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A REMARK ON THE PAPER OF 

M. SCHLESSINGER 

by David Mum ford 

In the conference itself, I spoke on a theorem asserting the existence 
of "semi-stable" reductions for analytic families of varieties over a disc, 
smooth outside the origin. This talk turned out to be difficult to transcribe 
into a paper of moderate size and instead will be incorporated into the 
notes of a seminar which I am running together with G. Kempf, B. Saint-
Donat, and Tai, which we will publish in the Springer Lecture Notes. 

Here I would like to add a footnote to Schlessinger's calculations of 
versal deformations.' He studied the situation: V = complex n + 1-di-
mensional vector space; P(V) = n-dimensional projective space of 1-di-
mensional subspaces of V; Y c P(V) a smooth r-dimensional variety, 
r 	1 ; C c V the cone over Y. 

Let L = C(1). Assume: 

te(P(V),(9,(,)(k)) 	 is surjective, k 	1 

(We may also assume by replacing P(V) by a linear space that it is an iso-
morphism for k = 1). Then he proved: 

a) There is a natural injection of functors: 

= 
(Deformations l / projective 	Deformations 

Y in P(V)f automorphisms 	of C 

b) T! has a natural graded structure 

= 	( T(-1,  )k 
k = - 

such that (T!)0  = image of Zariski tangent space to /7, 
c) If (V), = (0) for k 	0, then I-7 is isomorphic to the functor of 

deformations of C, i.e., all deformations of C remain conical. 
d) If r 	2 and L is sufficiently ample on Y, then the condition in (c) 

is satisfied. 
What I would like to show here is: 
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d') If r = 1 , L is sufficiently ample on Y and Y has genus >= 2 and is 
not hyperelliptic, then again the condition in (c) is satisfied. 

This gives: 

Corollary. There exist normal singularities of surfaces with no non-
singular deformation! 

To prove (d'), we let U = C — (0) and use the exact sequences: 

V( V,0,,) -6(4 F(C,V, ) - 	0 

F(V— (0), 0,) F(U, 	. 

Now C* acts in a natural way on both 0, and NC , and if it: V — (0) —> P(V) 
is the projection, then both 7r*Ov  and n*Nc  decompose into direct sums 
of their eigenspaces for the various characters of C*. Moreover, the C* 
invariant sections are: 

Or* Ov)c* = p(v)(1) (DC V 

(n*Nc)c*= Ny 

and a induces the map a' = y a 13 

ce :Cp(v)(1) ®cV 	up( ,)  -4 Ny 

(/3 = standard map). 
Thus we get: 

r( v — (o), ov) 	 Ne) 

Q+ F(P(V), (qv + I) 0c  V) --> 	0 F( Y, Ny(v)). 
- 

So if 

(V),, = coker[F(P",((v + I) 0c  V) 	F(Y, Ny(v))] 

then Tc! = C) v+2t,,(74),. We must compute these groups. 
The idea is to determine Ny explicitly on Y without actually using the 

embedding of Y defined by L. Consider in fact N*y(1) via the dual of a' 
as a subbundle of Cy (:)c  V* 

N1,(1)c 0;0,)(1)1, c 	C)c  V* 

hence for every N C: Y: 
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[N",K,(1) 0 C.),/mj c [1404 I) 0 C x/inj c V* 

It is easy to see that under these inclusions, if x' e C lies over x: 

space of linear forms / on VI 
(404 )Ox  (0,/in, 

such that 1(f) = 0 

(space of linear forms I on V 

NT( I )0 C',/n' x 	such that /(x = 0 and 

/ = 0 is tangent to Y at x 

But now by assumption: 

V* 	F(P( V), l(po,)( )) 	> 	Y, 

and under this isomorphism, the linear forms 1 such that I=0 and is tangent 
to Y at x go over to the sections of L vanishing at x to 2nd order, i.e. 

Y, 	L). Now consider 

A c Y x Y with p;L(— 2A) 

P2 

	

with 	p11.( —2A)]. 

Then it is easily seen that p2 ,4p;1( —2A)1 is a locally free sheaf on Y 
and that 

p2,,[/41,( — 2A)] Ox  C A/m„= F( Y C) 	pTL( — 2A) 0ey Oxln'.)  

1-(Y,m.,2, • L). 
Thus the two sub-bundles: 

a) p2,14L(— 2A)] c p2 Ap*,L1 = F( Y, L) 0 C - 
6) N*,(1) c V* 0c  Cy = F( Y, L) 0c  Cy 

are equal. Now assume r = I, so that Y is a curve and (4— 2A) is an in- 
vertible sheaf on Y x Y. Then by Serre duality for the morphism p2 , we 
can identify N y(— 1) as a quotient of V 0c  r y  or T( Y, L)* Ou r, 

VC)cr y  

211 

F( Y, /)* 0(  Cy 

a ' ( — 1 ) 
N y(-1) 

Hom(P2,.[PTL( -2A)], (9y) 

—■ 0 

0 

  

211 	 111 
p2,.( 11om(piL,gly xy/y)) 	P2,.(Hom(p1 L( — 2A), Oy x yiy)) i 0 

?II 

p2,.(Pi(1y 0L ))) ---> 	P2,*(14(ny 0 u ) )(2A)) 	-+ 0. 
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We want to show that (V )v = (0) if v 	0 , i.e., 

F( Y, R i  p2,.[e(Sly 0 L 1)] 0 LY) F(Y, R 1  p 2 Apt(S2y 0 L 1)(24)] 0 L) 

is surjective if v 0 1. If deg L > 2g, then p2,. of the two sheaves in square 
brackets is zero, hence by the Leray spectral sequence for p2 , the above 
map is the same as: 

111- (Y x Y, Any 0 L-1)0 /4E) 

H' (Y x )7, pT(Sly 0 L  ') 0 AV® (0(24)) . 

We treat the surjectivity in three cases: 

Case I. v 	2: Consider the sheaf cokernel 

Pi(ny L-1) PV-v 	Pi(ny 0 1: 1) 0 PV-v  0 0(24) Kv  0. 

It is a sheaf of 02A-modules so it lies in an exact sequence between 	- 
modules 

0 (t(4) CD CA) 0 Lv  - 0 f2, > K r 	((x(24) 0 C A) 0 Lv-1  fly -4 0 

211 	 211 

E i Lv O(flY)-1  

So if deg L > 4g -4, II1(Kv) = (0) when v 2 . 

Case II. v = 0: Consider the Leray spectral sequence for pi . Since 
we have assumed Y is not hyperelliptic 

a) p1..0y x  y(2/1) = pLarly „, 
and 

b) R' pi 	„ y(24) is a locally free sheaf 6 of rank g -2. Now we have: 

0 -*HAY, Sly 0 Le. 1) -0 I-11(Y x Y,PiS2y0 	-+ I-MY, Sly C) 	 Cy „ y) 

2/ by (a) 1 
-+ 	Sly0 L- 10p, ,.e(2A)) H1( Yx Y, p*,52y0L- 1(2A)) H°( Y, SlyC)L-1C)0- 

Note that e does not depend on L. So by (b) there is an integer no  depend-
ing only on Y such that if deg L > no, then (Sly 0 6') 0 L-1  has no sections. 

Case III: v < -1: Surjectivity in this case always follows from sur-
jectivity when v = 0. In fact, if we know that 

V -4 F(Y, Ny 0 E-1) 	0 

is surjective, I claim F(Y, N Y  0 L') = (0), v > 2. If not, N Y  0 1: 2  has 
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a non-zero section s. Then for all t E F(Y, L) :4' V*, t Q s is a non-zero 

section of Ny 0 L . Thus we must get all sections of Ny 0 L-1  in this 

way. But this means that all these sections are proportional, hence do not 

generate N y  0 	. But since 

V 0 	N. 

is surjective and V 0 ty  is generated by its sections, so is Ny Q L -'. This 

is a contradiction, so .s = 0. 

This completes the proof of (d'). Finally two remarks: 

(A) If you look at the case Y = 131 , L = rpi(k), then C = cone over 

the rational curve of degree n in P" and the sequences we have used enable 

us to compute V easily. In fact it turns out that if k > 3, 

(T(1 )1 	= (0), if I 	—1 

	

dim (V)_, =- 	— 4. 

It seems most reasonable to conjecture that the versal deformation space 

of this C is a non-singular k — I-dimensional space but with a 0-dimen- 
sional embedded component at the origin if k 	4.2  

(B) What happens in the hyperelliptic case? If, for instance, 7r: 	P1  
is the double covering and L = 7t* 1( k ), then C is itself a double covering 
of the rational cone considered in (A) which is known to have non-singular 

deformations. Do these lift to deformations of this C? 

NOTES 

1. M. Schlessinger, "On Rigid Singularities," in this volume, pp. 147-162. 

2. H. Pinkham has recently proved that this is true if 	5, but if k —4, the versa! defor- 
mation space has two components, a smooth 3-dimensional one and a smooth 1-dimen-
sional one crossing normally at the origin! (Cf. "Deformations of cones with negative 
grading," J. of Algebra, to appear.) 
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