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PATHOLOGIES 1V.

By Davip MUMFORD.

In this note I would like to use the beautifully simple method introduced
by Tony Iarrobino [1]—when he proved that there are O-dimensional sub-
schemes of P? which are not specializations of reduced subschemes—to prove
here that there are also reduced and irreducible complete curves which are not
specializations of non-singular curves. Since there are no global obstructions in
deforming reduced curves, this also shows that there are complete reduced
1-dimensional local rings with no flat deformation which is generically smooth.

Start with a complete non-singular curve C of genus g with no auto-
morphisms over an algebraically closed ground field k. Choose a point x&€C
and a large even integer ». Note that if V is any k-vector space where

mZ.CVC m; ¢
then k+ V' is a subring of O, . For each such V, define a new curve:

7:C—>C(V)
by:

(a)  is a bijection, and an isomorphism
resm:C— {x} — C(V)—{mx}.
(b) ®wx,C(V) =k+V.
Note that if V,,V, are two such vector spaces, then

C(V)=C(Vy)=V,=V,.

(In fact, C is the normalization of each C(V); hence any 0:C(V)) —> C(Vy)
lifts to 0o’:C—C which must be the identity, hence k+ V,= Oy covy
= 0,(9,c(vy=k+ Vy.) Moreover, the curves C (V) can all be fitted together into

Manuscript received December 14, 1973.
American Journal of Mathematics, Vol. 97, No. 3, pp- 847-849
Copyright © 1975 by Johns Hopkins University Press.

847



848 DAVID MUMFORD.

a family if we fix the integer dim; V/m2’: for all k, 0<

let G= Grassmaman of k-dlmensmnal subspaces of m - / mx,”c,

let Vc(m)./m2)®,0. be the universal family,

let C(V) be the scheme equal to CXG as topological space, with
structure sheaf defined by:

a

Ocxe: - (®x,C/m3,yC)®k®G —0
U
U [k+( xC/m )]®k®c
U
HV+0,) - - - V+ 0
||def.
Ocw

Since [(0, ¢ /m2c)®, 01/ V is a locally free O -sheaf, O« is flat over O,
i.e., C(V) is flat over G.

Now choose k= /2 and calculate:
(i) dimG=k(r—k)=»%/4
(ii) Pa(C(V))=g+dimy [0, /0, cv)

3v
—_— + —
e+(3 1)
Therefore if »>>0,dimG >3p,(C(V))—3! I claim that this implies that almost
all the curves C (V) are not specializations of non-singular curves, because of:

LemMAa . Let p: C—S be a flat and proper family of reduced and
irreducible singular curves C,=p~Y(s) such that

(a) Vse€S, {s'|C,~C,} is finite

(b) p,(C,)>2, S is irreducible and dimS > 3p,(C;) —3,

then almost all curves C, are not specializations of non-singular curves.

Proof. If the conclusion is false, then after replacing S by a Zariski open
subset we can extend the family C /S like this:
e —> C*
\L \J/ i S*irreducible,

S S g dimS*=dimS+1
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so that C* is generically smooth over S$*. In fact C will carry a relatively
ample L, so we may use p,L®" (n>>0) to embed C in some PV-bundle 9 over
S. Moreover, if a C5 (s€S,) is abstractly a specialization of a non-singular
curve, so is the embedded curve Cg CPY. So take S* to be a suitable subvariety
of the Hilbert scheme of ¥ over S. Once we have C*/S*  consider the two
induced families:

CfF = C* X g4 (S* X §*) (formed via p;: $* X S*—S*,i=1,2)

and the scheme
I=Isomyg., . (C¥, CF)

whose points over (s,s,) € S* X S* are isomorphisms 0:C —C,. Look at the
morphisms:

! C,—C,
q \L) 5 q(O : sl.—) sz) S1

g 8(s)=[id.:C,—~C,]
Since dimS$*=dimS+1>3p,(C,)—3, whenever C, is non-singular, the same
non-singular curve must occur in the family C*/S* infinitely often; thus when
C, is non-singular, some component of g~ '(s) through &(s) is positive-
dimensional. Now by upper semi-continuity of dimensions of fibres of a
morphism, it follows that for every s, g ~(s) has a positive-dimensional com-
ponent through & (s). Now let D, =Im(S—S*), D,={s|C, is singular}; then D,
is a component of D, and let D= D,-(closure of D,— D,). Choose s € D? and
consider how ¢ ~'(s) can have a positive-dimensional component y through
d(s). By (b), Aut(C,) is finite; by (a), there are only finitely many s’ €D, with
Ci~Cy; certainly CxC, if s'€5*— D, because C, is singular while C, is
non-singular; and since s & (closure D, — D)), y cannot lie over (s) X D,— D, in
§*X §*. Thus there is nowhere for y to go! Contradiction.
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