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1. Endomorphisms of vector spaces 

Throughout these notes, k is an algebraically closed field, varieties are 
reduced and irreducible k-schemes of finite type, and morphisms of varieties 
are k-morphisms. 

A moduli problem for a class of algebraic objects consists in two parts: 
finding the equivalence classes of the objects under a suitable equivalence 
relation (usually isomorphism), and parametrizing these classes by means 
of a scheme (or a geometric object of more general type). In this chapter 
we shall be interested in the moduli of endomorphisms of vector spaces. 

More precisely, let V be a vector space of dimension n over k, and let T 
be an endomorphism of V. The problem of classifying pairs (V, T) up 
to isomorphism is readily solved: there is a basis of V such that the 
matrix of T with respect to this basis is in the Jordan canonical form 

„ 0 	- • • 0 
0 21  821 ...0  
0 0 21 	• • • 0 

0 0 

0 0 0 	831 

0 0 0 	• • • 2, 

22 512 
• 

• • 0 
0 22 	• • • 0 

0 

0 0 0 	• • • 22 

0 0 

where ski  = 0 or 1. 
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For the second part of the moduli problem we must introduce algebraic 
families of pairs (V, T). Intuitively, a family of vector spaces, parametriz-
ed by a variety S, is a vector bundle over S, and an algebraic family of 
endomorphisms of the fibers of this vector bundle is an endomorphism 
of the bundle. Now, the algebraic counterpart of a bundle is a locally 
free sheaf of Cs-modules. Hence we are led to the following: 

DEFINITION 1. An algebraic family of endomorphisms of n-dimensional 
k-vector spaces on a k-variety S is a pair (e, T) where e is a locally free 
Cs-module of rank n and T is an endomorphism of e. 

For each closed point s of S, we then have a vector space e ® k(s) of 
dimension n over k(s) = k and an endomorphism T Q  k(s) of e Q k(s). 

As a first attempt in the search for a moduli space it is natural to ask 
if there exists a family of endomorphisms in which each isomorphism 
class is represented exactly once. The answer is trivially yes, e.g., the base 
scheme may be chosen discrete if we drop temporarily the restriction that 
base schemes are varieties. This is obviously no satisfactory solution to 
the problem. Namely, if M is a k-scheme whose closed points are in 1-1 
correspondence with the classes of endomorphisms, then for each family 
of endomorphisms (A T) over a variety S there is a map S(k) --+ M(k) 
associating with each closed point s e S the point of M which corresponds 
to the pair (e Q k(s), T 0 k(s)). This map should be induced by a 
morphism S M! 

To express this condition more exactly we introduce some functorial 
terminology. 

For each k-variety S, we denote by gc.  (S) the set of families of endo-
morphisms on S, modulo isomorphism. If, f : S' S is a morphism of 
varieties and (e, T) is a family of endomorphisms on S, then (f *e,f *T) 
is a family of endomorphisms on Thus we obtain a mapf* : (S) -+ 

(S'), and ,F becomes a contravariant functor from the category of 
k-varieties to the category of sets. 

Now, the condition stated above can be made precise: 

(A) There is a morphism of contravariant functors 

0 : 	hM, 

where hM(S) = Hom (S, M), such that 

0(Spec(k)) : giSpec(k)) M(k) 

is bijective. 
However, this condition does not suffice to define M uniquely. In fact, 

it may be possible to find other solutions M' by reducing the structure 
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sheaf: Om, c Cm, having the underlying point set unchanged. Keeping 
this in mind, we write the final definition. 

DEFINITION 2. A coarse moduli space for endomorphisms of n-dimen-

sional k-vector spaces is a pair (M, 0) consisting of a k-variety M and 
a morphism of functors 0 : 	hM  such that 

0(Spec(k) : ,,-(Spec(k)) M(k) 

is bijective and such that for each k-variety N and each morphism of 

functors 	: 	hN  there is a unique morphism K : M --> N which 

renders 
Hom(S, M) 

,flS) 	 Hom(S, 

q/(S)  Hom(S, N) 

commutative for each k-variety S. 
It is easy to see that a coarse moduli space is unique up to isomorphism, 

if it exists. 
There is a priori no reason why the map 

0(S) : F (S) -4 Hom(S, M) 

should be bijective for k-varieties S other than Spec(k). That this be the 
case for all varieties S amounts to saying that the functor 347  is represen-
table by M. Then the family (e, T) of endomorphisms on M which 
corresponds to the identity morphism of M is universal in the following 
sense: For each family of endomorphisms (6' ,r) on a variety S there 
is a unique morphism f : S M such that (f*e,f*T) is isomorphic to 

T'). 

DEFINITION 3. A fine moduli space for endomorphisms of n-dimensional 
k-vectorspaces is a pair (M, 0) where M is a k-variety and 0 : F -÷ hM  
is an isomorphism of functors. 

It is not difficult to see that a fine moduli space is also a coarse moduli 
space. 

REMARK. Definitions 2 and 3 will also be applied to other functors. 
In any case, it is clear that a coarse moduli space is a fine moduli space 
if and only if the functor is representable. 

Unfortunately, there is no fine moduli space for endomorphisms of 
vector spaces. Namely, if (e, T) is any family of endomorphisms on a 
variety S then for each invertible Os-Module L the family (e 0 L, T 0 1) 
corresponds to the same morphism S —> M. Hence 
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(S) Hom(S, M) 

is not injective if there are non-trivial invertible sheaves on S. 
But things are worse: not even a coarse moduli space exists! To see this, 

let us consider the variety S = A l = Spec(k[t]) with ea = CI and T 
defined by the matrix 

All the pairs (6' 0 k(s), T 0 k(s)) are isomorphic for closed points s of 
S different from 0. Hence the map S M corresponding to the family is 
constant on 	—0. By continuity, it must be constant on S, although 
(6' 0 k(0), T 0 k(0)) = (k2, 1) is not isomorphic to (6' px k(s), 
T 0 k(s)) for s 0. 

This is a typical example of the so called jump phenomenon, which ruins 
the hope of finding solutions to many moduli problems. 

Similar constructions show that endomorphisms with isomorphic 
semi-simple parts are represented by the same point of any variety M 
with a morphism of functors 	hM. 

On the other hand, there is a variety M which separates endomorphisms 
with non-isomorphic semi-simple parts or, what amounts to the same, 
with different characteristic polynomials: 

PROPOSITION 1. There is a morphism of functors 

: 	12,4n 

such that W(Spec(k)) : F(Spec(k)) A"(k) is given by 

	

(V, T) -+ (al , • 	, a„), 

where X" + ai X" i  + • + a„ is the characteristic polynomial of T. 

PROOF. Let (ea, T) be a family of endomorphisms on a variety S. There 
is an affine open covering (U0 of S such that eal I/c, is free of rank n. If 
71 Lic, is represented by an n x n matrix T with entries in F(U„, es), then 

	

PTIU.(X) = det (X • I — 	e T(L 1, es)[X] 

is a polynomial of degree n which is independent of the trivialization 
U„ Ob.. But then Pi]  u.(X) and PT'  u (X) coincide on I/cc  n Up, and 

so they may be joined together to define the characteristic polynomial 
of T: 

PT(X) = xn_pai  xn-i+ 	+ a. e F(S, es)[X]. 

Hence we may associate with (&, T) canonically a morphism 
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(al ,- • • , an): S 	A". 

The rest of the proposition follows immediately. 
The partly negative results we have obtained so far are intuitively in 

agreement with our knowledge of the Jordan canonical form of an 
endomorphism. Indeed, the entries outside the diagonal are constants 
0 or 1. Hence the eigenvalues, or rather their symmetric polynomials, 
are the only true 'moduli' of endomorphisms. 

To get at least a coarse moduli space we must somehow restrict the 
class of endomorphisms. We shall consider two canonical possibilities: 
endomorphisms with all eu  = 0 in the Jordan canonical form, i.e., semi-
simple endomorphisms, and endomorphisms with all e = 1. It is not 
difficult to see that the latter are exactly those endomorphisms T : V —> V 
for which there is a cyclic vector or, more precisely, a vector v e V such 
that (v, Tv • • •,T"-iv) is a basis of V. 

Let us first consider semi-simple endomorphisms. For each variety S, 
let 	denote the set of families of endomorphisms 	T) on S, 
modulo isomorphism, such that T 0 k(s) is semi-simple for each closed 
point s of S. Clearly, these sets form a subfunctor 	of „*. 

It follows immediately from proposition 1 that M = A" satisfies the 
condition (A) for the functor 	But we can say more: 

PROPOSITION 2. A" is a coarse moduli space for semi-simple endomor-
phisms of n-dimensional vector spaces. 

PROOF. Let M = A" = Spec(k [ti  , • • • , ti) and define an endomor-
phism T of 01,4 by the matrix 

/0 	0 	0 	0 	— t,, 
1 	0 	0 	0 	— t„_  
0 	1 	0 	0 	—t„_ 2 

0 	0 	0 	• • • 	0 	—t2 
∎0 	0 	0 	• • • 	1 	—t1 

Then the characteristic polynomial of T is 

PT(X) = X"+ t1  X"-1+ • • +t„ 

So, if d e k[t, , • • , tn ] is the discriminant of PT(X) and 

U= D(d) = {x e Anid(x) 0 0}, 

the restriction (Cu, TI U) is a family of semi-simple endomorphisms. 
Now, if Nis any k-variety and 0 : 	hN  is a morphism of functors, 

0(0 of the class of (07,,TIU) is a morphism q, : U —> N. Let F c UxN 



0 	0 	• • • .1„ 

= 
0 
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be its graph and denote by r the closure of F in M x N. We claim that 
the projection r 	is an isomorphism. 

To prove this, put S = Spec(k [.11  , • • , .1.]) and define by 

a family ((Js, It) of semi-simple endomorphisms on S. There are two 
morphismsf : S --> M and g : S —> N associated with this family. Clearly, 
f is given by 

xn + ti  x"--1+ • • • + t„ = (x— AO • • (x— 

Hence each Ai  is integral over k [ti  , 	• , tn ], i.e., f is finite. Then h = 
(f, 	: S .211 x N is finite (EGA II, 6, 1, 5 (v)) and therefore h(S) is 
closed in Mx N. 

On the other hand, inspecting the closed points it is not difficult to see 
that F = h(V), where V = f '(U)= n  D(Ai — Ai). Hence h(S) = T, 
and so r 	is surjective with finite fibres. But then it is an isomor- 
phism by Zariski's Main Theorem. 

Now, is the graph of a morphism i1i : M --> N extending cp. If S is 
any variety, andf : S —> M,g:S—*Nare the morphisms corresponding 
to a family of semi-simple endomorphisms on S, then g and P o f coincide 
at all closed points of S, whence W of = g. 

COROLLARY. There is no fine moduli space for semi-simple endomorphisms 
of n-dimensional vectorspaces if n > 1. 

PROOF. Otherwise, there would exist a universal family (g, T) of 
semi-simple endomorphisms on A. Let R = k[[t1 , • • • , t„]] be the com-
pletion of the local ring of 0 on A", and let (r , T') be the family induced 
by (g, T) on Spec (R). Since R is local, ei is free, and therefore (6', T') 
is isomorphic to (6", T") where T" is an n x n matrix with entries in the 
maximal ideal m of R. But then t„ = (-1)" det(T") e ne, which is im-
possible unless n = 1. 

REMARK. The same proof shows that in each family of endomorphisms 
(6', T) on A" with the characteristic polynomial 

PT(X) = Xn + t i  X" + • • + t„ 

the Jordan canonical form of T Q k(0) is 
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(0 1 0 	• • 0 
0 0 1 • 0 

0 0 0 	• • • 1 
0 0 0 	• • • 0) 

We shall now examine the second possibility of restricting the functor 
*°-: the families of endomorphisms with a cyclic vector. It is to be expect-
ed that A" is a coarse module space for these. In fact, the remark above 
suggests that it might even be a fine moduli space. 

However, we have seen that the existence of nontrivial invertible 
sheaves on a variety S prevents 

1'(S) : 34-(S) Hom(S, A") 

from being injective. To eliminate this type of redundancy we shall 
consider families with a 'cyclic section'. More precisely, for each variety 
S, let F'(S) denote the subset of F(S) represented by families of 
endomorphisms 	T) on S such that there is a section s e F(S, 6') for 
which s, Ts, • ,T"-ls span e. 

PROPOSITION 3. The restriction of I' to ,F 

T1  : 	A. 

is an isomorphism of functors. 

PROOF. Let (4', T) represent an element of F'(S) for some variety S. 
Then g is free with basis s, Ts, • • •, T"-ls for some section s e T(S, 
and the matrix of T with respect to this basis is 

'0 0 0 • • 0 -a„ 
1 0 0 0 -a„_, 
0 1 0 • • 	• 0 -an-2 

0 0 0 ••• 0 -a2  
0 0 0 • • 	• 1 -a1  

where the last column is determined by the characteristic polynomial 
of T. 

PT(X) = 	+a, X"-1  + • • • +a„ 

as is seen by a direct computation of det(X, 	T), or by the Cayley- 
Hamilton theorem: 

Pr(T) = T" +ai r-1  + • • • +a„ = 0. 

Hence the elements of F'(S) are in 1 - 1 correspondence with the 
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n-tuples (a1 , • • • , a„) e F(S. Os)", i.e., with the morphisms S 	A. 
To explain the difference between the functors 	and „°;-- ', we note 

that 	is an open subfunctor of „*-- in the following sense: 
If (g, T) is a family of endomorphisms on a variety S, and if s is a 

closed point of S such that T 0 k(s) has a cyclic vector, there is an open 
neighborhood U of s such that (gIU, TIU) defines an element of ""'(S). 

In fact, if t is a section of g over some neighborhood of s such that 
t(s) e S 0  k(s) is a cyclic vector of T 0 k(s), then t, Tt, • • • , r-i  t 
generate g in some neighborhood of S by Nakayama's lemma. 

In the second half of this chapter we shall consider the problem of 
moduli of endomorphisms from another point of view, which ties up 
with more general theory. Namely, each family of endomorphisms is 
induced locally by the family (e, T) on Ant  = Spec(k [tii]) (1 :5_ i, j 5 n) 
in which g = en and the matrix of T is (tu). In fact, if (6', T') is a 
family of endomorphisms on a variety S, and if (U2) is an open covering 
of S such that each g'l U„ is free, then (6'iu,,,Tiuo is isomorphic to 
(L* 	T) with f : U2  -> A"2  defined by the entries of the matrix of 
T'I U„ relative to some basis of 	It follows that if M is a variety and 
0 : 	hm  is a morphism of functors, 0 is uniquely determined by the 
morphism cp : A"2  -> M associated with (e, T). Hence the properties of 
0 may be derived from a study of (p . 

The set of closed points of Ant  may be identified with the set M(n) 
of n x n matrices with entries in k and the general linear group GL(n) acts 
on M(n) by B 1-> ABA-1, A e GL(n). Since the fibres of (g, T) over B 
and ABA 1-  are isomorphic, ip(B) = (p(ABA'), i.e., cp is constant on 
each orbit 0(B). 

On the other hand, if M is a variety and tp : Ant  M is a morphism 
which is constant on the orbits, then it follows from the discussion above 
that there is a morphism of functors 0 : 	hm  associating (p with the 
family (e, T) on A"2. Hence there is a natural 1 - 1 correspondence be- 
tween morphisms of functors 0 : 	hm  and morphisms W : A"2  -> M 
constant on the orbits. It is then clear that the universal property of a 
coarse moduli space (M, CP) (Definition 2) means that (M, (p) is a quo-
tient of Ant  by GL(n) in the following sense: 

DEFINITION 4. Let G be a group operating on a variety X. A quotient 
of X by G is a pair (Y, (p) in which Y is a variety and (p : X -+ Y is a 
morphism satisfying: 

(i) (p is constant on the orbits of the closed points of X. 
(ii) given a variety Z and a morphism : X -> Z constant on the 

orbits, there is a unique morphism K : Y Z such that V/ = K o (p. 

The quotient of X by G is clearly unique up to isomorphism. 
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The moduli problem of endomorphisms of n-dimensional vector 
spaces has now been reduced to finding a quotient of A"2  by GL(n). 
It may be shown to be A" (cf. proposition 1), but even without this 
knowledge we can easily prove the non-existence of a coarse moduli 
space. Indeed, a quotient (Y, (p) is a coarse moduli space if and only if 
Y separates non-isomorphic endomorphisms, i.e., each fibre tp - 1(y) 
consists of a unique orbit. But the fibres of any morphism are closed 
whereas the orbits need not be closed in general. In fact, if B is a triangu-
lar matrix 

B= 	 

	

11 	a12 

	

0 	22  

	

[0 	0 

	

0 	0 

612 
623 

0 
0 

ln 

62n 

6n - 1, n 

and A e GL(n) is 

1 	
0 0 0  

0 0 0 
A = 0 	0 «2 0 

(0 	0 0 an-1 ) 
then 

21. 
0 

6'12 a 
22  

613 a2  
0-23 

C 71n a
n -1 

az,. 	n 	2  a 
ABA-1  = 	 

0 0 0 6n-1,n. 

0 0 0 

Hence, letting a 0, we find that the semi-simple part B„ of B: 

Al 0 	0 
0 22 	0 

B, — 	  
0 0 	An 

is in the closure of the orbit 0(B) of B. 
More precisely, we have 

   

    

PROPOSITION 4. If B1 , B2  are two n x n matrices, then 0(B1) nO(B2) 0 40 
if and only if 0((b.  Os) = 0((B2),,). In any case (131), e 0(13 i) for i = 1, 2. 

PROOF. Since each orbit contains triangular matrices, we may assume 
B1, B2  triangular, so (Bi), e 0(Bi) as was shown above. But then 
0((B1),,) = 0((B2)s) implies 0(B1) n 0(B2) 0 (/). The inverse implication 
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follows e.g. from the existence of a morphism 9 : A"2 -+ A" separating 
matrices with non-equivalent semi-simple parts (cf. proposition 1). 

It is not hard to see that each fibre of the canonical morphism 
cp : A"2  -* A" contains a unique closed orbit (semi-simple matrices) and 
a unique relatively open orbit (matrices with a cyclic vector), which 
coincide if all the eigenvalues are different. Furthermore, the union of 
the relatively open orbits is open in A"2  whereas the union of the closed 
orbits is neither open nor closed (if n > 1). These facts are reflected in 
the moduli problem as shown by propositions 2 and 3. 

We shall now consider the quotient of a variety by a group in general 
with applications to moduli problems in mind. We have seen that the 
closedness of orbits is one desirable property. For technical reasons it is 
convenient to impose the following conditions on a good orbit space: 

DEFINITION 5. Let G be a group operating on a variety X. A geometric 
quotient of Xby G is a pair (Y, 9) consisting of a variety Yand a morphism 
c9 : X 	Y satisfying: 

(i) for each closed point y e Y, -1(y) is an orbit, i.e., a closed in-
variant subset such that G acts transitively on its closed points. 

(ii) for each invariant open subset U c X there is an open subset 
V c Y such that U = 9"(V). 

(iii) for each open set V c Y, 	: F(V, Cy) -> c(9-1  (V), x) is an 
isomorphism of F( V, Cy) onto the ring F(9 -1(V), Ox)G  of invariant 
functions on 9'(V). 

REMARK. The condition (ii) is weaker than the corresponding condition 
iii) of definition o.6 in (GIT, p.4). 

The first thing to prove is 

PROPOSITION 5. A geometric quotient of a variety by a group is a 
quotient. In particular, it is unique up to isomorphism. 

PROOF. Let Vf : X Z be a morphism which is constant on the orbits 
of closed points. If ( Wi) is an affine open covering of Z, each 	( Wi) is 
an invariant open subset of X, hence by condition (ii) of definition 5 
there is an open set Vi c Y such that cp 	= P'(Wi). Since 9 is 
surjective by (i), (Vi) is a covering of Y. 

Now, any morphism K : Y Z such that V' = x o 9 must satisfy 
ic( 	c Wi . Hence rcI Vi is defined by a homomorphism hi  : F(Wi, ez) 
F(Vi, Cy) such that 9* o hi  = 	: T(Wi , Oz) -+ F(71-1  (W i), ex). Since 
9* is injective by (iii) of definition 5, hi  is uniquely determined. Hence 
at most one lc exists. 

But Vi* maps F(Wi, Oz) into the ring of invariant functions 
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r(!-1(Wi), ex)G  = go*F(Vi, Cr). 

Therefore such an hi  exists and defines a morphism K i : 	 By 

uniqueness Ki = Ki on Vi nVi; hence K : Y —> Z may be constructed. 
In the rest of this chapter we shall assume that G is an algebraic group 

(LAG, 1.1), acting algebraically on a variety X; in other words, the action 
is defined by a morphism of varieties a : G x A' --> X (LAG, 1.7). In this 
case, the orbits are locally closed subvarieties (LAG, 1.8). 

If G = Spec(S) is affine, and R = F(X, ex), then a defines a k-algebra 

homomorphism 

a* :R—>S0R=F(GxX, GxX)• 

More generally, an action of G on a k-vector space V is given by a linear 

map 

such that 
: V —> S C) V 

a 

	

V 	
I
SO V 

a t 

	

SOV 	SO SOV 
a® 

commutes (f1 : S —> S 0 S is induced by the morphism it:GxG—>G 
defining the group structure) and 

E®1 
V-->S0V--->k®V=4 V 

is the identity (e : S —> k is given by e(f) = f(1)). 
Indeed, if V is finite-dimensional, with basis e1 , • • , e„, and it (e i) = 

ai, ® e;  (1 < i 5 n), then the elements au  e S define a group homo-
morphism G —> GL(n). 

In general, a closed point g of G operates on V (on the right) by 

x —> xg = E ai(g) • xi  

if 6(x) =Eai  0 xi . It follows immediately that each vector x e V is 
contained in a finite-dimensional invariant subspace (Ekxi  if the xi  
are linearly independent and al  0 0). Clearly, x is invariant if and 
only if 6(x) = 1 0 x, and a subspace W c V is invariant if and only if 
8-(W) c S Qx W. 

DEFINITION 6. An affine group G is reductive if each action of G on a 
finite-dimensional vector space V is completely reductive, i.e., if W c V 
is an invariant subspace, then there is an invariant subspace W' c V 
such that V = W C) W'. 



182 	 David Mumford and Kalevi Suominen 

If the characteristic of k is 0, it may be shown that semi-simple groups 
are reductive (IT, 4.37). 

A basic property of reductive groups is the following: 

LEMMA. If G is a reductive group acting on a vector space V, then the 
subspace VG  of invariant elements of V has a unique invariant complement 
VG  in V. 

PROOF. By Zorn's lemma there is a maximal invariant subspace 
VG  c V such that (VG)G  = VG  n VG  = 0. If V' c V is any invariant 
subspace and x e V', there is a finite-dimensional invariant subspace 
W c V' containing x. By complete reductivity, there is an invariant 
subspace W' c W such that W = (W n VG) W'. If (V')G  = 0 then 
(W')G  = 0 and therefore (VG  10 W')G  = 0. By the maximality of VG  
we have W' = 0. Hence V' c VG , which proves the uniqueness of VG. 

Finally, to show that VG  0 VG = V, let x e V and let W c V be a 
finite-dimensional invariant subspace containing x. Then there is an 
invariant subspace W' c W such that W = (W n VG) W'. But then 
(W')G  = 0, so W' c VG , and therefore xe W c VG  O+ VG 

The result of this lemma may be conveniently formalized by means of 
the Reynolds operator E : V V. It is the projection of V onto VG  with 
kernel VG. 

PROPOSITION 6. Let G be a reductive group acting on vector spaces V 
and V' with Reynolds operators E and E', respectively. Then each G-linear 
map u : V —> V' commutes with E and E': 

PROOF. Since u(VG) c (V')G, it is enough to show that u(VG) c (V')G . 
If x e VG , there is a finitedimensional invariant subspace W c VG  
containing x, and W = (W n ker(u)) () W' for some invariant subspace 
W' c W. But u maps W' isomorphically onto u(W) c V'. Hence 
(u(W))G  = u((W')G) = 0, and therefore u(x) e u( W) c VG. 

COROLLARY. If a reductive group G acts on a k-algebra R by algebra 
automorphisms (i.e. x H x o g is an algebra automorphism of R for each 
closed point g e G), then the Reynolds operator E on R satisfies the 
Reynolds identity 

E(x o y) = x o E(y) 
for x a RG, y e R. 

In fact, ifxele,y-4 x o y is a G-linear map of R. Hence it commutes 
with E. 

REMARK. If G = Spec(S), the assumption of the corollary means that 
the action 8:R-÷SORis an algebra homomorphism. 
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We can now prove the main result of this chapter. 

THEOREM 1. Let G be a reductive group acting on an affine variety A' 
with closed orbits. Then the geometric quotient (Y, 9) of A' by G exists and 
Y is an affine variety. 

PROOF. Let R = F(X, ex). Then G acts on R. Let Y = Spec( RG) and 
define 9 : X —> Y by the inclusion RE  —* R. We claim that Y is an affine 
variety, i.e., RG  is a k-algebra of finite type. 

LEMMA 1. If S is an RG-algebra, then S is the ring of invariants in 

R 0(RG)S. 

PROOF. Let E and E' be the Reynolds operators on R and R O(RG)  S 
respectively. By proposition 6, E'(a 0 1) = E(a) 0 1 for a a R. Since 
R is isomorphic as RG-module to RE  ker E, it follows that 

S RG  O(RG)  S C (R ©(RG)  Sr • 

Conversely, if 

f =Ea, 0 b, a  (R 0(RG)  5)G, 

then 
f 	(Ea, 0 b,) = E'(E(a, 0 1)(1 0 b,)) 

= EE'(a, 0 1) o (1 0 bi) (by Reynolds identity) 

= EE(a,) 0 b RG  O(Rw) S. 

If I is an ideal of RG, then RJR a R 0(RG) (RGII). Hence by lemma 1 
(R/LR)G = Rau,  and therefore IR n RG  = I. This means that I t--* IR is 
an order preserving injection of the set of ideals in RG  into the set of 
ideals in R. Since R is noetherian, RG  is also noetherian. 

If R = En, 0  R„ is a graded k-algebra with Ro  = k and the action of 
G preserves the gradation, RE  = 	0 R„ is also a graded algebra. 
Since it is noetherian, the ideal RG.,_ = En, 0  R„G is generated by a finite 
number of homogeneous elements f i  a R ( 1 	r). By induction on 
n it is then easily shown that each vector space R„G  is generated by mono-
mials of fl  , • • • ,f,.. Hence RE  is finitely generated as a k-algebra. 

Finally, in the general case, let V c R be a finite-dimensional invariant 
subspace containing a set of generators. Then the action of G on V extends 
to a gradation preserving action on the symmetric algebra R' = S(V), 
and the canonical algebra homomorphism u : R' R is G-linear and 
surjective. If E and E' are the Reynolds operators on R and R', then we 
have 

RG  = E(R) = E(u(R')) = u(E'(R')) = u((R')G) 

by proposition 6. Hence RG  is finitely generated as a quotient of a finitely 
generated k-algebra (R')G. This proves that Y is a variety. 



184 	 David Mumford and Kalevi Suominen 

LEMMA 2. If (I,) is a family of invariant ideals in R then 

E I,) n RG  = E (I, n RG). 

PROOF. If f E (Eli) n RG, then f is a finite sum Ef with A e I. It 
follows that 

f = Ef E Ef, e E (ri  (-) RG) 

since the Reynolds operator of I, is the restriction of the Reynolds opera-
tor E on R by proposition 6. 

Writing Z1  for the closed subset of X defined by I, we obtain the follow-
ing geometric statement: 

If (Zr) is a family of closed invariant subsets of X, then 

(*) 
	

go(n Zi) = n 9(Z,). 

Now, if Z is a closed invariant subset of X and Z' = 9-1(y) where y 
is a closed point of Y, then 

9(Z n Z') = 9(Z) n {y}. 

Hence y e 9(Z) implies Z n Z' 0, i.e., y e 9(Z). Therefore 9(Z) is 
closed, and (*) becomes 

(**) 	 0( n Z,) = n 9(Zi) 

In particular, 9(X) is closed in Y. But 9 is dominant, hence 9(X) = Y. 
We now claim that the conditions (i), (ii) and (iii) of definition 5 are 

satisfied by (Y, go). 

(i) If y is a closed point of Y, then 9-1(y) contains at least one orbit 
since q is surjective. If Z1, Z2  c 9-1(y) are two orbits, then 

9(Z1  n Z2) = 0(Z1) n 0(Z2) = {y}, 

since Z1  and Z2  are closed by assumption. Therefore Z1  n Z2  0, i.e., 
Z1  = Zy. 

(ii) If U is an invariant open subset of X, Z = X\U is closed and 
invariant. Therefore 9(Z) is closed in Y. If V is its open complement, then 
cp v 	U. On the other hand, the orbit of any closed point of U 
is a closed invariant subset Z' of X such that Z n Z' = 0. Therefore 
9(Z') n 9(Z) = and Z' is contained in 0-1( V). 

(iii) If V = D(f) is an affine open subset of Y, F(V, (9y) = R.7 is the 
ring of invariants in F(0-1  V, 0,) = Rf  = R RG Rf by lemma 1 The 
same is true for any open subset V of Y by the basic properties of sheaves. 

This concludes the proof of the theorem. 



Introduction to the theory of moduli 	 185 

REMARK. If the orbits of closed points of X are not assumed closed, 
the following is still true: 

(1) If x and x' are closed points of X then 9(x) = (p(x') if and only if 
0(x) n 0(x') 0. 

(2) For each closed point y of Y, *p -1(y) contains a unique closed 
orbit. 

(3) There is an invariant open set Xs  c X such that a closed point x 
of X is in Xs  if and only if the orbit 0(x) is closed and the stabilizer S(x) 
is of minimal dimension. Then Ys  = 9(Xs) is open in Y and (Ys, goiXs) 
is a geometric quotient of Xs  by G. 

In fact, (1) may be proved as (i) above. To verify (2) note that a mini-
mal closed invariant subset of (p'(y) is an orbit (LMG, 1.8); uniqueness 
follows from (1). For a proof of (3), consider the invariant open set 
Xr" which consists of the points whose stabilizers has minimal dimension 
(GIT, 0.9). Then (p(X\X"g) is closed in Y and its complement is Ys, Xs  = 
(p'(Ys). The rest of the proof is as in theorem 1. 

Finally, we note that a slight generalization of the proof given above 
shows that (Y, (p) is a quotient of X by G even if the orbits are not closed 
(GIT, theorem 1.1). 

2. n ordered points on a line 

The moduli problem has led us to consider quotients of schemes by 
groups. The affine case was studied in chapter 1. In this chapter we shall 
examine the quotient of a projective variety by means of an elementary 
example. 

The projective group PGL(2) = GL(2)/G,,, (over k) acts canonically 
on the projective line P' = P,1, , hence on the product (11 1  )" for each 
integer n. To construct a quotient of (11')" under this action, we might 
proceed as follows: find invariant affine open sets Ui  c (Pi )", find 
quotients Vi  of the Ui  by PGL(2) using results of chapter 1, and join the 
Vi  together along the quotients of the Eli  n U. In this case, however, 
there is a more direct method. We assume n 3. 

Closed points of (PT are n-tuples (x1 , • • • , x„) of closed points of 
. Let U123  be the invariant open subset of (P1  )" whose closed points 

are those with x1, x2  , x3  distinct. Then the orbit of any closed point 
(x1 , • • , x„) of U123 contains a unique closed point of the form 
(0, 1, co, yi  , • • , yn _ 3). It follows that the action o : P G L(2)x 
(P1)"  (Pl y,  induces an isomorphism 

PGL(2) x (PT- 3  =5.' U123 
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mapping a closed point (g, yi , • • , y._,)e PGL(2) x (P1)"-3  onto 
a(g, 0, 1, co, Y1,  - • , y„_ 3). 

If PGL(2) acts on itself by left translations and trivially on 
then the isomorphism is PGL(2)-linear, i.e., U123 is a trivial principal 
PGL(2)-bundle over (P1 )n-3. 

For each triple (i,j, k) with 1 	j, k < n distinct, let Uijk  denote 
the invariant open set of (P')" whose closed points are those with 
xl  , x j, xk  distinct. Then we find as above that Uijk  is a trivial PGL(2)-
bundle over a scheme Piik  isomorphic to (P1)n -3. 

Given two triples (i,j, k) and 	k') the intersection 

= Ui j k  ■•-•1 Urrk, 

is an invariant open set. Hence its image U1  in Piik  is canonically iso-
morphic to its image U2 in Pi, j.k, . Indeed, a morphism U1  -> U2  can be 
defined by composing the projection U' -> U2  with a section U1 	U'. 
Joining the Piik  together by these natural isomorphisms we obtain a 
scheme M*. 

The union U* =,_, 1 > i > j > k > n Uijk is an invariant open subset of 
(P1)", with closed points (x1 , • • •, xn) such that at least three of the xi  
are distinct. It is clear that there is a natural morphism z : U* -> M* 
making U* a principal fibre bundle over M* with structure group 
PGL(2). 

Thus it seems that M* is a reasonable (partial) solution of the quotient 
problem for (P1)". In fact it is easy to see that (M*, T) is a geometric 
quotient of U*. But the trouble is that M* is not separated if n > 3, 
hence it cannot be quasi-projective. 

EXAMPLE A: n = 4. Let us identify P123 with P' so that r(0, 1, oo , y) 
corresponds to y. If P134 is identified with P' by r(0, y', co, 1)4-> y', 
then the image of the diagonal map P123 n P134 -÷ P123 X P134 4  (P1)2  
is given by yy' = 1, y 0 0, y' 0 0. Since it is not closed M* is not 
separated. In fact, if y specializes to 0, then y' specializes to co, but the 
points with x1  = x4  in U123 are different from the points with x2  = x3  
in P134.  Hence we get the following picture: 

Xi  = X4  X2  = X4 X3 = X4 

P123 	x 	 x 	 x 	 

no identification no identification —> —<x>— x —<x>— in M* 
x 	 x 

P124 
X2  = X3 x2 = X4 x1 = X2 

It is interesting to not e that permuting (x1 , x2) with (x3 , x4) leaves 
P123  V P134 invariant interchanging the components of the double points. 
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Adding P - 124 and P234  brings forth another doubled point, that 
corresponding to points of U* with either x2  = x4  or x1  = x3 . 

EXAMPLE B. n = 5. Let us consider P123  and P124 , both isomorphic 
to Pi  x Pl : 

 

P123 

  

P124 

 

   

X4=X3  

X4  =X 2  

X4=Xi 

X3  =X4 

X3=X2 

X3  =X, 

    

x5  
#X3 

X5  
X5=X1  X5=X2 X5=X3 X5=X1 X5-X2 X5-X4 

The intersection of P123  and P124  on M* defines an isomorphism of the 
open subsets P123\(E v F) and P124:\ (G OH). Let U C P123  X P124  
be the graph of this isomorphism. The complement of U in its closure P 
consists of two pairs of intersecting lines 

Ex (v} v {x} x H and Fx {u} u {y} x G 

Hence P123  u P124  is not separated as a subscheme of M*. However: 
P123\ {x, y} and P124\{u, v} are mapped isomorphically onto open 
subsets of P. Therefore, after omitting x, y, u, v there remains a separated 
subscheme which is isomorphic to P\{(x, v), (y, u)}. 

In the general case, to obtain a separated quotient, we must leave out 
part of U*. This is quite trivial if no restriction is imposed. But if the 
quotient should be complete, we must be careful not to omit too many 
points. 

PROBLEM. Does there exist an open subset U c U* invariant under the 
action of PGL(2) and under permutations of the coordinates such that 
T(U) is separated and complete? 

Considering first the case n = 4, we see by example A that no such U 
exists. There are open subsets invariant under PGL(2) such that the 
quotient is separated and complete, but no such set is invariant under 
permutations of the coordinates, since the components of the doubled 
points are interchanged by permutations. In fact, I conjecture that there 
is no solution for even integers n. 
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On the other hand, if n is odd, there is always a remarkable solution. 
Indeed, if n = 5, it is not hard to see that the quotient is separated and 
complete after the omission of the points with some three coordinates 
coinciding (such as x, y, u, v in example B). In general, if n = 2e +1, we 
define U as the open set whose closed points are such that no point of P1  
occurs e +1 times among the coordinates. 

To prove that r(U) is separated and complete, we recall the valuative 
criterion: 

PROPOSITION 1. Let X be an algebraic k-scheme. If X is separated (resp. 
complete), then the canonical map 

Homk(Spec(A), X) —> Homk(Spec(K), X) 

is infective (resp. bijective) for each k-algebra A which is a valuation ring 
with fraction field K. 

Conversely, if the map 

Hom,(SpeckUtil, X) —> Homk(Spec(k((t))), X) 

is infective (resp. bijective), then X is separated (resp. complete). 

PROPOSITION 2. M = T(U) is separated and complete. 

PROOF. To show that M is separated, let R = k[[t]], K= k((t)), and 
consider two morphisms Spec(R) —> M with the same restriction to 
Spec(K). We claim that the two morphisms are equal. Using local sections 
of T it is possible to lift these morphisms to R-valued points of U. By a 
suitable choice of a point oo e P', we may assume that they factor 
through (A1)", (P1 )", hence are of the form x = (xi  (t), • , xn(t)) and 
y = (Mt), • • • , y„(t)) with xi(t), yi(t) e R (1 < i 5 n). Regarded as 
K-valued points, x and y have the same image in M. Hence there is a 
K-valued point o of PGL(2) such that yK  = a • xK  . In other words, there 
are elements a(t), b(t), c(t), d(t) of k ((t)) such that 

y i(t) = 
a(t)x,(t)+ b(t) 

(1< i < n).  
c(t)xi(t)+d(t) 

Clearly, we may assume that a(t), b(t), c(t), d(t) are in k[[t]] with con-
stant terms a(0), b(0), c(0), d(0) not all equal to 0. 

Now, if a(0) • d(0)—b(0) c(0) 0 0, then 

A(t) = a(t)d(t) — b(t)c(t) 

is invertible in R, and therefore a is actually an R-valued point of 
PGL(2). But then r(x) = T(y) on Spec(R) as was claimed. 
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On the other hand, if z1(0) = 0, but c(0) 0 0 or d(0) 0 0, then for 
each i we have either 

0) 	 (0) b(0) 
x,(0) = 	

d(
or y,(0) =  

c(0) 	c 

a

(0) d(0) 

One of these conditions holds for at least e+1 = (n+ 1)/2 integers i. 
But this is impossible, since (x1(0), • • , x„(0)) and (MO), • • • , y„(0)) 
are k-valued points of U. 

Finally, if c(0) = d(0) = 0, then a(0) 0 0, and 

b(0) 
x,(0) = — 

a(0) 

for each i contradicting the assumption. 
To prove the completeness of M, we show that each morphism 

Spec(K) M may be extended to Spec(R), where R = k[[t]] and 
K = k((t)) as above. 

Any K-valued point of M may be lifted to a K-valued point of U: 

(xt (t), • • • , x„(t)) with x.(t) e K u {co} (1 < i < n). Hence it will 
suffice to show that there is a K-valued point o of PGL(2) such that 
(oxi (t), • • • , ox„(0) is an R-valued point of U. In any case, each x1(t) 
defines a unique morphism Spec(R) I" since P i-  is separated and 
complete (proposition 1). The restriction of this morphism to the closed 
point of Spec(R) is given by x1(0) e k u {co}. If (x1(0), • • • , x„(0)) is a 
k-valued point of U, (xi(t),- -,x„(t)) is an R-valued point of U and 
there is nothing to prove. 

In general, we proceed by induction on the least integer p such that 
no e +1 of the morphisms Spec(R/R • tP±I ) P 1  defined by the x.(t) 
(1 < i < n) are equal. We may assume that none of the x1(0) are infinite 
by a suitable choice of coordinates on P'. Writing x,(t) = 	0 	tj, 
we see that the condition means that no e +1 of the polynomials 

aii  
=o 

are equal. Incidentally, this shows that p is finite. 
Ifp = 0, then no e+ 1 of the points x1(0) coincide, and (x j(t), • • •, x„(t)) 

is an R-valued point of U as was seen above. 
In case p > 0, there is a unique polynomial Eri:,!, aiiti occurring more 

than e times. We may assume for convenience that these polynomials 
have indices 1 < i < r with e+1 < r  < n. Let a be the K-valued point 
of PGL(2) defined by 
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(10 -ta) 

x(t)- a 
x(t) H ox(t) = 

where a c k is the common value of the constants xi(0) = a01  (1 < i 5 r). 

Then it is easy to verify that (o-xi (t), 	o-x„(t)) satisfies the induction 

assumption with p replaced by p -1. This completes the proof. 
This result is interesting as such, but we can prove more: 

THEOREM 1. M is projective. 

PROOF. The general method of constructing ample invertible sheaves 
on a quotient of a scheme Xis to search for ample invertible sheaves on X 
such that the action of the group extends to the sheaf and to apply the 
theory of descent. In our case, however, there is a more elementary way 
of producing invertible sheaves on M. 

For each pair (i, j) of integers 1 	j < n with i j, let Du  denote 
the closed subset of U defined by xi  = xj. Since D.  is invariant under 
the action of PGL(2), 1 	T(Du) is closed in M and Du  = 	i;). 
This is easily proved by using local sections of T. Furthermore, d u  is 
irreducible of codimension one, i.e., a prime divisor on M. 

Let Lu = em(.4u) be the invertible sub-Cm-Module of the sheaf of 
rational functions on M whose sections are regular everwhere except for 
at most a simple pole at z1sj. In other words, if f e T( V, Cm) is a local 
equation ofd i;, then the sections of Li.;  over V are the multiples of 
f 1. We denote by Si,  e T(M, Lid) the canonical section 1. To find 
relations among the Lij  we embed Pic(M) into Pic(U), which is isomor-
phic to Pic((Pi )"), since (Pi)"\U is of codimension i = (n-1)12 2 
for n 	5 (the case n = 3 is trivial). 

LEMMA 1. 2* : Pic(M) -> Pic(U) is infective. 

PROOF. Let D be a divisor on M such that 2-1(D) is linearly equivalent 
to 0, i.e., r-1(D) = div(f) for some rational function f on U, or, what 
amounts to the same, on (P1)". Then for each closed point o-  of PGL(2), 
div(o-(f)) = div(f). This implies that o-(f) = x(a) • f for some constant 
x(Q) e k*, since (P1)" is complete. But then x is a character of PGL(2). 
[In fact, the action of PGL(2) on the generic fibre Z = a-1(y) of T induces 
a homomorphism 

6 : r(z, 	-4 .1"(PGL(2)xZ, PGL(2) x Zs.) 
F(PGL(2), Cpu,(0) 0 klIZ, 

= 

or 

t 
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If 8-(f) = Exi  ®f where fi  e F(Z,Oz) (1 < i =< r) are linearly in-
dependent with'''.  = f and xi E f'(PGL(2) OpaL(2))  (1 < i < r), then it is 
readily seen that xi  = 0 for i > 1 and Xi = x is an invertible section of 

Opu,(2) defining a group homomorphism PGL(2) Gm ]. 

But PGL(2) has no non-trivial characters, since it coincides with its 
commutator subgroup (LAG, 10.8(2)). Therefore x = 1 andfis invariant 
under PGL(2). Again, using local sections of 2, it is shown thatf = g 

for some rational function g on M and D = div(g). 
There remains to study the structure of Pic((P1)") and the image of 

Pic(M) in Pic((P1)"). It is clear that T*(Lii) = Co(Dij). On the other 
hand, considering the rational function 

xo  y, —xi  yo  

XO Yo 

on P1  x 131-  with bihomogeneous coordinates (xo  , xl  ; y 0 , yi ), we find 
that the diagonal D of PI  x Pi  is linearly equivalent to the divisor 
13' x {0}+ {0} x P1, or, in terms of invertible sheaves, 

C(D) = 4(6(1)) 0 4(0(1)) 

where p„ p2  : pl x P1 
	

P1  are the projections. 

Hence Li;  = Li, corresponds to p:'(0(1)) px p; (0(1)) on (Pi)". It 
follows that 

Li; 0 Lk, Lik 

for each quadruple (i,j,k,l) with i # j, k 	1, i # k, j 1. In fact, 
ik —Ai is the divisor of the rational function on M defined 

by the invariant crossratio of the four coordinates (xi , xi, xk , x1) of a 
point of U. 

It may be shown that pt(0(1)), • • • ,p:(0(1)) are free generators of 
Pic((P1)") and the image of Pic(M) is a subgroup of index 2. But this is 
not necessary for our purposes. 

For any i between 1 and n, (0(2)) is in the image of Pic(M), namely, 
it corresponds to 

L„ = 0 L„ 41  

for some k, 1 with i, k, 1 distinct. By lemma 1, L ii  is independent of k 

and 1. We claim that L = L,, 0 • • • 0 4„ is ample. 
The proof is based on the following observation: 

L 	L'ii, 0 • • • 0 Linin  

if each integer between 1 and n occurs exactly twice in 

(ii , • • • ,lnoJ 	• • • ,.in), 
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and further, if ik  Jk  for 1 < k < n, then there is a section 

oiiii  0 • • • 0 Sinin  E T(M,L1
1;1 0 • • • 0 Lin;„) 

having 21101  u • • • u 21,,,i„ as its set of zeros. 

LEMMA 2. For each closed point (x1 , • • •, x„) of U there is a sequence 

(i 1 ,  ' • ' in,j1, • • • ,jn) where each integer between 1 and n occurs exactly 

twice such that xi, 	xik  for 1 < k < n and (il , i2, i3) = (j3 ,j1 ,j2). 

PROOF. By induction on / = (n-1)/2. The case I = 1 is trivial. If 
/ > 1, we choose in  and j„ such that xin  and xin  are two distinct points 
occurring with maximal multiplicity in (x1 , • • • , x„). Since there are at 
most two points with multiplicity 1, each of the remaining points occurs 
at most 1-1 times. If one of the points xi,,, xh, occurs with multiplicity 
one, then either all of the points xi  are distinct or exactly one of them has 
multiplicity greater than one (but less than 1+1). In either case at least 
three distinct points remain after omitting xin  and xjn . Hence, taking 

in-1 = in,  In-1 jn 5 we are reduced to the case 1-1. 

Let (i1, ' • in, j1, • • • , jn) be as in lemma 2 and denote by 

Mil.. ,  in.;, . . . in  the open subset of M where bid, 0 • • • 0 Sinn does 
not vanish, i.e., 

M/1 .  • • infi • • J„ = 	 u  • ' "v din;n)• 

These sets form an open covering of M by Lemma 2. Hence it suffices 

to show that they are affine (EGA II, 4.5.2, last statement). 
Nowi-1(M11 in) is contained in Ui,i2 i3 . 
Therefore in J1 is a subset of Pi, 1213  , which is isomorphic to 

(P1)"'. Furthermore, the complement of M. 	 is  the 

	

i 	inii • • • in in Pi, i2i3 
set of zeros of a section of an invertible sheaf L' such that r*L' is iso-
morphic to p7(0(2)) Q • • • Q p„*(e(2)) restricted to Ui11213 . In fact, 

L' 	1*(pt(e (2)) 0 • • • 0 p, T(0(2))) 

where / is a section of i overP11 Hence L' corresponds to 

pt (a(2)) 	• 0 P:- 3(6(2)) 

under the isomorphism Phi, i3 	(PI )n —3. But 

Pi(0(1)) 0 • • • 0 	3(6(1)) 

is very ample (it defines the Segre morphism (P1 )n- 3 	p2n-3 —1 , 

cf. EGA II, 4.3). Therefore L' is ample. Thus we conclude that 
Mii  ... in  ....in  is affine (EGA II, 5.5.7). This ends the proof of theorem 1. 

To finish the chapter we shall discuss quotients of projective schemes 
more generally but without giving proofs. Let G be a reductive group 
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(definition 1.6) acting on a projective k-scheme X, and let L be an ample 
invertible sheaf on X to which the action of G may be lifted (in the sense 
of GIT, Ch. 1, § 3). For example, if E is a finite-dimensional k-vector 
space on which G acts, and Xis a closed invariant subscheme of P = P(E) 
then L might be Op(1) restricted to X. Conversely, if L is ample, then 
for some integer n, X embeds in P [F(X, en)], on which G acts canoni-
cally. 

THEOREM 2. Let G, X, and L be as above. Then there are two canonical 
invariant open subsets of X: Xs  c Xss c X such that 

(i) a quotient (Y, it) of Xs, by G exists and is a projective scheme. 

(ii) there is an open subset Yo  of Y such that (Y0 , it/Xs) is a geometric 
quotient of Xs. 

Moreover: 
a) Xs  = it -1(Y0) 
b) if x and y are closed points of Xss , then n(x) = n(y) if and only if 

0(x) n 0(y) n Xss 0. 
c) for each closed point y of Y, n-1(y) contains a unique orbit closed 

in Xss. 
d) a closed point x of Xss  is in Xs  if and only if 0(x) is closed in Xss  

and the stabilizer S(x) of x has minimal dimension. 

The points of Xs  are called stable and those of Xss  semistable. For the 
definition Xs and Xss  as well as the proof of this theorem we refer to 
GIT, Ch. 1, § 4. The basic idea, however, is to define Y to be Proj(RG), 
where R = Ir(X, L") is the homogeneous coordinate ring of X. 

There is an important numerical criterion for finding Xs  and Xss  (GIT, 
Ch. 2, § 1). Namely, if x is a closed point of X, then for each 1-parameter 
sub-group 2 of G, i.e., for each homomorphism 2 : Gm  —> G, the morphism 

= Spec(k [a, a -1]) —+ X defined by a H 2(a) • x extends uniquely 
to a morphism f : A l  = Spec(k [a]) —> X, since X is separated and com-
plete and the local ring of 0 in A l  is a valuation ring (proposition 1). 
Then z = f(0) is fixed under the action of Gm  induced by A, and therefore 
Gm  acts on the 1-dimensional fiber L 0 k(z). But such an action is given 
by a character x of Gm  ; hence there is an integer r such that A(ot) • v = a" • v 
for each v e L 0 k(z). Then the point x is stable if r < 0, and semi-stable 
if r S 0, for each 1-parameter subgroup 2 of G. 

To see how this criterion works in a concrete example, let us return 
to the group PGL(2) acting on X = (P1 )". (PGL(2) is simple, hence 
reductive if char(k) = 0.) 

To find an ample invertible sheaf to which the action of PGL(2) extends, 
we first write out explicitly the action of PGL(2) on P' (cf. GIT, p. 33). 
If X, , Xl  e F(P1 , 0(1)) are the homogeneous coordinates of P1  then 
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(au) e GL(2) acts on F(P1, 0(1)) (on the right) by Xi  —, EakiX j. This 
defines an automorphism P1  P' which depends only on the class of 
(au) in PGL(2). Unfortunately, there is no action of PGL(2) on 
F(P1, 0(1)) compatible with the action on P'. However, the operation 

xi  0 xi
E  aik  Xk  0 X1  

in PGL(2) for a e k*. The fixed points of P1  under the action of Gm  
induced by 2 are 0 and co, defined by X1(0) = 0, X0(co) = 0. If x e 
is different from 0 and oo, then 4a) • x specializes to 0 as a —> 0 and to 
co as a -+ co. Moreover, the action of Gm  on the fibers of 0(2) at 0 and 
co is given by multiplication with a-1  and a, respectively. To see this, it 
suffices to consider the behaviour of X0  0 X0  and X1  0 X1. 

Now, each non-trivial 1-parameter subgroup A' of PGL(2) is conjugate 
to 2m for some integer m > 0. Hence there are exactly two points a, b of 
P1  fixed under the action of Gm  induced by A'. Besides, if x 0 a, b is a 
point of P1, Ai(a) • x specializes to one of these points, say a, as a 	0, 
and so 11(a) • x specializes to b as a 	co. Finally, the action of Gm  on 
the fibers of e42) at a and b is given by multiplication with a' and 
am respectively. 

Returning to (P1)" we find that the action of PGL(2) lifts to the ample 
invertible sheaf L = p*,(6(2)) Q • • Q p„*  (0(2)). Let x = (x1 , • • , xn) 
be a closed point of (P1 )" and let a, b denote the fixed points of a 1-
parameter subgroup A' of PGL(1) as above. Permuting the indices if 
necessary, we assume that xi =b for 	 and xi  b for 
r +1 	i 	n. It follows that 1'(a) • x specializes to 

r n — r 

z = (b, • • • , b, a, • • , a) 

as a 0. Considering each factor of L separately we find that the action 
of G„, on the fiber L Q k(z) induced by 2' is given by multiplication with 
cern(2r —n) .  • s  b may be any point of 111, we conclude: 

A closed point (x,, • • • , x„) of (P1)" is stable (semistable) if and only 
if no point of P' occurs with multiplicity 	n/2 ( > n/2) in (x1, • • , 

If n is odd, the set of stable points (P Vs' is the same as the set of semi- 

det (a11) 

of GL(2) on F(P1, 0(2)) factors through PGL(2). Hence the action of 
PGL(2) lifts to 0(2). 

Let A : 	-+ PGL(2) be the homomorphism such that A(a) is the class 
of 
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stable points (f")'xis, and both coincide with the set U above. If n is even, 
(P% is a proper subset of (I'Vsls. Hence the quotient of (F"); is not 
complete. 

3. Elliptic curves 

Let us consider an algebraic curve X over k, i.e., a reduced, irreducible, 
and separated algebraic k-scheme of dimension 1. We recall that X is 
non-singular if and only if the sheaf of differentials Q." is a locally free 
Ox-Module of rank 1 or equivalently, if and only if the local ring ex  is a 
discrete valuation ring for each closed point x of X. In addition, if X 
is non-singular, x is a closed point of X, and f is an element of the maxi-
mal ideal m of ex  , then f is a generator of m if and only if df is a local 
basis for Oxik  at x. It is also useful to note that a complete, non-singular 
algebraic curve is uniquely determined by its field of rational functions. 

If X is complete and non-singular, then 

g = dimk H°(X, g2X/k) 

is a finite integer, called the genus of X. An elliptic curve is a complete, 
non-singular algebraic curve of genus 1. 

To examine elliptic curves in greater detail we have to know their 
cohomology. 

PROPOSITION 1. Let 9 be a divisor of degree n on an elliptic curve E 
over k. 

(i) For n > 0, dimk  H°(E, 0E(.9)) = n and 111(E, CE(9)) = 0. 

(ii) For n < 0, H°(E, CE(.9)) = 0 and dimkH1(E, 05(g)) = —n. 

(iii) For n = 0, dimkH°(E, CE(g)) = dimkHi (E, CE(g)) = 1 if .9.  
is linearly equivalent to 0, and H°(E, 05(9)) = 111(E, OE  (9)) = 0 
otherwise. 

Furthermore, Hi(E, E( g)) = 0 for i > 2. 
The proposition follows from the Riemann-Roch formula 

dimk  H°(E, E(g))—dimk  111  (E, t2E(9)) = n 

(Serre, Groupes algebriques et corps de classes, Theoreme 1, p. 21) and 
Serre duality 

dimk  H°(E, CEP)) = 	 g)) 

(loc.cit., Theoreme 2, p. 26) noting that the canonical class K is 0. Indeed, 
the degree of K is 0 (Loc. cit., p. 27) and 

dimk  H°(E, &E(K)) = dimk H°(E, QE/k) = 1 
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by assumption. Hence K = div(f) for some rational function 

fe H°(E, (9,(K)). 
Now let E be an elliptic curve. We fix a closed point 0 of E. The reason 

for this notation is the following: 

PROPOSITION 2. There is a unique abelian group structure on the set of 
closed points Ek  of E such that the map 

x 1-+ the class of (9E((x) — (0)), 

where (x) is the divisor associated with x, is a group homomorphism from 
Ek  to the Picard group Pic(E) of E. 

PROOF. It is enough to show that the map 

x }--+ the class of (x) — (0) 

is a bijection from Ek  to the set of linear equivalence classes of divisors 
of degree 0. But if g is a divisor of degree 0 on E, then 

dim H°(E, CE(g+ (0))) = 1 

by proposition 1(i). Thus there is a unique principal divisor 

div(f) — g — (0). 

Then div(f) + g + (0) is an effective divisor of degree 1, hence of the 
form (x) for some x e Ek . 	 Q.E.D. 

Clearly, 0 is the neutral element of the group Ek .  

REMARK. It may be shown that the group structure of Ek  is induced by 
an algebraic group structure on E. It follows, in particular, that the full 
group of automorphisms of an elliptic curve is transitive. Hence the 
results are independent of the base point 0. 

If A is the divisor associated with the point 0, the vector space 
V = H°(E, E(2A)) is 2-dimensional by proposition 1 (i). Hence there 
are non-constant rational functions in V, having necessarily a double 
pole at 0. Any such function f defines a morphism from E — {0} to the 
affine line 21 1  over k, and this morphism has a unique extension it from 
E to the projective line P' over k by proposition II.1. If f' is another 
non-constant function in V, and 7E' : E Pl  is the corresponding 
morphism, there is a unique automorphism it of P' such that 7E' = µ o 7E. 

In fact, since Vlk is 1-dimensional, there is a unique pair (a, /3) e k* x k 
satisfying f' = af+13. 

To find the fibers of 7r, let 2 e k be a closed point of A' c P'. Then 
it -1(A.) is the support of the divisor of zeros g off — 2. Since the divisor 
of poles of f — 2 is of degree 2, g = (x)+ (y) for some x, y e Ek . But 
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then x+y = 0 by proposition 2. Hence the branch points of it are the 
points of order 2 in the group Ek . It is shown in the theory of abelian 
varieties that their number is four if char(k) 0 2. 

More directly, this may be seen by calculating the order of div(df). 
If x e Ek is not a ramification point, then dfx  is a generator of (52 1 —Ellc/x 5 

hence of order 0 at x. If x e Ek — {0} is a ramification point, then 

f x  = f(x)+ut2, 

where t is a generator of the maximal ideal mx  of Ox  and u e 	is is a unit, 
and therefore 

dfx  = 2ut dt+t2du 

is of order 1 if 2 0 0 in k. Finally, if t generates mo  c Co  , we have 

t2f0  = u E et" 

2tfodt+ t 2dfo  = du, 

so that dfo  is of order — 3. Since the canonical divisor class on an elliptic 
curve is of degree 0, there are exactly 3 ramification points in addition to O. 

From now on we assume k of characteristic 0 2, 3. 
Let a, b, c e Al  and oo be the images by it of the ramification points. 

By a projective transformation they may be normalized to 

0, 1, A, co, 

where A is a cross-ratio of the four points a, b, c, oo. Since the order of 
the points a, b, c is not specified, there are, in general, 6 different normal-
isations (0, 1, it, co), where it appears in the following list: 

A 
2,1— 2, 112„ 

2 —1 	1 
, 	  

A 2-1 1-2 

However, any rational function j(A) which has the same value at each of 
the above points defines an invariant of the curve E. To find such a 
function we note that there are three series of equivalent points which are 
left fixed by some non-trivial substitution: 

1,2, —1, 

0, 1, co, 

— CO, — w2 

where to2  + co + 1 = 0 (a) 0 1 since char(k) 0 3). Hence j(2) must be 
ramified at these points. If we assume that 

j( — co) = 	co2) = 
j(0) = j(1) = j(co) = co, 
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will be proportional to 
(22 -1+1)3  
A2 (a 	_ 1)2 

On the other hand, this is seen to be invariant by direct substitution (or 
more elegantly, noting that the function in the brackets is invariant up 
to a multiplicative constant determined by a character of the symmetric 
group S3, hence necessarily equal to +1). For reasons involving the 
omitted characteristics 2 and 3, j is normalized by 

j(-1) = 123, 
therefore we obtain 

j()) = 256 (112— '1" -i-1)3  
,2 (a _ 1)2 

Thus we have constructed a map from the set of elliptic curves over k, 
up to isomorphism, to the set of closed points of A 1  = Spec(k[j]). To 
show that this map is bijective, we embed elliptic curves into the projective 
plane. 

Let E be an elliptic curve over k and denote by A the divisor associated 
with a fixed base point 0 of E. Letf e H°(E, ,(2A)) be a rational function 
having a double pole at 0 as above. 

By proposition 1 
dim, H°(E, CE(3A)) = 3 

while 
dim,, H°(E, G(2A)) = 2. 

Hence there is a rational function 

g e H°(E, &,(3A)) 
with a triple pole at 0. 

LEMMA 1. For each integer n 2, the functions 

1,.f • • •,f k, g,f g, • • f t  g, 

where k = [n/2], 1 = [(n-3)/2], form a basis of H°(E,CE(nA)). 

PROOF. The orders of these functions at 0 are 

0, —2, • • •, —2k, —3, —5, • • •, —21-3, 

respectively. Hence they are linearly independent. In the other hand, 
their number is n = dim H°(E, (9,(nA)). 	 Q.E.D. 

Since g2  e H°(E, E(6A)), there are constants a, e k (1 < i < 6) such 
that 

g2 
= ai fg+a2g+a3 f 3  +a4 f 2  +a,f+a6. 
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Replacing g by g—lai f— la2 , we may assume al  = a2  = 0. Since g2  
has a pole of order 6 at 0, we must have a3  0 0. Therefore, replacing g 
by a34  g we obtain 

g2 

 (f_ of_ b)( f _ c) 

for some constants a, b, c E k. 
It is not hard to see that a, b, and c must be distinct. Indeed, if a = b, 

then gl(f—a) has a simple pole at 0 and no other poles, since its square 
is f — c. But this is impossible by proposition 1. 

Let P be a projective plane over k, with homogeneous coordinates 
X, Y, Z a H°(P, 0,(1)). Since 1,f, g generate the invertible sheaf 
(9,(3A), there is a unique morphism q : E P such that 

go*(0 ,(1)) = OE(3A) 

with q)*(X), T*(Y), cp*(Z) corresponding to f, g, and 1. 

PROPOSITION 3. The morphism q> is an embedding of E onto the cubic 
curve C with homogeneous equation 

P(X, Y, Z) = Y 2  Z — (X — aZ)(X — bZ)(X — cZ) = 0. 

PROOF. It is clear that cp factors through C. If h is a rational function 
on E, and g is its divisor of poles (g 0), then, for each integer 
n > deg(g), there is a rational function h' with div(h') s —nA by 
proposition 1. This implies that hh' is defined on E— {0}. Thus any 
rational function on E is a quotient of two rational functions with poles 
at 0 only. But such functions are polynomials of f and g by lemma 1 
Hence the rational function field of E is kV g); in other words, go defines 
a birational morphism from E to C. Therefore it is enough to show that 
C is non-singular. This follows from the fact that each singular cubic 
plane curve is rational, or by direct calculation as follows: 

Let (x, y, z) be a point of C. If y 0, then Py(x, y, z) = 2yz 0 
unless z = 0, in which case x = 0 and Pz(x, y, z) = y2  0 0. On the 
other hand, if y = 0, then x = az, bz, or cz. Therefore Px(x, y, z) 0, 
since the constants a, b, c are distinct. 	 Q.E.D. 

It follows immediately that a, b, and c are the points of A l  over which 
the morphism it : E —> P1  defined by f is ramified. 

REMARK. The assumption char(k) 0 3 has not been used in the proof 
of proposition 3. 

COROLLARY. The invariant function j(),) defines a bijection from the 
set of isomorphism classes of elliptic curves over k to the set of k-valued 
points of A . 
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PROOF. Since 2 1-* j (A) is a surjective map from k-{0, 1} to k, there is 
an elliptic curve for each j e k, namely 

P,(X, Y, z) = Y2Z — X(X—Z)(X— AZ) = 0 

for some A e k— {0, 1} with j = j(2). Hence the map is surjective. 
On the other hand, let E and E' be two elliptic curves with the same j. 

By proposition 3 we may assume that they are plane curves given by 
PA(X, Y, Z) = 0 and PA,(X, Y, Z) = 0. Since j (A) is of degree 6, j(1) = 
j(2') implies that 2' is in the sequence 

2, 1 — A, 112„
1-1 2 	

1 
2 A-1 1—A 

Therefore E and E' are in fact projectively equivalent. 	Q.E.D. 
Thus we have classified elliptic curves over k by the k-valued points 

of a scheme A . . The question now arises: what is the role of the scheme 
structure of Aj? To answer this we introduce the notion of a family of 
elliptic curves in analogy with chapter 1. 

DEFINITION 1. Afamily of elliptic curves over a k-variety S is a morphism 
of k-varieties p : E —> S together with a section 0 : S E such that E 
is proper and smooth over S, and the closed fibers of p are elliptic curves. 

REMARK. By the definition of an elliptic curve, the last condition implies 
that the closed fibers of p are non-singular. Therefore p is smooth if and 
only if it is flat. 

To generalize the results of proposition 1 concerning the cohomology 
of elliptic curves for families of elliptic curves we need a base change 
theorem. We first introduce some notation. 

Ifp E S.  is a morphism, we denote by Es  the fiber p-1(s)(considered 
as a subscheme of E) for each point s of S. For each 0E-Module 
.F 0,s  k(s) may be regarded as an 0E;  Module denoted by 	Then, 
for each integer i, the homomorphism 

lep,,(F) Hi(Es , Fs) 

induced by the canonical epimorphism 34- 	defines a homomor- 
phism 

is : 	k(s) 
os 

PROPOSITION 4. Let p : 	S be a proper morphism of locally noetherian 
schemes, and let gr.  be a coherent OE-Module flat over S. 

(i) If is : Rip,(,F) 0,s k(s)—>(ES 5s) is surjective for some integer 
i and some point s e S, then it is bijective. 
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(ii) If the condition of (i) is satisfied, then 

: Ri-1p*(7) 0 k(s) 	g-s) 
os  

is also surjective if and only if Rip,(.fl is a free Os-Module in a neighbor-
hood of s. 

For the proof we refer to EGA III: (i) follows from (7.7.5.3) in view 
of (7.7.10), and for the same reason (ii) amounts to the equivalence of 
(7.8.3.b) and (7.8.4.d). (or better, see Mumford, Abelian Varieties, § 5). 

COROLLARY 1. With the assumptions ofproposition 4, if + (Es  , 	= 0 
for some integer i and some point s e S, then is is an isomorphism. 

In fact, t:+1  is surjective, hence bijective by (i). Then Ri+lp,(,) = 0 
in a neighborhood of s by Nakayawa's lemma. Therefore the conclusion 
from (ii), and (i) again. 

COROLLARY 2. With the assumptions of proposition 4, if e is a coherent 
Os  Module and 9: e Mg) is a homomorphism such that the induced 
map 

e ® k(s) H°(Es , 
os  

is bijective for each point s of S, then 9 is an isomorphism and e is locally 
free. 

PROOF. The assumption implies that t° : p*(g) 0 k(s) H°(E„,0 
is surjective, hence bijective for each s e S by (i). Then 

TO 1 :e0 k(s) p*(F) O  k(s) 

is bijective, and therefore 9 is surjective by Nakayama's lemma. Finally 
p*(fl is locally free by (ii); so, if V is the kernel of cp, 6 0 k(s) is the 
kernel of qO 1 for each s e S, whence V = 0. 	 Q.E.D. 

Let us consider a family p : E --+ S of elliptic curves. Since p is proper, 
hence separated, the section 0 : S E is a closed immersion (EGA I, 
5.4.b), i.e., it defines an isomorphism from S onto a closed subscheme 
A of E. Let I c OE  denote the sheaf of ideals of A. 

LEMMA 2. I is an invertible sheaf. 

PROOF. Let x be a closed point of A, s = p(x), and Es  = p-1(s). 
It is clear that the maximal ideal m of ex, Es  is generated by the image of 

Ix  C °x ,E in ax, Es  = (9x ,E 0 k(s). 
as 

By assumption, ex, Es  is a discrete valuation ring, hence there is a section 
f of I over some open neighborhood U of x such that fx  0 1 is a basis of 
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m. Then f defines a closed subscheme A' of U containing A (-1 U such that 
the fibers of A and A' over K are equal at x. As A is flat over S, it coincides 
with A' near x, i.e., f generates I in a neighborhood V of x. 

To show that f is a free generator of I locally at x, let J denote the 
kernel of the epimorphism GI V .11V defined by f Since I is flat over 
S, Jx  Oes k(s) is the kernel of 

ixot 
Ox, Es 	Ix  0 k(s) = m. 

es  

Therefore .1, Oes k(s) = 0, and we conclude that ./x  00. k(x) is 0 as a 
quotient of Jx  QO os  k(s). Hence J = 0 in a neighborhood of x by Naka- 
yama's lemma. This completes the proof. 	 Q.E.D. 

This result means that A is the support of a divisor on E. The divisor 
will also be denoted by A, hence the sheaf of functions 0E(nA) with n-
fold poles along A will be isomorphic to the invertible sheaf / (-1° for 
each integer n. For each n the quotient E(nA)I0 E((n —1)A) may be 
identified with i*(0E(nA)) where i : A --> E is the inclusion. Hence 

p*(0E(nA)10E((n-1)A)) 

is isomorphic to i*(0E(nA)) and 

Rip*(0 E(nA)I E((n —1)A)) = 0 for i > 0. 

In particular, p*(0E(nA)10E((n-1)A)) is an invertible Cs-Module, 
canonically isomorphic to .,.2'6" where .29  = p*(0E(A)10E). Other im-
portant higher direct images are supplied by the following proposition. 

PROPOSITION 5. (i) The canonical homomorphism 

Cs P*(0e) 

is an isomorphism. 

(ii) p*(0E(nA)) is locally free of rank n for n > 0. 

(iii) Rip*(0E(nA)) = 0 for n > 0, and locally free of rank 1 for n = 0. 

(iv) Rip*(0E(nA)) = 0 for i > 1 and all integers n. 

Moreover, in each case the canonical homomorphism 

Rip*(0 E(nA)) OO k(s) Hi(E„ E(nA)s) 
os  

is bijective for all s e S. 

PROOF. (i) is an immediate consequence of corollary 2 of proposition 
4. Then (ii), (iii), and (iv) follow from corollary 1 and part (ii) of propo-
sition 4 applying proposition 1. The final assertion is established in the 
course of the proof. 	 Q.E.D. 
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REMARK. It may be proved similarly that, for n < 0, Rip*((9E(nA)) 
is locally free of rank -n if i = 1, and 0 otherwise. 

COROLLARY 1. The natural injection es  -> p*(0E(A)) is an isomorphism. 

PROOF. Let us consider the long exact sequence 

0  P*(G) MC AO P*(cE(A)/cE) 

---> R 1  p*(0,) -> 121  p*(G(A)) -> • • • 

By the proposition R1p*(0,(A)) = 0 and Rip*((9E) is locally free of 
rank 1. Hence k is surjective and its kernel is locally a direct summand 
of .29  = p*(0E(A)1(9E). Since 2 is also invertible, Ker(k) = 0, and 
therefore i is an isomorphism. 	 Q.E.D. 

COROLLARY 2. The canonical homomorphism 

E(n A)) -> 	E(nA)10E(n -1)A)) = .29  ®" 

is surjective for n > 1. 
This follows immediately from (iii) of proposition 5. 
We are now ready to prove the main result of this chapter. 

THEOREM 1 (Weierstrass Normal Form). Let p : E -> S be a family of 
of elliptic curves over a k-variety S. Then each point of S has an affine open 
neighborhood U = Spec(R) such that p-1(U) is isomorphic over U to the 
subscheme of 1)2  x U defined by 

Y 2Z = X3  + aXZ2  + bZ3, 

where a, b e R are unique up to the substitutions 

a 1-> .1.4  a, b 1-> 	b 

for 2 e R*. Moreover 4a3 +27b2  is invertible in R. 

REMARK. It is always assumed that the subscheme A defined by the 
zero section 0 : S E is mapped to the set where Z = 0. 

PROOF. Each point of S has an affine open neighborhood U = Spec(R) 
such that f = p*(6E(A)10E) is free on U. We simplify the notation by 
assuming that U equals S. 

If t is a generator of the R-module T(S, .29), then t" = t®" is a basis 
of r(S, )®") for each integer n. By the corollaries of proposition 5 we 
have 

r(E, E(2A)) = R R 

where f has image t 2  in F(E,(9E(2A))11? = F(S, Y®2). Similarly, 

F(E, CE(3A)) =ReR•RDR•g 
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where g projects to t 3  in F(S, ® ). Since f 2, fg, f 3  have the leading 
parts t4, t 5  and t 6  respectively, it is easy to see that 1,f, g, f 2, fg, f 3  form 
a basis of the R-module F(E, E(6A)). In particular, we have 

g2  = al fg+a2g+a3 f 3  +a4 f 2  +a5 f+a6  

where ai  e R (1 	i =< b) are uniquely defined. Taking the leading parts 
in F(S, 2)®6) we find that a3  = 1. Redefining f and g we may further 
simplify the equation. Replacing g by g —jai f—la2  yields a new 
equation with al  = a2  = 0 without affecting the principal part of g. 

Similarly, if f is replaced by f+3a4  , we get a4  = 0. Hence we may 
assume that 

g2  = 1.3  +af+b 
for some a, b e R. 

From the last assertion of proposition 5 we see that 1,f, and g generate 
CE(3A) on each geometric fiber of p. Hence they generate OE(3A) and 
define a morphism 

9 : E P(p,(0 E(3 A))) P2  x S 

over S. We claim that 9 is an immersion, i.e., E(3A) is very ample. 
Since p is proper by assumption, tp is proper (EGA II, 5.4.3). It is 

injective on the closed fibers (proposition 3), hence injective. So, being 
closed, 9 is a homeomorphism of E onto a closed subspace 9(E) of 
P2  x S, and 9*(0E) is essentially the extension of OE  by zero. Since 
9*(0E) is coherent on P2  x S (EGA III, 3.2.1), it is enough to show that 
the canonical homomorphism u : 0p2xs --+ 9*(0 E) is surjective. 

If s is a closed point of Si, and (ps is the restriction of cp toEs, then 

us  : Op2 —> 9*(0E) 	k(s) = 9s, *(6)Es) 

is surjective by proposition 3. Then the conclusion follows by Nakayama's 
lemma. 

Let E' be the closed subscheme of P2  x S defined by 

Y2Z = X3  +aXZ2  +bZ 3. 

It is clear that 9(E) is a subscheme of E'. But the closed fibers of 9(E) 
and E' are equal by proposition 3, hence 9(E) = E'. Since the closed 
fibers of E are non-singular, the discriminant 4a3  + 27b2  is non-zero at 
each closed point of S. This means that it is invertible in R. 

Finally we note that the section t may be replaced by any section of the 
form At where A is a unit of R. Then f and g are replaced by A2f and 
A3  g, so A'a and 26b appear in place of a and b. 	 Q.E.D. 

Since the coefficients a and b of the Weierstrass normal form 

Y2Z = +aXZ2+bZ3 
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given by the theorem are defined only locally and up to multiplication by 
certain invertible functions, the reader may naturally suspect that they 
should be connected with some invertible sheaves. To find this connection 
we introduce global coordinates on projective bundles. 

Let Y be a scheme, 6' a quasicoherent Cy-Module, and S(s) the 
symmetric Cy-Algebra of 6'. Then the scheme P = Proj(S(e)) is called 
the projective bundle over Y defined by e and denoted by P(s) (EGA II, 
4.1.1). Let us assume that g is the direct sum of invertible 07-Modules: 

e = -ro 	'0 • • • O -rn• 

For each i, let ni  e I'(Y, .Ti 1  00y  S) be the section which corresponds 
to the inclusion of i  into 6' under the natural isomorphism 

27 1  () g Homey(Yi  , e). 
Oy 

If p : P Y is the projection, the canonical epimorphism (EGA II, 
4.1.5.1)p*(g) 0,(1) induces a homomorphism 

P*(22i-1 	g) ^ P*(- 9 l) Ox  P*(g) P*  (-T 1)(1) 
Oy 	 Op 

for each i. If X, e (P, p*(,,r T 1 )(1)) is the image of yii  by this homomor-
phism, then (X0 , X1 , • • • , Xn) is called the gobal coordinate system of P 
relative to (Po , • • • , Y„). 

Returning to theorem 1, it is obvious that we have constructed, in 
effect, a canonical splitting 

1)*(0E(3A)) = Os S Ø2  SP" 

where 	= p*(OE(A)10E) and Y®2, 2®3  are locally generated by the 
functions f, and g, respectively. It is then easy to deduce the following 
variant of theorem 1. 

THEOREM 1'. Let p : E S be a family of elliptic curves over a k-variety 
S. Then there is an invertible es-Module M' such that E is isomorphic over 
S to the subscheme of P = P(Os  or®2  0.99®3) defined by 

Y 2Z = X 3  +aXZ2+bZ3, 

where a e F(S, Yo(-4)), b e F(S, ®(-6)), and (A, Y, Z) is the global 
coordinate system of P relative to (.29®2, Y®3, Cs). Furthermore, 
(029, a, b) is unique up to isomorphism, and 

4a3  + 27b2  E r(S, 
	12)) 

is invertible. 
Notice that the equation makes sense: both sides are sections of 

Y°(-6)(3) and the divisor of their difference is associated with a sub-
scheme of P. 
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For each k-variety S, leLil(S) denote the set of isomorphism classes 
of families of elliptic curves over S. If E is a family of elliptic curves over 
S, then for each morphism S' 	S, Ex sS' is a family of elliptic curves 

over S'. Thus 	becomes a contravariant functor from the category of 
k-varieties to the category of sets. Also recall that each k-variety M 
defines a functor hM  by hM(S) = Hom(S, M). 

COROLLARY. There is a morphism of functors 

0 : 	--> h Aii, 

where A.;; = Spec(k[j]), such that 

F(Spec (k)) : ..,(Spec (k)) 	A;(k) 

is the Injection given by the invariant j (cf. the corollary of proposition 3). 

21.-  is a coarse moduli space for elliptic curves over k. 

PROOF. Each family of elliptic curves over S defines an invertible 
Os-Module .,29  and sections a e T(S, yo(-4)), b e F(S, Y®-(6)) with 

4a3  + 27b2  e r(s, 2®t- 

(1)  
3  4a 

jl = 123 	e F(S, Cs) 
4a3 +27b2  

corresponds to a morphism S A. It is clear that this construction is 
functorial. The second point may be verified by direct calculation starting 
with the two representations of the same elliptic curve: 

Y 2  = X'(X' -1)(X' -2) and 172  = X3  +aX+b 

related by Y = Y', A' = X' -(2+113), and the previous definition: 

(2) j 2 ( 	

L A2_ A+  1)3] 3 

= 256 	/12(A._ 1)2 

and verifying that (1) and (2) define the same j. To check the universal 
property of 0, suppose : 	---> h, is another morphism of functors. 
Let S = Spec k[), (11 2)(112- 1)1, and let E be the subscheme of P2  x S 
defined by: 

Y 2  Z = X(X-  Z)(X-  2Z). 

Then E is an elliptic curve over S and defines an element (EIS) E.A(S). 
Let t/f(E/S) be the morphism g : S -> N. On the other hand, we just 
checked that eP(E/S) is the morphism j2  : S -> Ali given by formula (2). 
I claim that g factors: 

12)) invertible. Then 
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211.  
fiV 

S 	 N 

To see this, let F c A; x N be the image of (1'2 , g). It is clear from the 
defining formula that j2  is a finite morphism hence so is (j2 , g), hence 
F is closed. Since 

I2(y) = 2(11: 	E 	Ez.  
g(1) = g(A'),  

the projection r 	A; is injective. But 12  is separable and surjective, 
hence F --+ A; is separable and surjective. Therefore r A; is an iso-
morphism by Zariski's Main Theorem. If f is the composition 

F—* N 

	

P1 	P2 

then foj2 = g.f defines a map of functors 	hN  and it follows from 
the definition that 

	

q(spee k> 	Hom(Spec k, A;) 

eA(Spec k) 

	

1"(Spec k) 	

Hom(Spec k, N) 

commutes. But therefore f o 0(s) = (S) for any S as required. Q.E.D. 
We now show by examples that the map 

0(S) : .11(S) –* Horn (S, 

is neither injective nor surjective in general. In particular, A; cannot be 
a fine moduli space for elliptic curves. 

EXAMPLE A. Let A be a finitely generated integral domain containing 
a unit u which has no square root in A, and put S = Spec(A). Then for 
any elliptic curve E over A with equation 

y2z = x3  +a xz 2  + bz 3  

there is another elliptic curve E', a twisted form of E. 

Y2 = x3 +14,2ax+ tt3b 

which is not isomorphic to E over A, but has the same j. In fact, E and E' 
become isomorphic over A(,/ it). Hence the map 0(S) is not injective. 
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It is also easy to see that the map 0(S) need not be surjective. In fact, 
each morphism j : S 	which corresponds to a family of elliptic 
curves over a scheme S is given locally by the formula 

j = 123 	
4a3 

 
4a3 +27b2  

where a and b are sections of es. If s E S is a point where j(s) = 0, and 
.4l is the maximal ideal of Cs, then a e .4', and therefore j e „ifs. In 
other words, j must be ramified at s. In the same way it follows from the 
formula 

j —123  = —123 27b2  

that j is ramified at each point s e S with j(s) = 123. 
To explain this phenomenon we study the automorphisms of elliptic 

curves. 
Let E be an elliptic curve over an algebraically closed field k of charac-

teristic 0 2,3, and let it : E 111  be the morphism defined by a function 
f with a double pole at the base point 0 of E. Then n is ramified over 4 
distinct points a, b, c, and oo. If a is an automorphism of E leaving 0 fixed, 
it o a is a morphism of the same type. Hence there is a projective trans-
formation (Tc such that 

commutes. Then a leaves co fixed and permutes the points a, b, and c. 
But a is of order 1, 2, or 3 on the set {a, b, c}, hence on 	: 

(i) If a = Id, a(x) = x or —x, for all x. Hence a = Id or a = — Id. 
These automorphisms exist on any elliptic curve. 

(ii) If a is of order 2, it is a transposition on {a, b, c}. Hence we may 
normalize {a, b, c} to {0, 1, — 1}, a(t)= —t; so .1 -= —1 and j = 123. In 
fact, on E0  : Y2  = X3  — X there is the automorphism X —X, Y H iY 
of order 4. 

(iii) If Fc is of order 3, it is a cyclic permutation on {a, b, c}. Hence 
{a, b, c} may be normalized to {1, w, w2} where w3  = 1; so j = 0. 
Finally, on E(123)  : Y2  = X3 -1, there is the automorphism X 1-+ wX, 
Y — Y of order 6. 

Collecting the results we get: 

4a3 +27b2  
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THEOREM 2. The group of automorphisms Aut(E;) of an elliptic curve 
Ei  with invariant j is Z/2Z if j 0, 123. In addition, Aut(E0) = Z/6Z 
and Aut(E(123)) = Z/4Z. 

It is now quite plausible that the nontrivial automorphisms of E0  
and Et 123)  are the cause for the non-existence of families of elliptic curves 
with an arbitrarily prescribed invariant j a F(S, Cs). To disclose the 
connection more clearly we turn to complex analytic families of elliptic 
curves. It is sufficient for our purposes to define them in the following way. 

DEFINITION 2. An analytic family of elliptic curves over a complex 
analytic space S is the quotient of a line bundle L over S by a lattice 

L (i.e., r is a closed discrete subgroup bundle with fibre Z x Z). 

EXAMPLE B. Let H be the upper half plane of the complex plane C, and 
denote by E the quotient of the trivial line bundle Hx C by the lattice 
generated by the sections corresponding to the constant 1 and the identity 
map H -÷ C. It is immediate that each analytic family of elliptic curves 
is induced locally by the family E. 

The fiber Ez  of E over a point z a H is the quotient of C by the lattice 
Tz  generated by 1 and z. Any isomorphism Ez  Ez. between two fibers 
may be lifted to an isomorphism of C. This means that there is a con-
stant k a C* such that (kz, k) is a basis for rz„ i.e., 

kz = az' +b 

k = cz' +d, 

for some a, b, c, d e Z with ad— bc = 1. Hence z is in the orbit of z' 
under the action of SL(Z, 2) on H given by 

az+b 
z 	 

cz+d 
for 

(a b) SL(Z, 2). c d   

Conversely, it is clear that this is a sufficient condition for the existence 
of an isomorphism Ez  => Ez, . In fact, it may be shown that the map 

z (j of Ez) 

defines an analytic morphism j : H C whose fibers are the orbits of 
the points z a H under SL(Z, 2). This function j is the classical elliptic 
modular function (see e.g. Serre, Cours d'Arithmetique, chap. VII). 

In particular, the group of automorphisms of Ez  is isomorphic to the 
subgroup of elements 
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(ac db) e SL(Z, 2) 

which leave z fixed and therefore induce maps from Ez  to itself. 
It follows that a point z e H is left fixed by some element (ac  bd) of 

SL(Z, 2) other than 
+ c,1 (1 

 o 1 

if and only if there is a nontrivial automorphism on Ez  . In each neigh-
borhood of such a point zo  there are always distinct points w and 
(aw+b/cw+d) with isomorphic fibers in the family E. Hence j must be 
ramified at z, . The same conclusion holds for any analytic family of 
elliptic curves because of the locally universal character of E. 

REMARK. It is not hard to see that there are two SL(Z, 2)-orbits of 
points of H left fixed by some nontrivial element of SL(Z, 2), namely w 
and i corresponding to j = 0 and j = 123, in agreement with theorem 2. 

4. Binary quartics 2  

Thus far, we have taken an ad hoc approach to classifying elliptic 
curves, relying on explicit formulae. What happens more often in moduli 
problems is that in the first stage you construct either 

(a) embeddings in some P", n > 1, or 

(b) finite morphisms to 13', with branch locus B, or 

(c) some other reduction to projective data, 

which is canonical except for a projective transformation. To illustrate, 
given an elliptic curve E, with base point 0, using an arbitrary basis of 
H°((.9E(3(0))), we construct an isomorphism of E with a plane cubic curve 
C, which is then canonically determined up to a change C' = y(C), 
y e PGL(3, k). Or, using an arbitrary basis of H°(0E(2(0))), we construct 
a finite morphism of degree 2 from E to P 1 , with branch locus B of 
degree 4; then B determines E, and conversely, E determines B up to a 
change B' = y(B), y e PGL(2, k). Once the general moduli problem is 
reduced to the classification of some subvarieties, cycles etc. on P" modulo 
PGL(n + 1, k), the second stage is to use the theory sketched in Chapters 1 
and 2 to find moduli for these projective objects. In this chapter, I would 

2  The following chapter is completely different from Chapter 4 in the original 
notes and was not presented at Oslo. I have substituted it because it seems to me a 
much more logical continuation, tieing everything up and keeping to elementary 
constructions. 
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like to illustrate how this general procedure works when the classification 
of elliptic curves is carried out in 2 stages: first reduction to cycles in P1 
of degree 4; second construction of the quotient of the space of such 
cycles by PGL(2, k). 

The space of cycles of degree n on P1, or what is the same, the space 
of unordered sets of n points on P', is just PI In fact, let 

= P(k • a0+ • • • +k  • an) 

be the projective space with homogeneous coordinates a0 , • • • , an, and let 

P1 = P(k • X0  + k • X1) 

be the projective line with homogeneous cocrdinates X0 , X,. Then 
define 

c Pi  X 1'1<i  a> 
by 

{ locus of solutions of g = 
ao  YO+at  Xr i Xi + • • • + an  X1 = 0} • 

If a is a closed point of /3 .>  and Dc, = g n (P1 x (a)), then Da  is the 
set of roots of the equation E 	= 0 where (ai) are homogeneous 
coordinates of a. Even better though, . is a Cartier divisor on P' x P", 
i.e. it is defined locally everywhere by 1 equation, and since g PI  x (a) 
for any (a) a r, we can define D2  = g (111 x (a)) as a Cartier divisor 
too, i.e. restrict the defining equation of g to PI  x (a). But divisors on 
a curve are just cycles, i.e. formal linear combinations of closed points 
Eni(xi). It is clear that the divisor Da  is defined locally by the equation 
Ecei(XilX0)i = 0, or by Ecci(X01X1)"-i = 0, and as a cycle 13,, is just 
the set of roots of the polynomial EaiXon-1 XI counted with their multiplici-
ties. Now since every set of n points (Ai , pi ) in P1, with or without repeti-
tions, is the set of solutions of a unique homogeneous polynomial (up to 
a scalar), viz: 

n  (pi  X — .11 X 1), 
- 

it follows that every cycle of degree n on 131 equals D„ for one and only 
one cc e Pn. 

From another point of view, P'<'.>  can be viewed as the quotient of 
(P1)" by the group En  of permutations on n letters. In fact, (131 )n  parame-
trizes the ordered sets of n points and ra>  the unordered sets. Explicitly, 
expand: 

n 	 n 

fl (pi  X 0 - — X,) = E ai(2, p)g-iXti  . 
1=1 	 i=0 
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Then define 
7 (Pl)" p7a) 

by 

n((At, Pi),  • • 	11.)) = 	it), • ' *, an(A,  p)). 

It is easy to see that n(x) = n(y) if and only if x = a(n) for some 
permutation a e En . In fact, PZa>  is a geometric quotient of (Pi )" by En . 
On an affine level, it restricts to the map: 

res it : (A')1-1> An 

g(21, • • *, 	= (21+ • • • + 2n; E 2,A,; • • ; 	• 2„), 
i<j 

the elementary symmetric functions, 

and it is a classical fact that the elementary symmetric functions generate 
the full ring of permutation-invariant polynomials in n indeterminants 

21, ' •,2. 
Now consider double coverings of Pl . Assume for the rest of this 

chapter char(k) 0 2, 3. We want to prove that a double covering is 
determined by its branch locus. 

PROPOSITION 1. Let C be a non-singular curve and let it : C P" be a 
finite surjective morphism of degree 2. Let xl , • • , xn  e P1  be the branch 
points of 7C. Then n = 2m, and C can be constructed as: 

C = Snec(d), 

where .21 is the sheaf of Op, algebras Opt es 0p1(—m), where 2 functions 
are multiplied by the rule: 

(*) 	 g1) • (f2 g2) 	(flf2 4)(gl. g2)9 f1g2 +f2g1) 

and 4)  is the map: 

	

(**) Op,(—m)x Opl(— in) 	&pi( — 2m) fA-= 0,,1( — xi) C Op, . 
i= 

PROOF. C will have an automorphism : C C of order 2 inter-
changing the 2 points over each point of P". Now since it is a finite 
morphism, C is automatically equal to Spec(rr*  ec). The automorphism 
A acts as an automorphism of rE*(0c), and since char s 2, rE*(ec) 
splits into a sum F+  OO F-, where .1(f) = f, f e T(U, F+); ).(f) = —f, 
fE F(U, F-). Now the A-invariant functions F+  on C must be the func-
tions of the form g o Tr, g e T(U, Opi), so F+  = el.,. Since it has degree 
2, 7C*(0c) is a locally free sheaf of Op-modules of rank 2, hence the second 
factor F-  is locally free of rank 1. Therefore F-  = epi(k), some k e Z. 
Now the product of 2 odd functions is even, hence the multiplication in 



Introduction to the theory of moduli 	 213 

n*CC= &pi O  Op,(k) must be given by a rule of the form (*). Finally 
any non-zero bilinear ca : Op(k) x Op(k) Op is induced by a composi-
tion: 

pi(k) x Op ,(k) 	Op ,(2k) 	0 p i( -E y i) c Op, 

for some cycle Eyi  of degree —2k. Now reverse the construction and 
start from the cycle Eyi , use this to define 	and set C* = 
Spec(epi c (9,,i(k)). If y E P', t is a generator of the maximal ideal 
my,,,,, and s is a generator of the stalk epi(k)y , then near y, C* is given 
explicitly by the equation: 

s2  = u • t' 
where u is a unit in Oy, p, and 

r = mult. of y in Eyi . 

Therefore C* is singular if r > 1; C* is non-singular and y is a branch 
point if r = 1; and C* is non-singular and unbranched over y if r = 0. 
It follows that in the case of the proposition Eyi  = Exi  and n = —2k. 

Q. E. D. 

Combining this with the results of Chapter 3, we find: 

COROLLARY. The set of elliptic curves over k is canonically isomorphic 
to the set: 

1 cycles of degree 4 on Pt }/
PGL(2, 

t with no multiple points 

We could refine this result, using elliptic curves over S and the methods 
of Chapter 3 to show in addition: 

PROPOSITION 2: If U c P<a>  is the open set of cycles of degree 4 with 
no multiple points, then using the map of points in the previous Corollary, 
a geometric quotient of U by PGL(2, k) becomes a coarse moduli space for 
elliptic curves. 

We omit the proof which follows the techniques already discussed. 
The next step is to ask what Theorem 2, Ch. II says about the quotient 

of P4<'a>  by PGL(2, k). We make contact at this point with some of the 
oldest work in invariant theory. In fact, to work out Theorem 2, first we 
replace PGL(2, k) by its double covering SL(2, k) in order that the action 
of the group on Pta>  should lift to the invertible sheaf Op4(1). Then 
SL(2, k) acts on the whole homogeneous coordinate ring 

k[ao , al , a2 , a3 , a4 ] 

of r<'•a>  . This action is the obvious one, i.e. let 
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db) 6 SL(2' k)  

It acts on 11  by the linear map 

(X0 , X1) (aXo+bX 1 , cX0+dX1) 

in homogeneous coordinates. We must make it act on the a;  so that the 
form EaiX04-1X1 has invariant meaning, since in its action on Pt> , the 
subvariety 	c Pl x It>  should be taken into itself. In other words 

(a 
 d

b) induces the map a, -> a; such that 

E aaaxo+bx04-- i(cxo+dxi )` E 	. 

Alternatively, SL(2, k) acts on the vector space Ek • a;  by the dual of 
the 4th  symmetric power of its action on kX0  + kX, . The whole construc-
tion hinges on the subring 

R = k[ao , al , a2 , a3, a4 ,rL(2, k) 

of invariants. In classical terminology, one wrote f = Eai X04-i  X1 , and 
called f a binary quartic. The elements of R were called the invariants of a 
binary quartics. More generally, the elements of 

X1, a0 , al , a2 , a 3 , a 4]SL(2,k) 

(such as f itself) were called the covariants of a binary quartic. Generators 
of both of these rings are classical. (Good references are Elliott, Algebra 
of Quantics, Grace and Young, The algebra of invariants, or Schur, 
Vorl. uber Invarianten theorie.) They are written down quickest by an 
amazing technique known as the symbolic method - the only bit of 
linear algebra I believe that has not been thoroughly `Bourbakized' 3. One 
does this: one takes the formf and formally writes it out as though it were 
a power of a linear form in several different ways, i.e. 

f  = otx4 = fix4 = yx4 = 

where 	 = aoXo + 

= fioXo+filXi 
etc. 

One then makes a monomial in ax , 13x,  etc. and the 2 x 2 determinants: 

(a,  /6) = aofli - a1i30 

(a, = ocoh - aiYo 

3  (Added in proof) Now it has been ... 
cf. Dieudonne, Seminaire Bourbaki, June 1971. 
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such that the total degree in each a, $ etc. used is 4. For instance: 

f = c,t 
h  = 

(
x,  /3)20c

2$2 

= (a,  fl)2(Y,  /6)1!fixY:3c 

P = (0c,  

Q = (a, S)2(a,  Y)2(S,  Y)2  

Each of these can be re-interpreted as a polynomial in the coeffi-
cients ai  and the variables (X0  , X1) by simply taking each monomial 

- 	1640  - WI, etc. and replacing it by (40-1  ai  which it equals in purely 
formal identity f = oct,f = fi4x  etc. One must obtain in this way a covari- 
ant. Here is an example: 

P = (ao Si — al )604  
= at )61 — 4aO al So Si +60q, ai fig Si —4ao ai SO Si + li fi'O 

1 2 = ao  a4-4-.1a i  a3 +-02 — Ta3  ai +a4 a0  
= 6(a1-3a1 a 3 +12a0  a4) 

Similarly, but with a bit more sweat, Q comes out as the determinant: 

a0  a1/4 a2/6 
Q = 6 • det a i /4 a2/6 a3/4 ( 

a2/6 a3/4 a4  
= a0 a2 a4-- 3 a0 a32  — 3 a,2  a4+ - a1 a2 a 3--31--6a 

It is an old theorem that f, h, j, P and Q generate the ring of covariants. 
For instance another well-known invariant is the discriminant D of the 
form f: i.e. for the form 

4 

f = 	xo -21 x1) = 
let 

D = n 	- Ai  2  

Then D can be rewritten as a homogeneous polynomial in the coeffi-
cients a0 , al , a2 , a3 , a4  off of degree 6. But in fact, one sees easily that: 

LEMMA 1. D = const. (P3  — 6Q2). 

PROOF. In fact, on a k-valued form f, D(f) = 0 if and only if f has a 
double zero. And D is zero to 	order on the irreducible variety off 's 
with multiple zeros. Since D, P3  and Q2  all have degree 6 in the a's, it 
suffices to show that DIP3  — 6Q2  and for this it suffices to show that 
P(f)3  = 6Q(f)2  iff is a form with double zeroes. But such anf is equiva-
lent to a form f with double zero at Xi = 0, i.e. with a0  = al  = 0. 
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Therefore 

P(f) = 	= 
hence indeed 

P(f)3  = 13(f)3  = M34 = 6Q(f)2  = 6Q(f)2. 

Q. E. D. 

We will not prove or use the result on the generators of ring of covari-
ants although it is not too hard. Instead we want to see geometrically 
what P and Q do. The first point is: 

LEMMA 2: P(f) = Q(f) = 0 <#>. the form f has a triple zero. 

PROOF. This is clear from lemma 1 and the fact that if f has a double 
zero at X1  = 0, then P(f) = 6a2, so that P(f) = 0 if and only if the 
double zero is a triple zero. 

Q. E. D. 

Let X„ c Pt > be the open set of forms f with no triple zero. Then we 
obtain a morphism: 

n : 	Proj k[P, Q]. 

Since deg P = 2, deg Q = 3, the subring of k[P, Q] of elements whose 
degrees are multiples of 6 is just the ring k[P3, Q2 ], and 

Proj k[P, Q] = Proj k[P3, Q2 ] 

Thus it is just the map from X.„ to P 1  defined by P3/Q2. To examine the 
orbits of PGL(2, k) in X„, note that any form f with at least 3 distinct 
zeroes is equivalent to a constant times a form 

f 2(X) = X0  • X1  (X0 — X,)(X0 -2X1) 

by a projective transformation. But computing we find 

a0  = 0, al  = 1, a2  = — 0.+1), a3  = A , a, = 0 
hence 

P(h) = 1(22-2+1) 
Q( f A) = 71-f(..1+ 1)(). — 2)(11— 1) 

and by lemma 1: 
P(f2)3-6Q(L)2  = cnst. 22(A — 1)2  . 

Therefore 

j(2) = cnst. 	P(fa)3  

P(h)3  6Q(L)2  

But we proved in Chapter 3 that 
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[
the 2 sets of points {0, 1, co, Ai } 
and {0, 1, co, A.2} are projectively 
equivalent 

i(A1) = i()-2) .*> 

 

hence 

P(fAi)31Q(L,)2  = P(f2)3/Q(f2)2  i(21) = j(22) 
ni  is equivalent to 
a constant times f,„ 
by some o-  e SL(2, 

Finally, in Xss , all orbits are represented by forms L except for the 
forms with 2 distinct doubles zeroes, which are equivalent to a constant 
times the form: 

*(X) = Xo )0.  . 

It is clear that P(f *)3  I Q(f *)2  = 6, just like the other forms with one 
double zero. Now define XS  c Ars, to be the open set of forms f with no 
double zero. The we can summarize our conclusions in: 

PROPOSITION 3. Let (5 e Proj k[P, Q] be the point defined by P3  /Q2  = 6. 

Then 

(i) XS  = rt- 1  (Proj(k[P, Q])—  (S)) 

(ii) if x e Proj k[P, 	x (5, then tr-1(x) consists of one orbit and it is 

closed in X. 

(iii) n-1(S) consists of 2 orbits, the orbit of the form fo  which is 3-
dimensional and the orbit of the form f* which is 2-dimensional. The first 
is open in it 1  ((5) and the second is closed. 

The final step is: 

PROPOSITION 4. Proj k[P, Q]— (6) is a geometric quotient of Xs  by 
PGL(2, k). 

SKETCH OF PROOF. The only remaining point is that for all 

U c Proj k[P, 	(6), 

invariant functions f on n-  (U) are induced by functions on U itself. 
This can be checked by first restricting f to the curve in Xs  of forms L, 
(A. 	0,1), and noting that this curve is separable and finite over 

Proj k[P, 42]— (6). 

But f is set theoretically a pull-back of a function on U, so by Zariski's 
Main Theorem, f = g o it, some g e F(U, C.). This is nothing but a 
rephasing of the final arguement in Ch. 3 that A.1 is a coarse moduli 
space. 
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This gives us a new proof of the main results of Ch. 3. It also gives us 
an idea of how to interpret the compactification Pj of AJ as a moduli 
space of a bigger moduli functor. Whenever a moduli space is not com-
plete, the natural question is: what happens to the objects being classified 
when they move off to the boundary of the moduli space? As j co, or 
P3  /Q2  —> 6, we see that ft  fo  or f *, representatives of the 2 orbits in X,!  
over 6. In the proof of Prop. 1, we saw how to construct double coverings 
of P1  from any cycle on P1  of even degree: if these cycles have multiplici-
ties, the effect is to make the covering a singular curve. To be explicit, 
take as branch locus the cycle f0  = 0, i.e. 2(0) + (1)+ (co). The associated 
double covering is the curve Co  which is covered by the 2 affine pieces: 

(i) rc - 1(1' 1  — (oo)) which is given by 

y2 = (X0 \ 2  (X0 _1) 

\XII kX1  

(ii) n'(P1 — (0)) which is given by 

Z2  = (--1X 	— I) . 
X0  X0  

The two are related by Z = i(X1IX0)2  • Y. Note that Co  is non-singular 
except for an ordinary double point (or node) over (0), i.e. a double point 
at which the tangent cone consists of 2 distinct lines. If t = Y/(Xo/X1), 
then 12  = X0/X1 — 1, hence 

-XO t2 
+1 

X1  

Y = t(t 2  +1) 

which proves that the field of rational functions on Co  is k(t). Thus Co  
is a rational curve with 1 node. On the other hand, take as branch locus 
the cycle f* = 0, i.e. 2(0) + 2(co). The associated double covering C* is 
covered by: 

(i) 
y2 = (A  )2 

and 

(

x, 2  
X01 

related by Z = Y • (X1/X0). Thus C* has, in fact, 2 non-singular rational 
components: 

X 
: the union of Y = ) and Z = 

X  
X1 	X0 

(ii) Z2  = 



Introduction to the theory of moduli 	 219 

CZ : the union of Y = — '')C  and Z = — 
Xl 

X, 	X0  

meeting transversely at 2 points 

Xo 	X 
Y= — = 0 and Z = = 0. 

X 	 X0  

Co: 

1 0 00 

   

C4: 

0 00 

Figure 1 

Moreover, consider the algebraic family of cycles 2(0)+ 0,0+ (co). 
They are all projectively equivalent, but as it 	co, it 'jumps' to the 
cycle 2(0)+2(co). Taking double coverings, the curve Co  can 'jump' to 
C*. Topologically if k = C, what happens is illustrated below: 

Figure 2 

In other words, as j co, if we follow the differentiable family of 
surfaces CA, either one or two curves begin to shrink until when j = co, 
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we wind up with a topological space which is no longer a manifold but 
is homeomorphic to one of the 2 spaces Co  or C* as illustrated. 

If we return to our functor .4, there is a very natural way to enlarge 
<if allowing the curve Co  to define a new element of ..1 (Spec k). 

DEFINITION. A family of semi-elliptic curves over a k-variety S is a 
morphism of k-varietiesp E S together with a section 0 : S E such 
that E is proper and flat over S, the closed fibres are either elliptic curves 
or a rational curve with one node and in the latter case, 0(s) 0 the node. 

DEFINITION. al (S) = the set of all such families over S, up to iso-
morphism. 

We can now extend the whole theory of Ch. 3 and 4 to semi-elliptic 
families: A = Image of 0 is a divisor, p*  0E(2A) and p*0E(3A) are 
locally free sheaves in S of ranks 2 and 3, and locally over S, E can be 
defined either 

a) as a covering of P 1  x S ramified in a suitable family of cycles of 
degree 4 on P 1  parametrized by S or 

b) by an equation in Weierstrass normal form y2  = x3 + ax +b. 

In case (a), the key point is that the cycle is semi-stable and has at 
most one double point; in case (b), 4a3  + 27b2  need not be invertible, 
but a and b together should have no common zeroes. The final conclusion 
is that there is a canonical morphism 

: 	h pii 

extending our previous and making P.) into a coarse moduli space for 
semi-elliptic curves. 

This gives us a rather satisfactory way to answer the question — what 
happens to the elliptic curve at co. However, as soon as we begin to 
admit singular curves into our moduli space, it raises another question -
what happens if we admit all singular curves C of arithmetic genus 1 
(i.e. x(ec) = 0) into our moduli space? As might be expected, we get 
more and wilder jump phenomenon. (Incidentally, when classifying 
2-dimensional varieties, jump phenomenon can even appear with 
families of non-singular varieties). It turns out that there is a qualitative 
difference between curves with nodes only and curves with higher sin-
gularities such as cusps. I would like to give 2 examples illustrating how 
pathological curves with cusps are from the point of view of moduli. 

EXAMPLE A. Take any elliptic curve E over k and write it in Weierstrass 
normal form: 

y2 
= x3+ax+b. 
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For every 2 e k, 2 0 0, 
y2 = x3 + A2ax /13 b  

represents the same elliptic curve. Consider the family E of curves over 
S = Spec k[2] defined by this equation. 

Then 
E= EA  all 0 0. 

But E0  is the curve y2  = x3: an irreducible plane cubic curve with a 
cusp at x = y = 0, which is rational (if t = y/ x, then x = t2, y = t 3). 
In other words, every elliptic curve, without changing j, can jump to 
the cuspidal cubic y2  = x3. Thus j is completely indeterminant on 
y2  = x3  and, topologically, it is impossible to fit E0  into the moduli space 
PI even allowing non-separated schemes! 

EXAMPLE B. Let k = C. 
Let Co  be a plane curve of degree n with one cusp and no other 

singularities. If we choose coordinates correctly, we can normalize Co  
so that the cusp is the origin x = y = 0 and the affine equation of Co  
is of the form: 

0 = x2  +y3  +p4(x, y) 

where P4  is a polynomial whose leading terms have degree 	4. Let 
C, be the nearby curve defined by the equation 

t = x2  +y3  +P4(x, y), Itl < c. 

It is easy to see that C, is non-singular everywhere and I would like to 
describe the topological situation with C, approaching Co . Everywhere 
except in a neighbourhood of (0, 0), U1,1  < g  C, forms a nice differentiable 
family of surfaces over the t-disc. However near (0, 0), since IP4(s, Y)I is 
much less than Ix21 or ly31, C, is essentially the surface 

C? x = -±N/t—y3  

IYI < 

Take t even smaller: in fact ill < ie. Then x is a branched covering 
of the y-discly1 < n, branched at y = 	w ./t, 	t: 

branch 
points 

Figure 3 
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Topologically, the above surface with boundary is just a torus with a 
hole in it. Thus C„ and its degeneration to Co , looks like this: 

Ct= 0 

Figure 4 

In other words, the cusp has swalled a whole infinitesimal elliptic curve! 
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