeFiniTiON  38. Let H={h,h,,...,h,} and K={kk,,...,k,} be
complementary subsets of {1,2,...,n} with hy <h,< ... <h, and k, <k,<...
<k,,. Let g, and g, be integers with g=g, +g,. The finite morphisms

Bo: My 1 i2— Mg,

and

Bg.,gz,H,K : Mg..nl+l X Mgz,nz+l - Ms-"

define closed substacks S7 , and S, .y x of M, ,, and these are the irreducible
components of S, ,. When g, =0 we write for short Sg . u K=S§f » OF simply
SH.If also g, =0, then H should contain at most one of the integers 1, 2, 3.

COROLLARY 3.9.

a) The clutching morphism B is finite and unramified.
b) When g, +g, or n+0, B, , y4 k is a closed immersion.

Proor. Let X be a scheme and n: C — X an n-pointed stable curve and let
D be the curve over C obtained from Cx y C by stabilization. Since the
geometric fibres of n are reduced with ordinary double points, Cg,, — X is
unramified. Define the scheme T by the fibre product

T — X
l l
M £ M,,
Then T— X factors as follows.
T<% Dsing Xc Csing - Csing - X

and this proves a); b) is clear.

We conclude this section with a picture of the zoo of 2-pointed stable curves
of genus 2. S, , and its intersections define a stratification of M, , into locally
closed non-singular connected strata as follows
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dimension 54 3 2 1 0
number of components 1 4 13 24 23 10.

The 23 components of dimension 1 corresbond to the curves in Figure 11.

A o

2 2 2

3+
| & 3

%
¥ N

€

: o 2 2
Figure 11.

The 10 components of dimension 0 correspond to the curves in Figure 12.

b S
de WO ¥ g

Figure 12.

The last components here are isomorphic to M, ; and S, ; respectively.
(A dotted line stands for an elliptic curve. The number 2 indicates that
by ordering the points we actually have 2 components of this type).

Appendix. Stably reflexive modules.

Let R and S be noetherian rings and h: S — R a ring homomorphism
making R into a flat S-algebra.

DEFINITION 1. A noetherian R-module M is stably reflexive with respect to
the homomorphism h, or if there can be no doubt about the homomorphism
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we say simply that M is stably reflexive with respect to S, if M satisfies the
equivalent properties of the theorem below.

THEOREM 2. The following are equivalent.
1) a) For all i>0 and all S-modules N
Exth (M,R®gsN) = (0).
b) The canonical map
omN: M ®sN — Homg (M,R®sN)
is an isomorphism.
a ) For all i>0 and all S-modules N
Exti (M",R®3N) = (0).
b") The canonical map
Ymn: M®sN — Homg (M",R®sN)

is an isomorphism.

2) There exists an infinite complex of finite locally free R-modules
* ... E?4d g1 &', po &L, g1 d,p2
such that for all S-modules N,
E ®gN and E "®gN are acyclic and M ~imd° .
3. There exists an infinite acyclic complex (*) such that if B'=imd', then
a) B and B" are S-flat,

b) Extk (B’, R)=Extk (B, R)=(0) for i>0,
¢) M=B".

Proor. We do a cyclic proof in the order

3=2=1=3,
3 = 2 is immediate .

By 2) we have exact sequences

(*)N (0) g M@sN — E1®SN - E2®SN —
* v ©0) > M ®sN > E” ®sN > ETV®gN — ...
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Since the canonical map
Yen: FQgN — Homg (F,R® N)

is an isomorphism when F is a finite locally free R-module, 1) follows from the
diagrams:

(*)n © — M®sN - E'®gN - E?®sN -
l l [

(**)n (0) > Homg (M",R®gN) — Homg (E'",R®sN) — Homg (E2,R®sN) — ...

* v ©) — M ®sN - E” ®gN - E"V®gN o
! L It

** )y (0) - Hompg (M,R®gN) — Hompg (E°>,R®sN) — Homgz (E"',R®sN) - ...

Note that (**)y and (**7)y are left exact by (*)s and (* )5 and general facts
about Hom.
To show 1) = 3) note first that b ) with N =S tells us that M~M ~, and
therefore the definition is completely symmetric with respect to M and M.
Since M is noetherian, so is M and we can find locally free resolutions of
finite R-modules of the form:

o> E"r 4, gt 4, B0, M, (0)

> B L pT 4D BT M (0).

By 1) (**)y and (**V)N are exact and in the two diagrams above the left
vertical arrows are isomorphisms. Hence we have (*)y and (* )y exact for
all N.

Let N — N’ be an injection of S-modules then by (*)y and (*)y

(0) > M®sN — E'®gN

l [

(0) > M®sN — E'®sN’ .
Now R is S-flat so E' is S flat and we see from the diagram that M is S-flat
too. By the remark above, M is S-flat as well.
LEMMA. Let (0) > M" — M — M’ — (0) be a short exact sequence of R-

modules such that M and M’ satisfies 1), then M" satisfies 1).

Math. Scand. 52 — 13
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PROOF. 1a) is clear and from the two diagrams

— Tor} (M"",N) — M~ ®@sN - M ®sN - M ®sN - (0
~ l" l(PM"‘N
) — Hom (M',R®sN) — Hom (M,R®sN) — Hom (M",R®sN) — )
(0) - M"®sN - M®sN - M ®sN - (0)
|vmn I~ I~
(0) — Hom (M"",R®sN) — Hom (M~ ,R®sN) - Hom (M, R®gN) — Extk (M"",R@¢N) —

we see that the canonical maps ¢y vy and Y- v are isomorphisms and that
Extk (M",R®sN)=0 for all N. For i>1 we have exact sequences
(0) = Extz ' (M”,R®gN) — Extik (M" ,R®sN) — Extk (M ,R®sN) —

and the lemma is proved.

Back to proving 3). Combining the resolution ... —» E™! - E° > M
— (0) and the exact sequence (*)g we get an infinite acyclic complex (*). If B
denotes the image of d' it follows by the Lemma that B satisfies 1) for i<0 and
(im d”) satisfies 1) for i >0. However it is clear that (imd" ) ~ B’ for i=0 so B
satisfies 1) for i>0 too.

COROLLARY 3. Given a short exact sequence of finite R-modules:
O)->M ->M->M - (0

with M’ stably reflexive with respect to S. Then M" is stably reflexive with
respect to S if and only if M is.

PROPOSITION 4. If M is S-stably reflexive, then for any homomorphism S — T
the Rrymodule M 1) is T-stably reflexive and

(* M ®sT = Homg ,, (M1, R®sT) = (M) .

PRrOPOSITION S. Given S, R and M as before, then M is stably reflexive with
respect to S if and only if for all prime ideals p= R, M, is stably reflexive with
respect to Sy-1p.

Proor. For noetherian M it is well known that all the functors occuring in
property 1) of Theorem 2, commute with localization.

ProPOsITION 6. Suppose S and R are local noetherian rings and h: S — R
a local homomorphism. The following properties are equivalent:
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a) M is S-stably reflexive,
b) M is S-stably reflexive,
¢) M is S-stably reflexive.

Proor. Bourbaki [2, Chap. III, 5.4.4.]

REMARK. In view of these propositions, it is clear that stable reflexivity is a
property of coherent sheaves with respect to a morphism. Moreover the
property is local in the Zariski topology as well as in the étale topology.

We leave as exercise the following “local criterion of stable reflexivity”.

PROPOSITION 7. Given S, R, and M as above and let ¢ be an ideal of S
contained in the radical of S. Denote by S, R,, and M, S/ #*, R®sS/#*, and
M ® S/ #¥, respectively. Then M is stably reflexive with respect to S, if and only
if, for each k, M, is stably reflexive with respect to S,.

Example of a stably reflexive module.
Let S be a ring, b and ¢ elements of S, and let R be the ring:
R = S[x,y]l/(xy—bc) .
Note that every element u € R can be written uniquely in the form

U= . 4u_ X"+ .. Fu_ X Hu_ x+ugtuy+tu i+

with the u,’s all in S, and all but a finite number equal to zero. It will be
convenient to write the elements of R as columns

]
U_,
u_,y
u=/| u
Uy
u;

.

Let E be R?, «, B, p, and q endomorphisms of E given by:

a=(:iﬁ>, ﬂ=(:;{»>’ p=<—(1)<1))’ "=<(1)_<1)>'
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LEMMA. The diagram
S>E*EEf,E* E£,E-%»
I A A
> E-fe, Efs E-85 E s E Y2
commutes and has exact rows.
Proof. Commutativity is straightforward to check. Considering E as a free
S-module the elements of E can be written as columns

U_y
Uo

uy

Uy
Uo

Uy

L

We may then regard « and f as infinite matrixes:

—b| 0 |0 be 0]0]0
ED be| 010
010 |—b 0|10
1
o =
—1
0|-1] 0 clolo
0 0 | —bc 0|c|O
| 000 -bc 0f0
—¢|lo]o be 0]0]0
0 |-c|o bc |00
0 ] 0 |—c 0|10
1
B =
-1
0|-1] 0 b|0]o
0 0 |—be olb[0
| 0] 0 | 0 —be o/o0[b
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Let A be the S-homomorphism of E into E given by the matrix

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

1

[ 0

0

0

It is then straightforward to check that

Define:

aA+AB = 1 = BA+ Aa.

-1

0

0

0 |

-1

0

0

0

0

0

o

(=]

o

197

-b 1
—b> —b 1
1|c ¢ 1le & ¢
1 c c ?
1 1 ¢
1
-1
-b -1
-b* b -1
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Then PQ=QP=1. Moreover if ¢, =x—b, £,=y—c, then

(& &
PO(—(O 0).

This shows that the ideal ¢ in R generated by &, and &, is isomorphic to the
image of a.

Let t=x+y—b—c; then t is not a zero-divisor, and if ¢, = (x—c)/t and ¢,
= (y — b)/t, then the fractional ideal #’ generated by ¢, and &, is isomorphic to
the image of B, which again is isomorphic to the image of ‘a, that is #'~ ¢ .
One may check that this isomorphism is the right one, i.e. for s € #',t € #, s(t)
=s-t.

Since & +¢&,=1, it is clear that # /R is generated by a single element
say £ also (x—b)'g;=x-1 and (y—c)-¢,=—c-1 so the map R —» # /R
sending 1 to &, factors through S, and it is easy to check that this is an
isomorphism.

S~ #/R.
Summarizing all this we have:

1) The ideal # <R is stably reflexive with respect to S.

2) The fractional ideal #' consisting of all elements of the total quotient ring of
R that maps £ into R is isomorphic to the algebraic dual of #.

3) # /R is a free S-module of rank 1.
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THE PROJECTIVITY OF THE MODULI SPACE
OF STABLE CURVES, III:
THE LINE BUNDLES ON M, ,, AND
A PROOF OF THE PROJECTIVITY OF M, ,
IN CHARACTERISTIC 0

FINN F. KNUDSEN

Introduction.

In section 4 we construct the basic line bundles on M, , and study their
behaviour under pullback by contraction and clutching. This is where this
paper originally was to end and then Mumford would use these results to
prove projectivity as suggested by Seshadri. However Gieseker and Mumford
discovered that a stable curve embedded in projective space of sufficiently high
dimension is stable in the sense of [9]. Hence the projectivity can be proved in
a much more natural way using the techniques of [9]. These results are
published in [14].

Instead we have added to this paper sections 5, and 6, where we present the
very first proof of the projectivity of the moduli space of stable curves. The
result of Gieseker and Mumford is much sharper than Theorem 6.1. In fact the
constant m occuring here can be chosen to equal 56/5 regardless of n,g and the
characteristic.

None the less the results of this paper give considerable insight into the
boundary of the moduli space and we believe this might have some general
interest. Finally I want to express my gratitude to Professor Mumford for
continuous support and encouragement throughout the writing of this paper.

4. Invertible sheaves on M, , and their functorial properties.

Recall that a sheaf on the stack M, , consists of the following data:
1) For every n-pointed stable curve n: X — S a sheaf # (%) on S.
2) For every morphism

Received August 6, 1979; in revised form November 23, 1981.



THE PROJECTIVITY OF THE MODULI SPACE OF STABLE CURVES, III 201

X, — X,
] )
S, 1> 8,
an isomorphism ¢xl,x21f*(9'_(nz)) — % (n,) which for every composition

X, — X, — X,

nlomlom
S, 1> S, 4 8,

satisfies the cocycle condition

S*(@*(F (ny) [2oxx) px(F ()
~ ‘ Px,. X,
(gf)*F (m3) M}'(nl)

Moreover, because M, , is an algebraic stack, to define a sheaf # it suffices to
define & (n) for every n: X — S for which § — M, , is étale, plus ¢’s whenever
these make sense.

Then there is one and only one way, up to canonical isomorphism, to extend
this to a sheaf # on the whole stack M, . This of course because descent data
are effective for étale surjective morphisms.

Let m: X — S;5;: S — X (1<i<n) be an n-pointed stable curve of genus g.
By Corollary 3.3, Qy s is a perfect complex on X. Since = is flat, Rn Qs is a
perfect complex on S. We denote by A4, ,(n) the invertible sheaf on S defined
by

a) Ag,,,(n) =det (RT[*QX/s).

The operations Q, Rn, and det all commute with base change, so Ag is an
invertible sheaf on M, ,. Similarly we define

b) lg,,,(n)zdet (RT[ *(DX/S)

) 53,"=ﬂ.g',,®Ag_,:

d) »Q,(m)=s¥(wyx/s)

e) Js»n =4 ® ® ”(si,)n
i=1

f) Sg.n=j'g,n®/‘ig‘,:-

Besides the above invertible sheaves we also have the divisors Sg » of Definition
3.8. When no confusion is possible we drop the subscripts g, n.

Suppose n: X — S is smooth over each point of S of depth 0. Then, since
Qy s is flat over S, the associated points of Qy s lie over the associated points of
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S. Over the associated points of S, the canonical morphism Qy /s — wy/s is an
isomorphism. Hence in this case Qx5 — wy/s is everywhere injective and the
points in Sup(n,(wy,s/2x/s) have depth = 1. Therefore we have

5(1:) = A@A_l x @S(Divn*(wx/s/gx/s)) .

n: X — § defines a morphism § — M, , and Divr, (wy/s/Qyx/s) is simply the
pullback to § of the divisor S, ,= M, ,, that is

g,m
Ogn = Oy, (Se.n) -

Roughly speaking, d, , is the sheaf of functions on M, , regular except for
simple poles at infinity.

THEOREM 4.1. Let n=m,,: M, ,,, = M, ,, and let S'=S;"%} be the divisor
on M, ,,y, which is really the image of the i-th section s;: Mg, — M, ..
We have

a) n* (A, ) =4

,n g,n+ 1>

b) m*(Ay )= Ag s (ST +S>+ ...+ 8,
©) m* (%) =g+ 1 (— 5",

d) xy =0y, m,, (S +S2+.. +57),
and hence

) T* (A )@y m, (S 4. +8) = Agayy

PrOOF. Let n: X — S, 5;: S — X (1 £i<n) be an n-pointed stable curve of
genus g such that the corresponding morphism § — M, , is étale. By duality
we have

A(n) = detRn wy;s = detRn, Oy .
Consider the diagram

X 4 XXSX-EI—b X
""-";) PI‘A') 7"
X = X =8

where X' is the stabilization defined by 4.

We have Rq,0x~0x,x, so this proves a).

To prove b), notice that the divisor of singular curves on X is n~'(S, ,(n))
+8;+...+s, Since AxA®"! we get b).

On X' we have a short-exact sequence of sheaves
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(0) > g*Ox xx(—5) = Ox(=5) = Ox(=5)g-15,n0y = (0).
s; is transversal to q ' (s; N 4), so taking s:* of this sequence leaves it exact, i.e.
©) = () > iy = F > (0),

where # is a sheaf with support on the divisor s; on X and of rank 1. Hence
Div (#)=s; and this proves c).
To prove d) notice that the conormal bundle

© () = s (oxx(si4 ... +5,) .
This is because the sections never cross. By Lemma 1.4 a) we have
WD) & A*pF(wxs(s;+ ... +5,) .

But p,04 is the identity, so this is d).

THEOREM 4.2. Let

a: Mg—l,n+2 - Mg,n’
B: Mgl»"x"’lXMgz,"z*‘l - MR’"

be the clutching morphisms. Then

* ~ * ~
a) a A’g,n~2‘g—l,n+2’ ﬂ A’g,n"’lg,,n,+1®2‘gz,nz+l7

N N * T -
b) O"“Ag.nz/lg—1,n+2’ p AKv"~Agl'"l+1®Agl'"Z+1’

C) a*gg,nzsg— 1,n+2 ﬂ*gg,nzggl,n,+1®532,n2+1‘

Proor. Consider a clutching diagram

X2 X
.\,('.\1 ("l "w-‘)
S =S

On X' we have a short-exact sequence
(0) = Ox — p,0x *1=5 05— (0).
Taking det R, of this sequence yields a). b) follows by the clutching sequence
Theorem 3.5, and c) is a consequence of a) and b).
Let o be the numerical function

3 if g=0
a(g) = 31 if g=1
0 ifg=2.
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We want to see what happens to our line bundles under pullback by the full
contraction morphism

T = Myt l,0+2,...,04n * Mg.1+" - Mg,a .

DEFINITION. On M, , we define the divisors

kK H
Vs.n - Z Sg.n
*H=k+1
1 — H
DSv" - Z Sg,n
leH

REMARK. Note that Sf_,,=®, if x(HN{n; 1=n=a(g)}) = 2.
Consider the diagram

u
M,y "> M

ml !
Mg.a+n—l - Mg.a

g.at1

i>o and m; is short for @, |, o0 i 44w

LeEMMA 4.3. With notation as above

wa.nn/Mu.nnﬂ(Sl‘i+52‘i+ tre +S“+">i) X nl,*wM,(,nl/Mg,:®(O(Di) .

ProoF. We may well suppose that i=a+ n. Consider the commutative
diagram

LTS Matn-1
Mg,1+n * Mg.1+n—l = Mg,a+1

n“,,lT-S. "nrxlTxnﬂ l l
M

Moty
g,a+tn—1 - Mg‘a+nA2 Mg,a

(The diagram commutes since we renumber the sections.)

We define
.24 if jSa
a {j+1 if j>a ;
then
n;}ll(sj;',iz;‘n.._.{k,a+n—l) — Szf';(i“,;""6“‘a+"+Sg{g';h’é"'a+l'a+" .

Hence

-1 H — H H H
na+1< Z Sg.a+n~l - Z Sg,a+n + Z Sg,1+n- Z Sg,a+n'
xH =k *H=k xH=k+1 xH=k
a+n—leH a+neH a+neH a+neH

a+leH a+leH
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Summing these relations over k gives

-1 a+n—1 _ at+n a+1l,a+n
7.[zz-fll)g‘a+n—1 - Dg,a+n_Sg.cz+n .

By Lemma 1.6 a) we have

% 1,a+n—-1 +n—2,a+n—-1
nﬂ*’le‘_,“,fl/M (S ++Sa arn )

gatn-2

~ 1,a+n a+n—1,a+n a+1l,a+n
~ wa.:*n/Mx.:anl(S +... +S -3 ) N

and the Lemma follows readily by induction.
The main formula of this section is

THEOREM 4.4,

a+n

Agasn ® 7r*(/l,z.f,)@Di:C?f)+1 T* (wy, ., v, )®O(E, ,..)
where
Ego= Vi, +2V2 +. .. +(n—1)Vi,'.

g.n

Proor. In order to use induction we consider the composition

M Tatny M

g,atn 1 Mg,a( .

g, atn—

By theorem 4.1 e) and the previous lemma we have

~

Ag,1+n ~ n:+n(Ag,a+n—l)®wM,'“2/M (Sl‘a+"+ s +Sa+n—1.a+n)

gxtn—1

n:+n(Ag,a+n—l)®n:‘+n(wM%“,/M“,)@(O(D:,Zin .

V)= Yy sty ¥ o sH- Yy sH.
*H=k+1 *H=k+2 *H=k+1
a+neH a+neH

Q

Multiplying each of these relations by k and summing over k gives the relation

-1 —_ a+n
na+n(Eg,a+n~l) - Eg,a+n_Dg,a+n

and the theorem follows by induction.

We end this section with an inequality which is crucial in the next
paragraph. Suppose g <2 so that a>0 and consider the map

M

7
On M, ,,, we have E=E, ,,,=Y%_,SP%}] and

g,at1

g, atn - Mg,a+l .

a+n

Y i '(Eg.) =Y DPNE.

j=a+l p=1
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Since DPN D= for p<q=<a, we have

LEMMA 4.5.

5. Ampleness of A on the fibres of the full contraction morphism.

Let n: C — S be a smooth stable curve with a(g) sections. Then =
corresponds to a morphism which we also call =

n: S>> M, \S,,.
We define the scheme B,(C/S) via the cartesian diagram

Bn(C/S) - Mg,1+n

| |
S— M,,

B,.,(C/S) is an n+a-stable curve over B,(C/S), and we have the cartesian
diagram

Bn+l(c/s)ﬂ Mg‘a+n+l

n1+n+ltc/s)‘ ‘
B,(C/S) — M
Mysn+1(C/S)

g.,atn

On B,(C/S) we have the line bundle
A,(C/8) = ATy s 1(C/S)) = Myins 1 (C/S)* (g 1) -

ProrposiTiON 5.1. B,(C/S) — S is a smooth and proper morphism of relative
dimension n.

ProoF. We may suppose S =Spec (k), k an algebraically closed field. B, (C/k)
=C is smooth and proper of dimension 1 over k, so we may proceed by
induction.

Let x be a point in B,(C/k). Then x corresponds to a curve E/k with a+n
distinguished points P,,...,P,,,. One of the components of E is C.
If a+1=<j=<a+n, the fibre of the contraction

n;: B,(C/k) = B,-(C/k)

J
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over the point 7;(x) is the curve E’ obtained from E by contracting the point P;
and the point x € E'=n; '(n;(x)) is the image of P;.

If E=C, clearly n; is smooth at x. Otherwise x € S*'ns*:n ... NsH: and
we may suppose that H; does not contain any of the other H’s. Then if j € H,
and j>a, the map

n; 0 B,(C/K) — B, (C/K)

is smooth at x and the proposition follows by induction. See Definition 3.8 for
a definition of SH.

In the rest of this section we fix an algebraically closed field k and consider
all of our schemes to be defined over k.

Let C be a smooth stable curve of genus g and with distinguished points P;
(1<j<a(g). We consider a morphism n: S — B,(C), where S is another
nonsingular irreducible complete curve. n corresponds to an o+ n-pointed
stable curve n: C — S. Each one of the sections of n gives rise to a morphism
t;: § — C. This is the composition

S = B,(C) M B,(C) = C,

For 1<j<a we have t;(S)=P; € C.
We wish to study the pullback to S of the line bundle A,(C) on B,(C). By
Theorem 4.4 this is

atn

*(4,C) = Am & ® tHwd)®Us(r™ (E).

i=atl

By Lemma 4.5 we have
a+tn a atn
n_l(E) g n_l( Z ni_l(Eg,1+l)> = Z ( Z tj_l(Pi)> .
j=at1 i=1 \j=a+1

Hence we have

ProrosiTioN 5.2. Let n: S — B,(C) be as above, then

degn*(1,(0) = deg A(m) = (2g—2+a) Y deg(t).

i=at+1
In particular,

atn

degn*(A,(C) = Y. deg(t).
i=1

DEFINITION 5.3. Let X be a complete scheme and S an integral curve in X. We
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denote by mp(S) the multiplicity of a point P on the curve, and by m(S) the
number

m(S) = sup {mp(S)} .
PeS

LEMMA 5.4. For all stable nonsingular C and for all integral curves S < B,(C)
deg 4,(C)ls = m(S) .
Proor. We prove the lemma by induction with respect to n. For n=18=C
=B, (C), and by Theorem 4.4
A(C) ® 0cROE) .
In this case E=3_, P;, so degOc(E)=a. Hence
deg A,(C) = 2g—2+4+a =1 = m(S).
Assume that the lemma is true for all k<n and fix notation

S<B,(C) an integral curve ,
S the normalization of S,

n: S — B,(C)
t:S—>C (1gigfa+n),
t:8 > C (1giga+n).
If all the t;s are constant maps, at least three of them are equal. If r is the

maximum number of equal maps we get a factorization via the clutching
morphism
S = B,_,+1(C)x B,_,(P}) = B,(C)
and the lemma follows from Theorem 4.2 b).
Suppose then that ¢; is not a constant map. Then on the one hand we have
atn

deg 4,(O)ls 2 Y degi; 2 degi; .

j=at1
On the other hand, if P is a point of S, P’ its image in C", and S’ the image of S
in C", we have
degi; 2 mp(S) = mp(S) .

The second inequality is obvious. To prove the first inequality, let H be the
divisor p; '(t;(P)). Then by the very definition of multiplicity we have
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mp(S) £ (H,8)p £ (H,S) = degt;,

and the lemma follows by induction.
THEOREM 5.5. For all n and all nonsingular stable curves C, A,(C) is ample.

Proor. For this it is enough to state Seshadri’s ampleness criterion:

Let L be an invertible sheaf on a complete scheme X, then L is ample if and
only if there is an >0 such that deg L|s=¢&-m(S) for every integral curve S in
X.

6. Proof of projectivity in characteristic 0.

In this section let k be the field of complex numbers. All schemes and
morphisms will be defined over k. In particular by M, , in this section we will
mean

M, X spec (2) Spec (k) .

THEOREM 6.1. For all pairs g,n with 2g—24n>0, the stack M, , is coarsely
represented by a normal projective variety M, ,. More precisely, there is a
morphism

o: M,, - M

gn g,n

such that
1) & induces an isomorphism
isomorphism of classes| _ _
o (k): = M, (k).
(k) {of objects in M, , (k) } snb)

2) M, , is normal and proper over Spec (k).

3) There exists an integer N such that A®N and §®V are pullbacks of invertible
sheaves on M, ,, which we also write A®N and 3®N. Finally there exists a
number m>0 such that if N|a, N|b and a=mb>0, then,

A%9® (5~ 1)®  is ample on M, .
REMARK. It is not hard to see that 1) and 2) imply that @ is universal for all
morphisms from M, , to schemes. To prove the theorem we introduce some

auxiliary schemes. Fix an integer e 3 and let {C, x,, x,,. . ., x,) be an n-pointed
stable curve of genus g. We define

Math. Scand. 52 - 14
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d = e(2g—2+n) = deg(wclx;+...+x,)%9),
P(t) = dt—(g—1) = Hilbert polynomial of wc(x,+ ... +x,)%*,
v=P() = h(wclx;+ ... +x,)%9.
Consider the Hilbert scheme Hilbp.-1 of subschemes of P*~! with Hilbert
polynomial P(t) and let
H,, = Hilbp- x (P~ 1y

be the locally closed subscheme representing n+1 tuples (C, x,,. . ., x,), where
the x;’s are distinct smooth points on C, C with these x;’s is an n-pointed stable
curve and C is embedded in P"~! in such a way that O(l)|crwc(x, + . ..
+x,)®¢. Thus H,, , represents the functor

pairs ({n: X — S, 5;: S — X},a)

. . modulo
consisting of an n-pointed stable . .
isomorphisms .

curve over S and an S-isomorphism
a: P(n wys(sy+...+5)® = P!

H,,(©S) =
l

PGL (v—1) acts on H, , and M, , is the stack theoretic quotient of H, , by
PGL (v—1). According to ([15, Theorem 6.1]), H, , has a finite normal Galois
covering Hy, (not at all unique) on which PGL (v— 1) acts freely, commuting
with the Galois group I" and with local cross sections in the Zariski topology,
and Hf, —» H,, is a PGL (v—1) morphism. H} is a principal fibre bundle
over a normal variety X, , with group PGL(v—1), and the action of I
descends to X, ,. On H,, we have the universal family of n-pointed stable
curves in P*~ !, Pulling this back to H}, and dividing by PGL (v—1) we see
that X, , has a family of n-pointed stable curves on it. Then we have a
commutative diagram

H* —> H, ,

gn

! !
X T Mg.n

gn

where q: X, , - M, , is finite and surjective; hence X, , is proper over k, since
M, , is. Therefore by [15, Remark 6.1], it suffices to prove that APr@o1is
ample on X, , for some m, and then M, ,=X, /" will have all the required
properties.

By contraction, X, , has a family of stable curves over it, so by ([1, Theorem
1.1, and Lemma 1.4]) there is a morphism
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Satake compactification of
oS = the moduli space of
& polarized abelian

l varieties of dimension g

such that:

1) If x is a point in X, , corresponding to an n-pointed stable curve C, then t(x)
corresponds to the abelian part of the generalized jacobian of C.
2) If S, is embedded in projective space by modular forms of weight m, then

t*(0(1) ~ A®™

Let x be a point of X, , corresponding to a stable curve C and let C,,. . ., C, be
the non-rational components of the normalization of C. Let

k
m=n+2g—-2-2Y (g—1)— (% of elliptic C)
i=1
where g, =genusC,.

Let X be the variety:

X = 11 (LI B.,(C)x ... x B, (CYx B, (P")x ... xB,(P")
n4 oA+ At l=m
n,21 (0 if C, ellipic)
n=0
in which the inner sum contains one copy for each choice of pairing all but n of
the base points, leading to a stable curve by clutching.

Note that each point of X defines k different n;-pointed stable curves of
genus g; (n;+ 1-pointed when g;=1) and [ different n;+ 3 pointed stable curves
of genus 0. Identifying all but n of these in pairs in such a way that the result is
connected and taking into account the definition of m, one sees that this gives
an n-pointed stable curve of genus g.

Note that we get in this way all stable curves C’ such that the normalizations
of C and C' minus their rational components are isomorphic. By Torelli’s
theorem, we get all C’ such that the abelian part of the jacobians of C and C’
are isomorphic.

Clutching the points in the various configurations corresponding to each
component of X, we get a morphism f: X — M, ,. Let g,.: t 7' (t(x)) > M,
be the restriction of g and let X'=Isom (8, q,).

Then we get a diagram

X' 2o 17 (t(x))

p:| 4]
X £ M, .,

where p, is finite and p, is finite and surjective.
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Let 0 be the invertible sheaf on X defined on each component as

pfsg,,nl® e ®pltgg,l,n.®p:+ 150,n’,® e ®pl’<*+ 150,11; .
Then by Theorem 4.2 we have

P¥ Gy nli- ) = PX(S).

Since p, is finite and p, is finite surjective, it follows from Theorem 5.5 that 5;,}
is ample on t~!(t(x) hence there is an m>0 such that A2"®§~! is ample on
X

g.n°

This proves Theorem 6.1.
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