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Introduction. We shall consider exclusively algebraic non-singular quasi-projective 
irreducible varieties over an algebraically closed field. If V is such a variety a(v) 

will be the Chow ring of rational equivalence classes of cycles of V and 

0* d(171) si(V2) 

the group homomorphism defined by any proper morphism V1 ---> V,. Also 

cs*: a(v2) dai) 

denotes the ring homomorphism defined by cb. 
Let X, Y be two varieties. Assume that Y is a subvariety of X (by subvariety, 

we will always mean closed subvariety), let i: Y -- X be the inclusion and E the normal 
bundle of Y in X. Then Grothendieck conjectured the self-intersection formula 

i*i*(Y) = ycr(E), 	 (1) 

for any y E a( Y), where r = codimx  ( Y) and cr(E) is the rth Chern class of E. 
Consider the blowing-up diagram 

	,r 

Pe 	 1 

	 )1  X 

where Y' = P(E) is the projective bundle associated to E. The normal bundle of Y' 
in X' is the tautological bundle LE  of E and one has the exact sequence 

0 —>- LE  —> E —> Ea) —> 0 

which defines Ea)  (4). Then Grothendieck also conjectured: 

f*i*(y) = j*(P*(2J)cr_1(D1))) 	 (2) 

for any y Ed( Y), which he called the `formule-clef' for calculating d(X'). 

Our aim is to prove both formulae. Especially (1) looks so innocuous that it is hard 
to believe it is not false or trivial; for instance they are both well known in singular 
cohomology when the ground field is C. They were first conjectured by Grothendieck 
in 1957 ((2), expose 0), and were proven modulo torsion by a very roundabout method 
in (2), cf. esp. expose XIV (4.4). They were subsequently used in (6). Their analogues in 
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etale cohomology are apparently to be published in SGA5. Our proof is completely 
elementary, but requires a good deal of manipulation. 

1. Preliminaries. The notation will be that of (7) as far as possible. If E is a vector 
bundle 

C(t, E) = E ei(E)ti, 
o 

where r = rank (E), will be its Chern polynomial and [AC] (t, E) the polynomial in 
which an operator A has been applied to its coefficients. The point of this notation is 
that if a suitable element x is substituted for t then in [AC] (x, E) the operator A does 
not apply to the powers of x. The reversed Chern polynomial is defined as 

	

C(t, E) = 	(t-1, E). 

One has 
LPE C] (t, E) = 	E) = C(t, DI)) C(t,  LE) 

by applying the additivity formula to the exact sequence of the introduction. Let 
6E  = cl(LE) so that C(t, LE) = 1- tEE. Multiplying by (1 - t6E)--1  and comparing 
constant terms, we get: 

r -1 

i = 0 • 

	

C r -1(E(1)) = E 	c,:(E)• 6rE i  • 

Let G = E al, where ly is the trivial line bundle over Y. Then B = P(G) is the pro-
jective closure of E. The canonical inclusions of E and ly  in G give two subvarieties of 
E isomorphic to P(E) and Y respectively, which can be called the `roof' and the 
' floor ' of B. We shall identify the roof with P(E) and the floor with Y. 

If is Y B and ,: P(E) B are the inclusion maps then 

Pct = IdY, Pct = PE, 	 (1.2) 

where pc  is the projection of P(G). One has 

JO) = Ea. 	 (1.3) 
and 

4(1) = [PM (ga, E) 	 (1.4) 

according to Scott's formula ((5) and (7)). The first equality implies 

i*(Ea) = 0 	 (1.5) 
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because P(E) n Y= 0 in R. One can now prove the self intersection formula for the 
special case where Y is regarded as a subvariety of the variety E as follows.t For any 

y Ed( Y), i*(y) = i*i*A(y) by (1.2). By projection formula i,*(y) = p'My) .4(1) hence 

i* (Y ) = P)4(Y)•[14' el (6G, E), 	 ( 1. 6) 

using also (1.4). Applying i* on both sides and taking into account (1.6), 

in*(Y) = i*Pt(Y) • i*Ptcr(E) = i*Pt(Ycr(E)) = Ycr(E), 

since 	= Id. Hence 
i*/*(y) = y.c,.(E) 	 (1.7) 

for any y e s1( Y). 
A useful remark in this situation is that j*  is injective. In fact, if a is any element of 

r-1 r-1 
d(P(E)) then a = 	ptai.a,, so a = j* E  Ojai.  G = j*fi , say. Then 

0 	 0 

.7*a = 7*-i*fi = fi.J*(1) ,86G 

r -1 	r -1 
by (1.3). So y*  E ptai. E = E pG*ai. grGi+1. As the minimal equations of CE  and 6G  

0 	 0 

are respectively of degrees r — 1 and r it follows that j*  is injective. 

LEMMA 1.1. (`Excision lemma' cf. (3), 4-30, Lemma 4). Let U, V be two varieties, 
V a subvariety of U, W = U\V and Z a cycle of U such that its restriction Zw  to W is 
rationally equivalent to zero. Then there exists a cycle F of V which is rationally equivalent 
to Z on U. 

COROLLARY 1.2. Consider the blowing-up diagram 

V' 	 > u' 

	 U 

and let Z be a cycle of U such that no irreducible component of Z is contained in V. Let 
Z' be the proper transform of Z by 0. Assume that the restriction Zw  of Z to W = U\V 
is rationally equivalent to zero. Then there is a cycle P of V' such that Z' is rationally 
equivalent to P. 

Proof. W' = U'\V' is isomorphic to W by 0 and the restriction ZW, of Z' to W' 
corresponds to Zw. Hence Zw' is rationally equivalent to zero. Apply (1.1) to Z', 
U' and V'. 

2. The construction. Let :X = X x Pl and blow it up along Y x 0 to get a morphism 
f: —> X. One can identify X with X x 0 and its proper transform by P-1  with X'. 

t A no more difficult argument enable us to establish the self intersection formula in the case 
where X and Y are both projective bundles over the same base space. 



AK, PE c=)y  Y  CZ> 

Centre 
of 

blow-up 

	Y  

X=Xx (0) 

i'=Xx 
Yx /r" 

=Xx (co) 

f 
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Then fix' = f and the total transform of X is j-1(X) = X' + R, because the normal 
bundle of Y x 0 in Xis ES ly, Y x 0 is a simple subvariety of X x 0 and 

codimg (X x 0) = 1. 

Also B is attached to X' along Y' its roof, Y' is the proper transform of Y (= Y x Pl) 
and f induces an isomorphism Y' 2-; Y. 

For convenience we shall list the maps needed in the sequel: The projection 

: V' -4- Y. 
The inclusionst 

LEMMA 2.1. 

	

Y 	X, i: Y --›- E, 	 , 

j: Y' -> X' , :Y' = P(E) E , 

k: E 

	

13 : X 0, 	C , 13' : X'o0 	, 

T : X ---> C, 	: 	-3- 	. 

k*(1) = fl,1% (i) - T'*(1). 

Proof. T*(1) = fl*(1) andf*T*(1) = k*(1)+7-'*(1), 

LEMMA 2.2. (i) i* = 71-;11*k*, (ii)T'*k*  = j*  3*. 

Proof. (i). Any subvariety Z of R properly intersecting Y on E, also intersects 1' 
properly on X' because codimE  ( Y) = 	(p) and Zn Y= Zn 	The proof 
of (ii) is similar taking into account that codimE  ( Y') = codimx, (X') = 1. 

t /9 and T are just abbreviations for 'bottom' and 'top'. 

fv*(1) = ir*(1). 
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LEMMA 2.3. i*k*k*  = 0. 

Proof. By Lemma 2.2, (i) for any u E d(B), i*k*k*u = n;' r*k*k*k*u. Then 

k*  k*k*  u = k*(u)k*  (1) 

by projection formula, k*(u).k*(1) = k*(u)(,8; (1)— 7:1,(1)) by Lemma 2.1 and 
k*(u) fl;(1) = 0, because B n X = 0 . It follows that k*  k*k * u = — k*(u)r; (1). 
Finally n,,a'*k* k*k*u = 	(k,K (u) . '1*(1)) = 0 because k*(u).7 *(1) is represented 
by a cycle on X' which will be disjoint from 	=Im(r). 

3. The self intersection formula. For any cycle A of X denote A x PI by A and let 
A' be the proper transform of A by f. The following lemma is straightforward to 
verify: 

LEMMA 3.1. (i) If A is a subvariety of Y, then A' is isomorphic with A and it inter-
sects the floor of E along A; moreover A' .E is defined on X', A' .B = A and A' . X' = 0. 

(ii) If A intersects Y properly on X then the cycle f-1(A) is defined and f-1(A) = A'; 
the cycle A' .B is defined on X' and A' .B = pal(A.Y). 

(iii) Under the assumption of (ii) the cycle X' . A' is defined on X' and X' . A' = f-1(A). 

THEOREM 1. For any y E Y) 

i*i*(Y) = Ycr(E), 

where E is the normal bundle of Y in X. 

Proof. One can assume that y is the class of a subvariety B of Y. Let B1  be a cycle 
of X properly intersecting Y and rationally equivalent to B. According to Lemma 3.1, 
(i) 

E = B 	 (3.1) 
and 

= o. 	 (3.2) 
By (ii) and (iii) of the same lemma 

.1-1( 	= -131, 
	 (3.3) 

	

E = p61(131. Y), 	 (3.4) 

A.. X' =f-1(B1). 
	 (3.5) 

Also the class of B1. Y in d(Y) is 

	

clp (B1• Y) = i*i*  (y). 	 (3.6) 

The cycle 13 — Bl  is rationally equivalent to zero on X. By Corollary 1.2, with 
and Z = P— A, there exists a cycle F of E rationally equivalent to A' — A.  on 	i.e. 
in rational equivalence classes 

c/.2,(P')— c/k-,(13i) = k*  (y), 	 (3.7) 

where y E d(E) is the class of F. According to (3.1) k*c/z,(P') = i*(y). Also from (3.4) 
and (3.6) one deduces k*c/Ic.(/31) = i*i*(y). These give, by applying k* to (3.7), 

i*(Y) — i*  i*(Y) = k*k*(Y)• 	 (3.8) 
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Applying i* on both sides and taking into account that i* k*k*  = 0 by Lemma 2.3, 

i*i,*(y)—epti*i*(y) = 0, hence i*i,*(y) = i*i*(y) because pG i = Idy. To conclude 
apply (1.7). 

Note. Since i*i*(y) = ycr(E) one can write (3.8) as follows 

i* (Y) = Pt(Yer(E)) + k*k* (7). 	 (3.9) 

4. The formule-clef' for d(X'). 

LEMMA 4-1. With notations of section 3 

---/*(Y) = Pt(Y). cr-1(E(1) )- 

Proof. By (3.9) k*k*  y = 7,*(y)—pt(y .cr(E)). Also 

lek*(7) = — Y .6a = Y -.)*(1) —.-4)*(7) 

using the self-intersection formula, the fact that L G  is the normal bundle of E in 
and the formula ci(LG) 	for for the first equality; and using (1.3) for the second 
formula. By (1.6) and (1.3) again: 

4(0 —  PtAY .cr(E)) = Pt(Y). ([to' C] (6a, E) — P'c'I'Gr(E)) 

ir- 1 
Pt(Y) • gG • E 6rG71-i  • Ptci(E)) 

i=o 

r-1 
= (Y) .j*j*  E 

1=0 

But r6G  = 6E  and pE  = pG j, so putting everything together and using (1.1), we get: 

— J*)*(Y) = 1*(Y)-10(Y • cr(E)) 

r-1 
= :7* 	(Y)• E 	• PZ ci(E)) 

1=o 

=J*(4(y)•cr_i(E(')). 

But j*  is injective as remarked in section 1, so we may cancel it in (4.1). 

THEOREM 2. For any y E Zal( Y) 

(4.1) 

j*(P*(Y)•cr_i(E('))) = f*i*(y). 

Proof. By applying T'* to (3.7), — Ti*clx,(131) = 7-'*k*(y) since B' is a cycle of 
and 1' n 	= 25. Also T'*c/.k,(g) = f*i*(y) according to (3.5). Hence 

—Pi*(Y) = T'*k*(7). 

By (ii) of Lemma 2.2, T'*k*(y) = j*  j*(y). But in Lemma (4.1) we have shown that 
—j*(y) = (y) cr_1(E1)). Putting this together, we get the formule-clef 
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