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§1. INTRODUCTIA 

The goal of this note is to present an outline of Matsusaka's proof 

(4],[5] of the following Theorem: 

THEOREM 1. Let P(k) be a rational polynomial with integral 

values for all integers k. Then there is a ko  such that for 

every non-singular complex pzo!ectve variety V, and every 

ample line bundle L on V with 

x(V,L°k) = P(k, 

then L
ek 

is very ample if k > k . 
— o 

The proof can be divided into 2 parts. The more difficult part 

consists in the proof of Theorem ; below, and a somewhat easier but still 

subtle part consists in checking that Theorem 2 implies Theorem 1. 

THEOREM 2. Given constants c > 0, Y,ko,n E Z and t E Q, 

there is a kJ.  = kl(e,Y,ko ,ti for which the following holds: 

Let V be any normal projective variety of dimension n over any 

algebraically closed field k; let C' be an ample divisor on V 

and let D be a codimension 1 cycle on V; assume Y = (e), and 

31, 

Assume 	

1 
dim H°(Gv(kD)) > 	r1, 

"-1) 

'(kC)n). for all k > k 

Then for every k > kl, one ca- Li_nd a subspace 

A C  H (0 (VD') 
' V 

such that the induced rational map 

A: Y 
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is birat ional and does not blow down any codimension one 

subvarieties. Moreover: 

deg $A(V) < Ykne. 

Many special cases of Theorem 1 are well known. If V is a curve 

of genus g, then L is ample if and only if deg L > 1, and it is well 

L k known that in this case L is very ample if k > (2g+1)/deg L. If V 

is an abelian variety, L ample, then Lek is very ample if k > 3 

(Lefschetz: cf. Mumford [8], §17). If V is a K3-surface, L ample, 

then again ek  is very ample if k > 3 (Mayer [7], Saint-Donat [9]). 

If V is a normal surface of general type with its rational curves E 

with (E2) = -2 blown down, and L = Ov(K), then L 	is very ample -if 

k > 5 (Enriques, Kodalra [3], Bombieri [2]). For arbitrary surfaces and 

ample L's in any characteristic, the Theorem was proven in Matsusaka-

Mumford [6]. 

Once Thefts em 1 is established, one may apply the theory of Hilbert 

schemes or of Chow varieties to conclude that the set of polarized 

varieties 	with given Hilbert polynomial P(k) may all be 

parametrized by aquasi-projective scheme. (In particular this family 

contains all deformations of the polarized variety (7,L) because the 

Hilbert polynomial is invariant under deformation.) 

Matsusaka's proof of Theorem 1 is non-cohomological, unlike for 

instance Bcmbieri's approach to canonically polarized surfaces. 

Theorem 1 Woult follow immediately if, for instance, one could solve 

directly the fallowing: 

PROBLEM: Given P(k), find ko  such that for every (V,L) 

with Hill,rt polynomial P(k) and every x,y e V, 

Hi(V,Ore-ek) = (0), all i > 1, k > ko. 

Conversel::, Matsusaka's result implies that such a ko  exists because 

it implies that the quadruples (V,L,x,y) forma "bounded family". 

We want to ald a word about the completeness of our presentation of 

Matsusaka's pr.;of. We believe the careful reader can reconstruct the 

whole proof from what we say. However in some places we have not written 

out fully vari- us details. In particular, a more complete version would 

include a whole section working out the elementary properties of 

Matsusaka's ol,eration A[i] (cf. §2 below): instead we simply introduce 

these without proof where they are needed. 
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§ .., PROOF OF THEOREM 2 

(I.): The first step is to find a k2  depending only on Y,ko,t such 

that for all k > k2, the rational map 

010: V ----->P0e(6v(kD))) 

satisfies dim 0 (V) = n. We shall in fact prove: 
kD 

LEMMA 2.1. If A c H°(Sv(kD)) and 

dim A > max (i+Ytiki) 
1<i<n -1 

then dim 0A(V) = n. 

Because of our assumed lower bound on h°(kD) one gets 

immediately a k2(Y,ko,t) such that A = H°(911(kD)) satisfies 

this for k > k2. 

To prove the lemma, let W = $A(V). We show in fact that if 

dim W = i, then 
. 	. 

dim A < i + Yeki. 

Firstly, recall the well known fact (cf. [6], Th. 3) that for any 

projective variety X c le, X not in any hyperplane: 

n+1 < deg X + dim X. 

In particular, if X = W, pn= P(A), then 

dim A < deg W + 

so it suffices to prove 

deg W < Ytiki. 

To transform the inequality on deg W into an estimate on V 

itself, Matsusaka introduces an interesting new concept of the 

variable j-fold intersection cycle A[I]  of a linear system 

A c r(v,m). This is the codimension j cycle, defined only up to 

rational equivalence on V, obtained in either of the following 

ways: let B c V be the base points of the linear system A so 

that A defines a morphism 

0A: V -B 	IP(A). 

-, 
Take the closure in V of 0 (L), L c WOO a general codimension j 

linear space; or take the closure in V of the intersection cycle 

V(s1)......V(s.) in V -B, where the s. are j general element of 
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A. If A = r(v,sv(E)) for some divisor E, write (E)
fil for A01 

Note that if Al 
L A2 

are 2 linear systems, then 

A[i] 	A[i]  + eff. cycle. 
2 rat.eq. 1 

With this concept, we find: 

deg W < 4 of components of AD.] 

< (cn-i.A[i]) 

< (cn-i.(w[i]) , 
hence Lemma 2.1 follows by taking E = kD in the following key 

result: 

PROPOSITION 2.2: Let V be a normal projective variety 

of dimension n, C an ample divisor and E a codimension 

one cycle on V such that dim ,6kE(V) > i for k >> 0. 

Then 
i 

(

(Cn-l'E)) 
(e) 

Proof: Replacing C by AC multiplies both sides 
n-i 	 1  

by A 	so we may assume C very ample. Let V' be a 

general intersection of n-i divisors C
1
,...,C

k-i 
 E ICS, 

let C' = V'.0 and let E' = V'.E. Then one sees easily 

that 

(E[ i).en-i)v  = (v)1[1,-] 

(Cn)v  = (C'i)v, 

(Cn -1.E)v = V" 

hence replacing V by V', we may assume i = n. Now 

dim O E(V) = n for k >> 0, hence in fact AkE  is birational 

for k >> 0 [i.e., if Wk  = AkE(V) c /Plc  and if n: Wkk 
is the normalization of Wk in the field k(V), then 

n*(Bwk(1)) is ample on Wk and 

n*(ewx(A)) c r(v,s(k/E)).] 

We may also replace E by kE to prove the Proposition 

because: 
(kt)[n]  > kn(E)[11]  

(cn-l.kE)n = kn(cn-1.E)n 



MATSUSAEA'S BIG THEOREM 	517 

(because the base locus of IkEI is contained in the 

base locus of 1E1,  and the variable intersection of 

n general divisors in IkEI specializes to kn  times 

the variable intersection of n general divisors in 1E1 

plus some components in the base locus of 1E1.) So we 

may assume AE  is birational. 

Now let W = AE(V). Since AE is birational, 

deg W = (E[n]  ). Moreover, if k >> 0: 

o, h 07,0Sv(kE)) > h°(W,%14(k)) 

kn = deg W.-7  + lower terms n. 
[n] k

!  
n  = E • -- + lower terms. n 

The Proposition now follows from considering the upper 

bound on h°(0V  (kE)) as k 	co, which is given by 

PROPOSITION 2.3 ("Q-estimate"): Let V be a projective 

variety of dimension n, let C be a hyperplane section 

of V and let J be a torsion-free rank 1 sheaf on V. 

Then 

([t]+n)y 
 C[t]+n-1I 

h°(3) < n-1 

where 

t = deg 3/deg V 

Y = deg V . C

(degree measured via C 
as in Kleiman,AdmAisOgLO 

Proof: For n = 1, the inequality reads 

h°(3) < ([t]+1)Y + 1 

which follows from the Riemann-Roch estimate: 

h°(3) < deg 3 + 1 = tY + 1. 

We proceed by induction, assuming the result true on 

a general hyperplane section C. First we need to find 

a hyperplane C such that C is again a variety and 

38 0 is still torsion-free. Indeed almost all C's 

are varieties (Seidenberg's Theorem) and for moo 

to be torsion-free, it suffices to make sure 

depth (3 ) 2 for all x E C except the generic 
x x = 

point of C. Since there are only finitely many x E 

with codim(ii) > 2 and depthex(3x) = 1 (cf. for 
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instance EGA, Ch. 4, §10.8), this is possible. Then one 
has the exact sequences: 

0 	3(-k-1) 	3( -k) ----3pec( -k) --> 0, 

hence 

h°(a(-k)) < h°(3( -k -1)) + h°(3945c(-k)). 

But h°(3(-k)) / 0 implies there is a homomorphism 

0 	9V(kC) 	3 

hence deg 3 > k deg V, hence [t] > k. Thus 

[t] 

h°(3) < 	ho(agisc( _k)). 
k=0 

Using the estimate on C, we get: 

[1, ([t] -k+n 	((t) -k+n -2) 
h°(3) < Y + n-1 	 n-2 

k=0 

_ Qtly 	
([t]4n-1/ n-1 

(II.): This completes the first step: if Wk  = /6(V), we have a k2  such 

that if k > k2, dim Wk  = n. The second step is to find a k3  also 

depending only on e,Y,ko,t such that if k > k3, then Okzo  is 

birational. We will in fact produce an Lo  such that 
116Aok2D 

is birational. Note that since k > ko  implies kD is 

effective, then for k > k3  = 20k2+ko, r(49(kD)) D r(09(1.0k2D)), 

hence j6kr, is also birational. 

To produce'Ao, consider for each k > k2, d > 1, the diagram 

of rational maps: 

Note that de g($ D
) 
 = deg(Skil).deg(gk,t). 

QED 
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LEMMA 2.4: There is an integer L (depending on e, n and t) 

such thath de g(,61(D) 	
1 and deg(gkA) = 1, then one must 

have 

(kA0)

knA

[n]  
> (1+E) 

,l/n (kO)
[n] 

n 

Proof: Choose A such that 

(  

2(1+e) 
sl/n

+n+1 	
+ 
2 

) 
A(l+e)

l/n
+n 

< 

 
1+2e An . 

n 
n 	 t 	n-1 	 n!  

This is possible because for L >> 0, the left hand side 

grows like (1+e)An/n:. Now Wk  and WkL  both have 

explicit projective embeddings: 

Wk cip(e( 0 (kW)) 

W
kA 1P

(He(6v(kAD))). 

Since g
k,A 

is birational by assumption, let U c Wk be the 
- 

domain of definition of g
k
1
. 

Then the morphism 

U
kA c W(H

°(6
v
(kA D))) 

is defined by an invertible sheaf 3' on U and h°(kAD) 

sections s: of 3' generating 3'. There is a unique 

torsion free sheaf 3 on Wk  plus sections si  generating 

3, which restrict on U to [3',s1). Thus' h°(3) > h°(kAD). 

On the other hand, for the given projective embedding of Wk, 

we calculate: 

deg 3 = # of intersections on V outside base locus of IkDI 

of (n-1) general sections of 10(kO), one section of 

.(kAD), 

hence: 
n-1.deg 3 < (kAD)

[n]  

Now combine the assumed lower bound on h°(kLD), and the 

upper bound on h°(3) given by the Q-estimate to get: 
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1 E 2 	, ,n tn kA) Y < 0(kAD) 
n! 

< ho(3) 

((deg 0   1+n-1) (ccileg  : 1+n) deg Wk < 	eg  k 	deg Wk  + 

n-1 

Moreover: 

deg Wk  = (kF)[n1  /de g(° D)  

kn  tn Y 
2 	

by Prop. 2.2 

	

[ deg 
3  1 	(kID)(n]  

	

'deg Wkl 	A n-1(k0 
(n1 	1  

= AR +1 

R - 	
(kAD)(111 

An(kD)In]  • 

Hence 

1 (AR+n+lItnkn,, +) (AR+n 
2 tnkniny  < 
n  n 	 n-1  

hence 

(7+n+1) 	Lit+n) 

	

1+2En < 	 2 
n: 	 tn ( n-1 

, If R < (1+e)l/n  , this contradicts the inequality that L 

was chosen to satisfy. Thus R > (1+01/n 	 OED 

However, for all k, 

(k,)(111  n < Yt 
kn  

by Prop. (2.2). Hence starting at any Ow  we see that: 

and 

if 

e > n log(Ytnkn)  
log(1+0 • deg y6( kAeD) < deg SkD if  
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Since we know that Ak2D 
is finite-to-one and 

deg 0
k2D 

 < (k2D)
[n] 

< ytnk2, 

it follows that A(klevis birational if 2   

e > nytnkn log(yt nkn) 
2 log(l+e) 

(III): This completes the second step: we have a k
3 
such that if 

k > k3, Akp  is birational. The third step is to find a k4  

also depending only on e,Y,ko,t such that if k > k4  

then there is a A c IkDI such that AA  is birational and 

does not blow down any codimension 1 subvarieties of V. We 

will in fact only produce a k5  such that if k > k5, then there 

is a A' c IkDI such that dim AA.(V) = n and AA, does not 

blow down any codimension 1 subvarieties. Setting k4  = k3+k5  

and A = minimal sum of Ik3DI and A', we get the A with all 

the properties. The proof is very similar to the beautifully 

simple Method of Albanese by which for any projective 

n-dimensional variety X one constructs a A c e(ex(k)) such 

that AA(X) is birational to X and has no points of multiplicity 

> n: (cf. [1],(12.4.4)) 	We show in fact: 

LEMMA (2.5). Choose k such that 

tk > 2n.n:(14) and k > ko. 

Then there is a A c H°(917(k10)) such that dim 0A(V) = n 

and AA  does not blow down any codimension 1 subvarieties. 

Proof: Note by the assumption on k, 

Y) Y(tk2n)n 
nY(tk)n-l+n < Y(tk)n-1(n +-) Y: ,< ho (kEo). 

Also tk > 1, so by Lemma (2.1) any A c H°(kD) for which 

dim A> n + Y(tk)n-1  

has the property dim 0A(V) = n. So any A such that 

codim A < (n-1)Y(tk)n-1  

has this property too. What we will do is this: starting 

* See also Lecture 1, §5 of Lipman's article, " Introduction to resolution of singu-
larities", in this volume. 



522 	 D. LIEBERMAN and D. MUMFORD 

with Ao = H°(0V 
 (kD)), choose a sequence of subspaces 

A
o 

A
l 
= A

2 

with dim Ai/A1.4.1  = 1, until we reach the desired A. 

In fact, say Ar  is chosen but there is still an E c  V, 

dim E = n-1, such that 

dim AA  (E) = i-1, 	n-1 > i > 1. 

If s is the multiplicity to which E occurs as a fixed 

component of Ar, let A; CAP(Ov(kD-sE)) be the linear 

system such that Ar  = (e6s)0Ars, e = canonical section of 

v(E). Let x be a general point of E. Define 

Ar+1 = Es E 41121(x) = o), 

A 	= (e0s) 0 A' 
r+1 	 r+1 

Note that 011  is defined at x, so define 

Z = closure of 0
-1
(A

Ar 
 (x)). 

Ar  

Then dim Z = n-i if x is sufficiently general, and 

if s E A' vanishes at x, it vanishes on all of Z. Thus 

ra, .eq. (A
.  )Eil  + Z + eff. cycle. r+1 

But Ar  = (e)Eil  and AP]  = (A' )[i], so it follows r+1 	r+1 

(A
Eil

.0
ni

) 	(A
[i]

C
n-i

). r+1 

Since for each j, 

(Ali).Cn-J) > (Ar+1
EJi.Cn-j), 

—  

it follows that the invariant 

n-1 

6(A) = 	( Aol.Cn-j )  

decreases when you pass from Ar  to Ar+1' But by 

Prop. (2.2) 
n-1 

6(A) < 6(kD) < 	y(kt)j < (n-14(kOn-1. 
j=1 



P(k) = (C 1n! 	2(n-1 	4- lower degree terns '  
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n kn (KVX  
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Since we have "thie much room" in 1-0(0(kD)), we can find 

	

a A for which no E is blown down. 	 QED 

t.• 3. TH. 2=4. TH. 1 

This is the part of the proof that involves char. 0 because we want 

to apply Kodaira's Vanishing Theorem. The idea is to apply Theorem 2 

to V with C,D chosen so that 

= A ''C) 

mo n L 0 = v(D). 

Here mo will be chosen below depending only on P so as to make 

Theorem 2 apply. Note that for m > 0 by Kodaira Vanishing and Serre 

duality: 

dim H°(LmOdill) = 0.19100:;) 

(* ) 
	

(-1)nX(L-m) 

= (-1)nP(-m): call this P'(m), 

Moreover, by Riemann-Roch, 

hence P determines the integer Y (:7'1) and, once mo  is chosen, 

P determines (D.Cn-1) and hence (D.Cn-1)ACn) too. Finally, we need a 

lower bound for dim e(61V  (kD)) of tLe type used in Th. 2. This is 

obtained as follows - 

a) Say pqm
1 
 ) > 0, so that 'Fly 	in divisor notation m1  C+K 

is an effective divisor, Ther. 

kD = k(m0C + Y: 

= (k-1)(m1C+K) • 	po-m1)1n1)C + K). 

The first term is an effective divisor, so 
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dim H°(av(kD)) > dim H°(0v((k(mo-m1)+mi)C + K)) 

= P'(k(mo-m1)+m1) 

(Cn) 
= 

	

	k(m
o
-m
1
)+m

1
)
n 

+ lower degree terms 
n! 

in k 

n  ((kC n.))  , (m
o1

)n  + lower degree terms 
in k. 

b) But 
(D.Cn-1)  

t 
df 

Cn  ( 	) 
((m

o
C+K).Cn-1) 

(Cn) 

n 
(K.0

-1) 
= m

o 
+ 

(Cn) 

i.e., 	 n-l% 
((kC)

n
)F_In  ( • ,K C ;In + lower degree Jim 11°0,

v
(1cD)) > 	n! 	

(c
n
) 	terms in k. 

If m)  and hence t is large enough, the term [ jn  is at least 
n 

7t and then for Ito  large enough, we certainly obtain: 

)nOcC) 	
114 
5 n 

dim r(e4v(W 
	

(  
) > 	

' 	
if k > ko. 

n! 

Thus Theorem 2 applies for some mo  and ko  readily computed in terms 

of the polynogial P alone. Thus we can find k, so that for every (V,L) 

3 A c r(v,ov(kID)) = r(v,ev(ci(moc+10)) 

= r(v,Lklmc*(nnV
)k1) 

for which nA is Lirational and does not blow down any divisors - we 

abbreviate this to "A is quasi-ample". 

Now 	.n.ilyze the projective variety U = AA(V). By Prop. (2.2) 

we know: 

deg U < 

Automatically than, the ambient space 1P( A) has its dimension bounded 

as follows: 

dim 1P(A) < deg U + n - 1 af  N. 

It follows that vbe set of varieties U lies in a bounded family when 
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(V,L) varies over all pairs with Hilbert polynomial P! This is the key 

point, from which we want to argue backwards, obtaining"eventually the 

boundedness of the set of pairs (V,L). From this point on, we leave the 

area in which we can make explicit estimates, and rely on general results 

asserting that various numbers are bounded when calculated for some set 

of varieties and divisors in a bounded family. The first point is that 

if U
nor 

is the normalization of U, then there is a k
2 

such that for all 

U with degree bounded by (**), the pullback of 9U(k2) to Unor is very 

ample. It follows that if we choose a suitable A' c r(V,I9v(kik2D)), 

then 010(V) Unor' Replacing k1  by k1k2  and A by A', this means 

we may assume that U is always normal. Call these A "normally 

quasi-ample". In that case, working with "Weil"-divisors on U, i.e., 

cycles of codimension l,we may define the total transform 0A(E) for 

every divisor E on V; and because 0A  does not contract any divisors, 

this defines an injection of the groups of Weil-divisors 

Div(V) (- 	> Div(U) 
°A 

such that 

a) 0A(E) eff. <==4,  E eff. 

b) OA((f)v) = (Ow 

Thus 0*  sets up an isomorphism between 

r (v,sv(E) 	r (u,Gu(fsAE 

Moreover, if Uo  C U is the maximal open set such that 

0A1  : U0  -->V 

- is a morphism, then codim U-U0  > 2. 0A1  then defines an injection: 

(0-Al  ) 41: Ckrn 	'un  lu • o  

This implies that 

0A(Kv) = Ru  + (eff. divisor). 

It follows that if E E 1W+Kv1, then 
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deg $A(E) = I deg A(C) + deg 'SA( V) 

< 1(c.A
[n-1))  + deg Ku  

n-1 n-1 
< Ykl  t A + deg Ku. 

Of course, deg Ku  is bounded when U varies over all U's with degree 

bounded by (**): call this bound K. 

We can now reveal the diagram on which the rest of the proof is based. 

We consider 3 sets, related by 2 maps, as follows: 

Set of all (V,L,s0,---0AN,E0,E1) 

B = V,L as in A; E0Elm1C+Ki; 

ElEl(m1+1)C+K1; and se,...,sNEr(V,OvOyM 

spanning a normally quasi-ample A 

ignore(s
3.
.),(E

1
.) 

I Set of (U,F0,F1), where 

le U c 	is an n-dimensional 

normal subVariety,ficlivi4Orlostr 

C = 	deg fi< Ykrtn-1(m1+1)+K 

des II 5 1 k,"+" 
h°(Fe+A(Fl-F0))>Pq1+m1) 

all A > 0 

Set of all (V,L), 

✓ non-sing., proj., 

L ample with 

Hilbert Polyn. P 

Herem
l'k11NY" 

 and t are chosen as above, in particular so that a is 

surjective. 0 is defined by 

U = 0A(V) 

F. = A(Ei  ). 

Note that this is OK because 

H°(U,Su(Fo+A(Fi  -F0)) P2 H°(U,Su(0A(E0+1(E1  -EO)))) 

H°(V,S‘Ami+i)C+Kv)) 

which has dimension exactly Pqm1+1). Also, set C is isomorphic to.the 

set of points on a locally closed subset of a union of  3-way products of 

Chow Varieties, i.e., each U,F1,F2  has a Chow form, normal is an open 

condition and h°(...) > c are all closed conditions. Thus C has a 

natural structure of a (reducible) variety. 
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LEMMA 3.1: 0 is injective. 

Proof: In fact, to recover V from (U,FI,F2), let *A: U --> 1PM  

be the rational map defined by H°(U,0u(t(F1-F0))). Then if t >> 0, 

V = *(U) (using the fact that 

H°(U,Su(A(F1-F0))) Hc)(V,L°A) 

and that L is ample on V). Moreover 0A  = 	L is the line bundle 

associated to *A(F, -F0), Ei  = *A(Fi), and (80,...,sti) are the 

sections of 0
V
(k1D) corresponding to the canonical sections 

(X0,--,XN) of 6111(1) via 

	

01: e(0u(1)) -----sH(3(0v(kiD)). 	QED 

LEMMA 3.2: The image of 0 is Zariski-open. 

Proof: It is elementary to see that the image of 0 is a 

countable union of locally closed subsets of the set C. Therefore 

it is enough to show that for any valuation ring R and morphism 

$: Spec R 	if the closed point is in the image of 0, then so 

is the generic point. Then over R, we get a flat family of normal 

varieties (by Hironaka's lemma) 	 R, plus divisors 

31'32 on tk . For every t,m, let 

MA,m = H
°Clt 0 (p3 +Am(3

1-30
))). 

MA m is a finitely generated torsion-free and hence free R-module, 

and m EMApm = RL is an R-algebra. If k = R/M is the residue field, 

U,F0,F1  is the induced triple over k, we get an injection: 

OL,m: M
A,mR k r 	>Leal 6--u(ini +Ama 	) ) ). ' 	o 	1 0, 

Let (U0,F1) = 	 If K is the fraction field 

of R, u*,Fg,FI is the induced triple over K, we get an isomorphism: 

* (F*  *))). M 0 K (mF
o
+A 

1-F0 R 

But then it follows that 
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dimk mtAk 	dimk H°15'et(io+A(Fl-FO))) 

= dimk(fe(V,64m1+Ard+KO) 

= P.(mi+A) 

< dimK  H°(U*,011e(F7)+A(FI-FZ))) 

= dim
K 
 ML1 

Since M
A,1 

is free, the 2 extremes are equal, so equality holds 
everywhere. In particular, 04,1  is an isomorphism 

a 	m 
	
®R  k 	 -F ))). i,1*• 	R 	 U 0 	1 0 

Now on V, since C is ample, for A >> 0 it follows that the 

ring 
co 

H°07,00(11114)64NO®m ) 
rt0 

is generated by its elements of degree 1 and that V is its Proj. 

This implies that the ring 

co 

H°(5 u04ingi
1 
-F0)))  

is generated by its elements of degree 1. But since 0A1  is 

surjective, this implies that 0A m  is surjective too: i.e., 

if L >> 0, there is an isomorphism of rings: 
co 

O A: RA  ®Rk 	 /. &(U' 
u  

01-(MF
0 
 +mA(F -F

0 
 ))) 

• m=0 

Therefore Proj(RL®Rk) V. So If = Proj(R A) itself is a flat 

family of schemes of Spec R with special fibre V. Moreover since 

RAORk is generated by its elements of degree 1, RA  is also 

generated by its elements of degree 1. Therefore Proj(RA) comes 

equipped with a line bundle 6iA1), which on the closed fibre V 

is just 8v((m1+0 	
-m ,+A 

E+Kv), i.e., L 	0 V.  SinceXf is non- 
, 

singular, ai is smooth over R. Moreover by deformation theory 

L lifts to a unique invertible sheaf X. on tr such that 
m,+A 

s (1) 	X, -1- 	a O
V  
n  , 
/11 

Let (V*,L*) be the generic fibre of (`TA). It is now easy to see 
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that the rational map 

------›lk 

defines so,—,stvel,e2  on Ar, hence sZ,-..,S;11,E4c110,E: on V*  such 

that (U*,F,Ft) = 0(V*,L*,s*
0' 
 --„s* E*

0'  E
*) 

 1 ' 

Heuristically, this shows that 0(B) is a "limited family", hence so 

is B, hence so is A. To be precise, note that all elements of B can be 

parametrized a suitable countably infinite set of families each defined 

over a base space Ba  which is an algebraic variety. Then B( a)is at 

least a constructible subset of Co  = Im O. But assuming the ground 

field k is uncountable*, then a (reducible) variety CO  which is a 

countable union of constructible subsets B(Ba) is also a finite union 

of them: hence B is a finite union of Ba
's. 

QED 

* 
The other way of arguing is to look at 2 countable algebraically closed 
ground field 0 C k, where m = field of algebraic numbers and k has 
infinite transcendence degree over Q. Considering k-rational points, 
we get a bijection 

0: B(k) ---> Co(k) 

but each Ba may be assumed to be defined over a. Apply the elementary 

compactness assertion: if any set of a-rational constructible sets 
covers C

0 
 (k), a finite subset already covers C0  (k). 
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