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HILBERT 'S FOURTEENTH PROBLEM - THE FINITE. GENERATION
OF SUBRINGS SUCH AS RINGS OF INVARIANTS

David Mumfordl

1. INTRODUCTION

The precise statement of the problem is this:

Let k be a field
Let K be a subfield of the rational functions in n-variables over k:
k €K Ck(xl,--~,xn).
(n.p. all such K are automatically finitely generated over k as
fields)

Is the ring:
XN k[xl, ‘e ,xn]

finitely génerated over k¢

The motivation for this question came from its affirmative answer by
Hilbert and others in certain very interesting cases: e.g., say

char(k) = O, suppose G = SL{m) is acting linearly on k", and suppose X is
defined as the field of G-invariant rational functions. Then

KN k[xl,"',xn] is just the ring of G-invariant polynomials and Hilbert
had proven that this was finitely generated. Unfortunately, it turns out
that the answer is, in general, Eg: KN k[xl,'--,xn] may require an
infinite number of generators. A beautiful counter-example was discovered
by M. Nagata [13] in 1959. It would appear that after Hilbert's discovery
of the extremely general finiteness principle on which his proof in the
SL(m)-invariant case was based, namely "Hilbert's basis theorem" on the
finite generation of all ideals in k[xl,-a-,xn], Hilbert was overly
optimistic about finiteness results in other algebraic contexts. However
my belief is that it was not at all a blind alley: that on the one hand
its failure reveals some very significant and far-reaching subtleties in

the category of varieties; and that the search for cases where it and
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related geometric questions are correct is a very important area of
research in algebraic geometry. In fact, my guess is that it was
Hilbert's idea to take a question that heretofore had been considered

only in the narrow context of invariant theory and thrust it out into a
much broader context where it invited geometric analysis and where its
success or failure had to have far-reaching algebro-geometric significance,
We will discuss the problem in 3 sections — first in the case of invariant
theory where K is the field of G-invariant functions for some G, second

in its geometric form involving linear systems formulated and analyzed
first by Zariski [23], and thirdly as a special case of the general
problem of forming quotient spaces of varieties by algebraic equivalence

relations.

2. INVARIANT THEORY

Hilbert's proof of the finiteness when K is the field of G-invariant

functions, G = SL(m), char(k) = 0 is so very elegant and simple that it

should really be part of every mathematician's bag of tricks. So I would

like to begin by running through this marvelous proof: to begin with, it

is known that if Vv is any finite-dimensional polynomial representation of

SL(m) in char. O, then V is completely reducible. In particular, there is

a unique decomposition:

G
V=V &
Vi

G . . :
where V is the subspace of invariant vectors and V, is a G-stable

1

subspace containing no invariants, Let Py be the projection of V

with kernel Vl.

be the ring of invariants. R and & are graded rings, i.e.,

G
onto V Next, let R = k[xl,---,xn], and let R° cR

R = eRk, Rk = vector space of homogeneous
degree k polynomials
G G G : : :
and R = @Rk, Rk = G-invariants in Ry.

Thus the operators
. _,___.) RG
PRy Ry k
patch together into a projection

G

pR: R ——>R ",

A simple argument using the uniquehess of p satigfies

the identity:

shows that pR
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G
p.(£9) = fp (g), £ €R’, g €R.

Now we let
G G
R = é® R
+ k>0 k
and let I = Ri.R be the ideal in R generated by all invariants of

Hilbert's Basis Theorem asserts that
N
r- ), .r
i
1

for some fl,---,fN € I; we can assume if we like that each fi is in fact
Then Hilbert asserts that these

positive degree.

in RG and homogeneous of some degree di'

£, generate RG as ring! He proves this by induction on degree: choose

i

g € RG and assume all h € Ri, for n' < n are polynomials in the fi’s.
n

Then g € I, hence there is an expression:
N

g = X a.f,, a, €R .
i ivi i n--di

Apply pp: .
g = P9 = E:pR(aifi) = }kpRai)fi.

Then ppa; € Ri—d which is a polynomial in the fi’s by induction, hence
i

so is g!

What was the history of invariant theory after Hilbert? First of all,
Hilbert did not give the above abstract description of p, but rather an
explicit construction of p, called JCayley's fi-process" in which p appears
in the Universal enveloping algebra.of s#{m). As mentioned in Hilbert's

problem itself, A. Hurwitz [7] had already observed and H, Weyl was later

" to use effectively the fact that if k = @, (and we can reduce easily any

char. O case to the case k = &), then

e

g€su(m)

g*(x).ag

sU(m) = special unitary group
dg = Haar measure
Via the fact that any reductive algebraic group over € has a
Zariski-dense compact subgroup, this gives us an explicit
construction for the projection p for any such groups, hence a
Proof of finiteness, The final step - to observe that no explicit

formula for ¢ 1s needed but one merely must know the complete
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reducibility of all finite-dimensional representations»to construct p
abstractly - was taken by M. Schiffer in 1933 (unpublished; it appeared
in H, Weyl's "Classical Groups" [22], Supplement C),

In char. p, no semi-simple group has the property that all its
representations are completely reducible. For instance, think of SL(2)

acting on the 3-dimensional space of quadratic forms
vV = k-x2 + kexy + k-yz.

In char, 2, k-x2 + k-y2 is an invariant subspace with no complement.
Therefore the Schiffer-Hilbert method breaks down. However, very
recently, W, Haboush [25] has succeeded in proving the following Theorem

which I conjectured in [9]:

THEOREM: If a semi-simple (or even reductive) algebraic group G acts
on a vector space V and leaves fixed a vector v € V, .there is a

polynomial function £ on V such that:
i) f£(v) # o

ii) £ is G-invariant.

In char, O, f exists and may be taken linear by complete reducibility.
Seshadri [17] had previously proven that such f£’s exist when G = SL(2).
Nagata [14) has proven that if G has the property of the Theorem (this
is sometimes stated as "G is semi~-reductive"), then the ring of
G-invariants® is finitely generated, i.e., whenever G acts linearly on
kx1 ERERES kxn, then k[xl,---,xn]G is finitely generated. Therefore, it

follows that the ring of invariants is finitely generated for G reductive,

*
We have not made precise before whether by G-invariants we meant
polynomials f(xl,...,xn) which were identically invariant, i.e.,

£(g(x)) - £(x) = 0. as function of g,

or f£’s which were invariant separately under every g € G(k) (the
k-rational points of G). If k is infinite, G(k) is Zariski-dense in G
and there is no difference between these 2 concepts. But if k is finite
there is a difference: in this case G(k) is finite and I wish
G-invariant to mean identically invariant,
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For groups G which are not semi-simple or reductive (i.e., which have

a synipotent radical"), very little is known even in char. O about finite-
néss of the ring of invariants. I know of only 2 resulgs -

a) Weitzenbock [21] (cf. Blso [16]) proved k{xl,-r~,xn] finitely generated
if G = Ga (i.e., Ga = the additive group of the ground field),

b) Nagata's counter-example {13] is a non~-finitely generated ring
k[xl,...,x ]G where G is commutative, but G is a product of many groups

@ and many groups Gm (here Gm = the multiplicative group of the ground

field®).

3, 2ZARISKI'S FORMULATION WITH LINEAR SYSTEMS

We recall that if X is a non-singular projective variety (or more
generally if X is normal) and D is a positive divisor on X
i i i : 0), then
(i.e., D= Eqﬁi, Ei C X a subvariety of codimension 1 and nl > ),

we define:

Ji(D) = vector space of rational functions £ on X
with poles bounded by D, i.e., VECXof
codimension 1,

ord, £ > -(mult. of E in D).

(Either X (D) or the family of divisors that occurs as the zeroes of the
functions £ € L (D) is called a linear system on X,) Zariski introduced

the 2 rings:

ring of rational functions f with }

m -
R(D) = L% ll(nD) = { poles of any order but only on D
n=
fes
R*(p) = @& I (nD).
n=0

* . n 2 »
In concrete terms, a representation of Ga is a commutative group of

matrices all of the form

. n
in a suitable basis of kx1 ETRRE 4 kxn. A representation of Gm is a

commutative group of diagonal matrices

*, O
o

in a suitable basis of kxl +eoot kxn.
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The ring R*(D), though apparently much bigger than R(D), is easily shown
, on a variety x1 which

to be isomorphic tokR(Dl) for a suitable divisor D
is a E}-bundle over the variety X you start with. So the class of rings
R*(D) is really a subset of the class of rings R{D). More generally, for

any divisors* Dl"" , we can define a k~times graded ring:

Dy
(e o)

o5
R*(Dl"")Dk) = tee & !I.(EniDi) ’

n1=0 nk-'-‘O

and this is also isomorphic to R(Dl) for a suitable D, on an X, (which is

now a Iﬂa-bundle over X.) 1In his penetrating articlel[zj], Zariski showed
that Hilbert's rings XN k[xl,.-.,xn] were igomorphic to rings of the
form R{D) for a suitable X and D; asked more generally whether all the
rings R{D) might not be finitely generated; and proved R{D) finitely
generated if dim X = 1 or 2. I want to outline the procedure for finding

X and D such that:

KN k[xl’ . "1xn] g R(D)o

First of all, X is to be a suitable projective variety with function

field K**. For any such X, the inclusion of fields

Kc k(xl’...’xn)

defines a "rational map"
o P° —_—> X

i.e,, T is a many-valued map whose graph in " xx is a subvariety and
which is single-valued on a Zariski -open subset U C Pn. Let
r = dim X = tr.d.kK. Then if X is chosen "sufficiently blown up", one
can make T L nice in the sense: '

V x ¢ X, the full inverse image W, = n-l[x]

has dimension n-r.

Roughly speaking, we have a fibration of H;lby (n-r)~dimensional algebraic

sets W, such that K is the field of rational functions constant on eaéh

*
If D has some negative coefficients, an £ € f-(D) should have
corresponding zeroes of order at least that coefficient.

*%
If resolution is known for this dimension and characteristic one would
take X non-singular; if not, one takes X to be normal and R(D) is
defined as before. »
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W, i.e., invariant generically under the equivalence relation defined by
X

bglonging to the same Wx. Of course, these Wx’s may become singular and

in general will meet at certain "bad" points of ﬂp, namely where the map

l,---,Dk be the subvarieties of X of
, -~ n _n
codimension 1 such that W l[Di] c (the hyperplane at w, I -A ). Then

nm is not single-valued. Now let D

for all rational functions f on X, f has poles only on LJDi if and

only if £fem has poles only at @ , hence

_xnk[xl,-.-,x ] = R(EDi).

n

Unfortunately, it was precisely by focusing so clearly the

divisor~theoretic content of Hilbert's 14th problem that Zariski cleared

.the path to counter-examples. The history is this -

i) Rees [15] in 1958 found a 3-dimensional X and a D with
R(D) infinitely generated. His X was birational to
PEXE_ (E an elliptic curve).

ii) Nagata [13] in 1959 found that for suitable points
Pl,---,PI € I@, if X is the surface obtained by blowing up

each Pi into a rational curve E,, then
r
rR*(4, - E:Ei) (4 a line not through any Pi)
1

is infinitely generated; and that this ring was a ring of

invariants k[xl,- G as mentioned in 81,

"x2r]

iii) Zariski [24] in 1962 returned to the problem and pursuing some
constructions which had been considered in differeﬁt contexts
by Grauert [3] and Nagata [12], found that it was not at all
uncommon for R*(D) to be infinitely genefated when dim X =2

(nence for R{D} to be infinitely generated when dim X = 3).

I would like to describe the situation Zariski looked at because it
is a very useful source of counter~examples to several problems and
illustrates some basic facts about the category of algebraic varieties.
Suppose you have '

a) a non-singular surface X,

b) a curve E C€ X of genus g > O such that

i) (EE) < 0 (i.e., the normal bundle to E in X has
negative curvature)
ii) Pic X —> Pic E is injective (i.e., if a line bundle L

on X is trivial on E, then it is trivial on X).
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Such a sgituation is not hard to obtain: start with any sufficiently
general hypersur face section Ho on xo and blow .up enough generic points
on H, to make its normal bundle negative, First of all, here is what
Grauert observed about this situation: analytically, E can be blown

down, i.e., there is a normal analytic surface X, and M X —>X

1 1
mapping E to a point x but bijective elsewhere. But Xl is not a variety:
if it were, x would have an affine neighborhood U € X, hence C = xl—U

would be a curve not containing x, hence ﬂ-l(c) would be a curve on X
. . S -1 .
disjoint from E, hence "twisting by T ~(C)" we get a line bundle

sx(ﬂ'lc) trivial on E but not trivial on X: contradiction,

Zariski did this: let H C X be a hyperplane section, let a = (H.E),
(the intersection nuwber of H and E), let (E2) = =b. Then he showed

R*(bH + aE)

is not finitely generated. The reason is this — look for functions £
on X with poles kbH + kaE, some k > 1. If at some P € E, x = 0 is the
local equation of E, expand f:

f- o L,
xak xak—l
and consider the function g, on E. Suitably interpreting what 9, means,
g, comes out as a section of a line bundle on E; in fact the line bundle
Gx(ka+kaE) on X restricted to E, This has degree O but by assumption
(pii) is not trivial. So it has no sections and 9, = O, i.e., £ can
have at most poles of type xbH + (ka-1)E. On the other hand, Zariski
showed that there is a fixed k, such that for all k, there are functions
f with poles of type XbH + max(o0, ka—ko)E. To see the implications of

this, say for instance that ko = 1: then for all k, let
£ € L (xbH + kaE)

have a pole kbH + (ka-1)E. Then for all X,

£ ¢ (subring of R*(bH + aE) generated b%)

L€, 00,8

1?
since every function in the degree k piece of the subring has a pole of at
most kbH + (ka-2)E! Taking into account that R*(bH+aE) is graded, it
requires at least one generator in .each degree, hence is not finitely
generated! .

Are there any positive results asserting that R(D) and R*(D) are

finitely generated in some cases? When dim X = 2, Zariski's paper [24]

gives a thorough analysis of when R*(D) is finitely generated., In
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higher dimensions, at the moment, the best results are numerical criteria
on b implying that D is ample, which in turn implies very quickly that
poth R(D) and R*(D) are finitely generated. Here "D ample" means that
for some n > 1, nD is a hyperplane section of X in a suitable projective

embedding. These criteria use intersection numbers and are as follows:

1.) Nakai's Criterion: if for every subvariety ¥ € X,
(Y.br) > 0 where r = dim Y, then D is ample.

2.) Seshadri's Criterion: if there is an € > O such that
for every curve C c X, (¢.D) > e-[gzg(mu;t. of P on C)],

_then D is ample.

' For proofs, see Hartshorne's book [4], Chapter I.

4, QUOTIENT SfACES BY ALGEBRAIC EQUIVALENCE RELATIONS

Another way of generalizing Hilbert's problem is to ask: given a

variety X, and

R © XxX, R ={1) a finite union of subvarieties of XxX

2) set-theoretically, an equivalence relation on X

when is there another variety Y and a surjective morphism f£: X —>Y

such that
R = {(xi,xe)\f(xl)=f(xé)}?

For short, we speak* of Y as X/R.” Two cases of particular interest are
i) a group G acts on X and R = {(x,gx)'x € X,g € G}; and ii) E is a
subvariety of X to be "blown down" and R = (diagonal) U (EXE). In
Hilbert's case, X = = (affine spacé'but one is given R only generically
by specifying the subfield K (i.e., R = {(xl,xe)lxl,x2 belong to some Wx}
in the notation of B2); Hilbert's problem can be broken up into 2 steps
— first extend this equivalence relation nicely to one on all of mp,
second prove An/R exists and is an affine variety, in which case
Hilbert's ring k[Xl,---,Xn]r\ K is just the affine coordinate ring of
B/R,

Returning to the general case, it is always possible to find a
Zariski open subset U € X stable under R such that U/R exists (this may

be proven for instance using Chow coordinates of the equivalence classes).

* : K3 .
The requirements do not determine Y uniquely, but in all cases that arise,
there are natural extra conditions one imposes that make Y unique if it
exists at all.
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Equivalently the field of rational functions K on X/R is easy to construct
and then any model ¥ of K realizes X/R on some sufficiehtly small
Zariski~open U in X, The real problem is a birational one of finding a Y
which works everywhere. However, as in Zariski's divisor formulation of

the problem, one is confronted straightway by a raft of counter-examples:

1.) Grauert's example [3] described in B3 of an E C X,
where dim X = 2, (Ee) < 0% and E can be blown down
analytically but not algebraically,

2.) Hironaka [6] found a beautiful example of a complete
{though non-projective) variety X on which B/2%Z acts
freely, but X/(Z/2Z) is not a variety-at all,

3,) Nagata and I found ([9], p. 83) examples of PGL(n)
acting freely on quasi-projective vapietiesrx such

that the orbit space X/PGL(n) is not a variety.
In rough outline, here is the idea of Hironaka: take a 3-dimensional
projective variety Xo with 2 curves Cl,c2 in it crossing transversely at

2 points Pl,P2 and with Z/2% acting on X, interchanging the C’s and the

P’s:

We then blow up C1 and C, in X, to obtain X. However, where the C’s

cross, we must specify the order in which the C’s are blown up — so at Pl’
we blow up ¢ first, then in thg resulting variety we blow up C,; at P,

*®
If (EE) 2. 0, then E cannot be blown down even analytically so of course
one cannot construct X/R, R = {diag)U(ExE), algebraically. For general
equivalence relations R one asks first that R have some reasonable
properties ensuring that X/R exists in the analytic context.
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we blow up C_ first, then in the result, we blow up C Then Z/2% still

acts on X. sowever, say Y = X mod (%Z/°Z) were a variity. since X is
projective, it can be shown (cf. e.g. [10], p. 111) that X mod{Z/2Z) is
a variety Yo. In Yo, C1 and C2 have the same image D and P1 and P2
pave the same image Q. Then Y would be obtained from Yo by blowing up D;
put at Q, the 2 branches of D must be blown up in a definite order. As D
is- an irreducible curve, these 2 branches cannot be distinguished by
rational functions: This turns out to mean that ¥ in fact does not exist
in the category of algebraic varieties,

Confronted with these counter;éxamples, people have had 2 reactions:

a) find criteria for X/R to exist as a variety, or b) instead enlarge

" the category you are working in. The ploy (b) was most notably successful

in Weil's hands in his 2nd proof of the Riemann hypothesis for curves over
finite fields [20]. His idea here required the construction of the
Jacobian variety of such a curve. At that time, only affine and
projective varieties had been considered, Weil invented the category of

what he called abstract varieties — now called simply varieties — and

constructed the Jécobian as one of these,> Subsequently he and Chow
independently showed that the Jacobian was actually a projective variety;
however, at the time, Weil instead developed the theory of "abstract"
varieties far enough to by-pass the question of projectivity and prove
the Riemann Hypothesis using these Jacobians. Matsusaka [8] made an
initial attempt at enlarging the category even further, However it was
M. Artin who found, I believe, the most natural enlargement: he calls

these new objects algebraic spaces (cf. [1] and [2]). One way to define

these is simply to introduce them<as formal quotients X/R, where X is a
scheme and R is an étale equivalence relation, i.e., R © XxX is a

subscheme such that the projection
p: R —m>X

is &tale — essentially makes R into an unramified covering over X.
Artin then went on to show that the category of algebraic spaces is closed
under apparently all "reasonable" further quotient operations X — X/R.
For details we refer the reader to his papers, which make algebraic spaces
into a very effective and powerful tool, ‘

Still you may have a sentimental attachment to familiar old varieties.
It would appear especially that projective varieties play such a central
technical role in algebraic geometry that it may be virtually impossible
to eliminate their use even if you wanted to. In any case, it is very
interesting to prove, when possible, that X/R is actually a projective

variety. I would like to state one such result concerning orbit spaces:
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Suppose:

a projective variety over k

G = a semi-simple (or more generally reductive)
algebraic group over k, acting on X

Xx ¢ B: an embedding such that the action of G on X

. n
extends to an action on I,

Then there are canonical open subsets

xS c X: the set of "stable" points

XSSC X: the set of "semi-stable" points

such that XS,XS are G-invariants, and there is a diagram:

s

where i;7— is a projective variety, XS/G is an open subset of 2276,
X ——+>xs/G makes xs/G into an orbit space by G, and X  —> 2;76
makes 2;75— into the quotient of XS
~ defined by:

s by a cruder equivalence relation

x ~y if o°(x) N oC(y) N X # 8

{here OG(x) = G-orbit of x). This theorem is proven in my book [9] when
char. = 0, and the part about X is proven by Seshadri [18) when
char, = p, This xss~part in char. p follows from the recent results of
Haboush[25] discussed in 81. See [11] for examples and a discussion of this
result., This result has proven very useful for proving that various
moduli spaces are quasi-projective varieties (and not "just" algebraic
spaces).

The above theorem is in fact a natural extension of Hilbert's own
ideas about the ring of invariants, especially as developed in his last
big paper on the subject, "Uber die vollen invariantensystemen" [5].

To indicate this, let me define X__. Assume for simplicity that there

is actually a representation of G on kn+l which induces the action of G

on the ®" ambient to X. We then make the definition:

If x € X, then
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Y homomorphisms A: & —>G, let x(A) = 1lim A(t)(x).
1 t—>0

Let x(\)* € k" pe homogeneous coordinates for x(1\),

so that A(t)[x(M)*] = t¥.[x(7\)*] for some r € %.
We ask r < O for all A,

x € X ==

. ‘ . . G
Now let R be the homogeneous coordinate ring of X, and let R+ be the

invériants with no constant term. Then we have Hilbert's result:

G .
X -X, = V(R+.I}).

Contrary to the usual credo that Hilbert eliminated the interest in
studying special cases in invariant theory, my belief is that some of the
most challenging problems still open in invariant theory concern special

cases. I would like to raise two rather broad questions:

PROBLEM Let.S be the parameter space for a famil{1§hxs|s €S } of
non-singular projectively normal subvarieties Xg & »". Agsume PGL{(n#)
acts on S so that for all g € PGL(n+l), X (s) = g(xs). Assume this action
is proper. Then is the quotient S/PGL(n+l) always a variety?

PROBLEM Now that we have computers, is there a practical way to
actually find generators of such classical rings of invariants as those
of a binary or ternary n-ic (i.e., SL(2) or sL(3) acting on the space
of homogeneous degree n polynomials in 2 or 3 variables)? After an
extraordinary effort, Shioda [19] only recently found these fpr binary
ogtics.,

Added in proof: Independent of W. Haboush's work, E. Formanek and

C.Procesi have recently in a preprint entitled "Mumford's Conjecture

for the general linear group” given another very beautiful proof of the

semi-reductivity of GL(n) and SI(n).
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PROBLEM 15. RIGOROUS FOUNDATION OF
SCHUBERT'S ENUMERATIVE CALCULUS

Steven L., Kleiman1
ABSTRACT

Schubert's calculus was first interpreted and rigorously justified by
van der Waerden (1929) by means of the calculus of algebraic cohomology
classes developed by Lefschetz., Entirely algebraic treatments of the foun-
dations of Schubert's calculus have become possible through the jumbled
efforts of a great many mathematicians, who have contributed to the con-
structions of algebraic intersection rings to replace the topological
cohomology ring, However, this work does not constitute a complete solution
to Hilbert's fifteenth problem; for, in the statement and explanation of the
problem, Hilbert makes clear his interest in the effective computability and
actual verification of the geometrical numbers of classical enumerative
geometry. Due primarily to Schubert (1886), the classical method of obtain--
ing certain numbers, like the number (1! 21 ... d! h!)/(n-d)! ... n! of
d-planes in n-space meeting h = (d+1)(n-d) general (n-d-1)-planes, was
vindicated topologically by Ehresmann (1934) and algebraically by Hodge
(1941, 1942) by means of an explicit determination of the cohomology ring,
and respectively, of an equivalent algebraic intersection ring, on the
Grassmann manifold, In the offing, there is the exciting hope of the devel-~
opment in algebraic geometry of a general enumerative theory of singulari-
ties of mappings, a theory of Thom polynomials, which will, ' among other

-things, unify and justify the classical work dealing with prescribed conditions

of intersection and contact imposed on linear spaces. Classically, condi-
tions of intersection and contact were imposed on other figures as well,

For example, Schubert (1879), in his book, obtains the number 666, 841, 048
of quadric surfaces tangent to 9 given quadric surfaces in space, and the
number 5, 819, 539, 783, 680 of twisted cubic space curves tangent to 12 given
quadric surfaces. Today, we cannot vouch for the accuracy of these two
spectacular numbers, nor do we even know whether Schubert's method is

basically sound,
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