PATHOLOGIES III.*

By D. MuMFroORD.*

This note continues, more or less, our two previous papers [2] and [8]
in which we have been presenting unpleasant facts of (algebro-geometric)
life. The specific topic in this note is Kodaira’s vanishing theorem, or as it
is called classically, the regularity of the adjoint linear system. Except for
one slight fudge (our example is a normal surface, not a non-singular one)
our result is that K. V. Theorem is false in characteristic p. In fact, this
example is presented in §2. In §1, we give an outline of the true result in
characteristic 0, and in particular extend the theorem to singular varieties
in an attempt to clarify the role played by non-singularity.

The classical form of Kodaira’s Vanishing Theorem (in the surface case)
may be found in Zariski’s book [7], p. 144, where, in essence, it is stated:

(*) If F is a non-singular projective surface, in characteristic 0, K
the canonical divisor class of ¥, and H a hyperplane section of F, then the
linear system | K -4 H | is regular (Picard, 1906). More generally, if H is
an irreducible curve which is part of an algebraic family of curves other than
an irrational pencil, then | K 4 H | is regular (Severi, 1908).

In terms of cohomology, | K 4 H | regular means that
H(0p(E + H)) = H*(05(K + H)) = (0).
Or, by Serre duality, that
H°(Op(—H)) =H*(0Op(—H)) = (0).

This is the form generalized by Kodaira [1]. He showed:

(**) If V is a non-singular projective variety of dimension n, charac-
teristic 0, and H is an ample? divisor class on V, then

Hi(0y(—H)) = (0), i=0,1," - -,n—1.

1. The fact that H°(Oy(—H)) = (0) is absolutely trivial in all
characteristics. Thus the reader can check:
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ProposiTioN 1. If V is any complete variety, and L is any tnvertible
sheaf on V such that T' (L") 540 for some n=1, then T'(L*) = (0) unless
L= Ov.

On the other hand, the vanishing of H* already is very subtle. For H"s
I claim the following which generalizes most of Severi’s assertion too:

THEOREM 2. Let V be a complete normal variety of dimension at least
R, characteristic 0. Let L be an invertible sheaf on V such that, for large n,
L» is spanned by its sections. Let these sections define the morphism

V——>W

(Recall that if n>> 0, then ¢y (Ov) = Ow, W is normal and the fibres of ¢
are connected). Then

HY(L™) = (0) & dim W > 1.
for all m=1.

Proof. The implication = is nearly obvious. By definition of ¢, there
is a positive integer m and a very ample invertible sheaf M on W such that
Lm==¢*(M). TUse Leray’s spectral sequence:

H? (W, Ripy (L)) > H*(V, L™).
By definition of W, ¢,(Oy) =Ow; hence ¢, (L2")=M-2 The spectral
sequence gives:
0—>H(W,M2)—> H\(V,L2m)—. - -
But if W is a curve, and M has positive degree, then H*(W,M-2) 5% (0),
hence H*(V,L-2m) 4 (0).

To prove the implication < we first reduce to the case where V is non-
singular and projective. To do this, introduce a projective de-singularization
ki .[7—-) V.

Let L—ax*L. Since V is normal, ,(07) = Oy, hence my(L™) = L™,
Leray’s spectral sequence again gives:

0— HY(V,L™)— H(V,L™) —>- - -.

Therefore, H*(V, L) = (0) implies H*(V, L) = (0).
Now assume V is non-singular and projective. We can, of course, assume
that the ground field is the field € of complex numbers. As above, let M be
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a very ample invertible sheaf on W such that ¢* (M) == L™, some positive m.
Let i: W— P, be an immersion such that M is the restriction of O (1) to W.
Let L, M, and O, be the line bundles on V, W and P, corresponding to L,
M and O(1). Next, equip O, with its standard Hermitian structure: by
pull-back, this puts a Hermitian structure on L™ and M, and by taking m-th
roots, this puts a Hermitian structure on L. Let Q, be the curvature form
of O;: this is well known to be positive definite. The curvature form of L™
is then (10¢)*Q, and the curvature form Q of L is just

1 .
Q=E(1’o¢)*’00;

which is, therefore, positive semi-definite.
Now recall the fundamental inequality of Kodaira’s paper. Choose a
Kihler metric on V, given in local coordinates by

‘ g
ds? = 3, gop dz*dzP.
a,B=1

Choose local trivializations of L and assume that the hermitian structure on
L is given by

Isl?=as*|f;[?
if a section s of L is defined by the function f; in terms of our local trivializa-
tion. By definition

i = i
= —_— 7B
o 90 (log a;) e O%X op d2%dZ
Now assume that an element ¢ € H**(V,Q*®L) is given by a harmonic
L-valued (n,n—1)-form &, where
® = SUsgenayag @t At s Ndar A\ dE N A dE
locally a;’s R .

Then Kodaira proves that:

1 -
0= ={ X ZXeMiz-nfogtng Wiz nys Yna
V @ ogyeeey0py
'Vl!'é:;yvb-:l gfﬂ . g“hal- PRI g’Yw—lU"nq} av.

(The reader may check that this integral is intrinsic.)  This is easier to
see in terms of the dual harmonic form

<I>f=—]i*!I>

locally @j
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which is an L-*-valued (0,1)-form. Express ®!:

@1‘ = Zva dia.
locally «

Then one checks that

1
Vo= —~ Uyz--pize-2 nfea
a9

~ M

and, after some sweat, one also can rearrange Kodaira’s integral into:

0= f 9 0i{ 2 Xnpg?? - 3 vabege®
\4 v8 a,e

— 2 Xy [Zg7P0p] - [ 2 9°Ta] }V .

V€ B

To see exactly what we have here, examine the integrand at one point P of V.
Choose local coordinates so that the Kihler metric is given by

gap(P) = ap,
and the curvature form of L is diagonalized:
Xog(P) = Aa- Sap.
Since X is positive semi-definite, Ao == 0 for all «. The integrand is then:
(i) S lvl

Since this is 'non-negative, we conclude that the integral is non-positive only
if the integrand is identically 0. If ®5%40, moreover, then ®(P) 40 at a
dense set of points P. From the form of (i), we conclude that at most one
Ae is not zero at all such points P; hence, in fact, at most one A, is not zero
at all points. In terms of ¢, this means that dim W =1 (i.e. use of Sard’s
theorem and the positive definiteness of Q,). Q.E.D.

Actually a completely algebro-geometric proof of this result can be given.
Because this proof is so simple and because it indicates the reason why the
theorem will fail in characteristic p, it seems worth giving:

Second Proof. As above, we need only prove “ <.” Therefore assume
dim W > 1. In this proof, we need to make a preliminary reduction not to
the case where V is non-singular, but to the case where L— Oy (D), D a
reduced effective Cartier divisor on V. But by our hypothesis on L, it is
clear that for large n, L= Oy(D,) for some reduced Cartier divisor Dy
on V. Pick an affine open covering {U;} of V such that L is defined by the
co-cycle {ay;},
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a; €T(U;N Ty, Ovy)

and D, is defined by local equations f; in Uj:

fzz erT ( U, 017)
fo= " ;.
Define a n-fold cyclic covering:
ki T7—> 14
by local equations:
zr =i
2; == Qyj " %j.

Then if L —==*(L), the equations z;=0 define a Cartier divisor DonV
such that )
L=07(D).
Moreover, suppose we prove that H*(¥V,L-*) — (0). Then
HY(V, 7 (07) @ L) == HX(V, my (L))
=HY(V,L")
= (0).

But Oy is a direct summand of the coherent sheaf =, (0O7) of Op-modules:

(¢4
Or = m(09)

B

where « is the canonical map =* taking functions on ¥ to functions on V,
and f—(Trace). Therefore H'(V, L) = (0) lso.

Now assume L = Oy (D). The next step is to show that D is connected:
Let H be any hyperplane section of W in the embedding defined by M. Then,
since dim W > 1, H is connected, hence ¢*(H) is connected. But since the
morphism i0¢: V— P, is defined by the complete linear I'(L™), the divisor
mD equals the divisor ¢*(H) for some hyperplane section H of W. There-
fore D is connected.

Now consider the exact -sequence:
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0> L1—-0yp—>0p—0.
This gives:

H*(0y) = H°(0p) — H: (L) = H'(0y) = H*(0p).

Since D is reduced and connected, H°(Op) consists only in constant func-
tions, all of which lift to H°(Oy). Therefore,

H (L) == Ker{H'(Oy) = H(0p)}.

Let Pic°(V), Pic®(D) be the connected components of the origin of the
Picard schemes of V and D. Recall that H'(Ovy), H*(Op) are canonically
isomorphic to the Zariski-tangent spaces to Pic°(V) and Pic®(D) at their
origins, so that the map from H*(Oy) to H*(Op) is just the differential of
the canonical homomorphism :

a
Pic® (V) —— Pic®(D)
(cf. [4], Lecture 24). Since the characteristic is 0, the kernel of «, as a
subgroupscheme of Pic®(V), must be reduced (cf. [4], Lecture 25). There-
fore, if the differential of « has a non-trivial kernel, o itself must have a
positive-dimensional kernel. Therefore, every non-trivial subgroupscheme
has non-trivial points of finite order on it. Therefore, we conclude:

~ 38€ Pic°(V) of finite order n, n > 1, )
(L) # (0) > ( such that «(8) =0.

Now 8 defines, in the usual way, an unramified Galois covering:

VI

)

with covering group Z/nZ. «(8) =0 implies that this covering splits over
D, ie, #*(D)=D,U- - -UD, (the DJs disjoint and isomorphic to D).
But let L’=#*L. Then it is clear that the pair (V’,L’) satisfy all the
requirements imposed on (V7,L). Therefore the identical argument used
to prove that D is conneced also proves that I’ =#1(D) is connected. This
is a contradiction. Q.E.D.

Note that the only place where char =0 has been used is in the step
where we used the fact that ker(a) must be reduced. Incidentally, this
proof also can be generalized to further classes of invertible sheaves L = Oy(D),
which do not necessarily have the property that L™ is spanned by its sections
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for large m. But I don’t know of any really definitive statement in this
direction. One further point: it is not clear whether or not the normality
of V is essential in Theorem 2. By Grothendieck’s duality theorem, it follows
that 7 must at least have the “property S2”: Vo € V, depth (0,) =2 (v a
closed point). But I don’t know whether or not singularities in codimen-
sion 1 can be allowed.

2. Now consider the question of whether or not
H'(V,0v(—D)) = (0)
when V is a normal variety in characteristic p, and D is an ample effective
divisor. As in characteristic 0, we can analyze this via the exact sequence:
H°(Oy) - H°(0p) - H*(Oy(— D)) - H*(Oy) = H*(Op).
The contribution from the left is easy to dispose of:
ProrosiTioN 3. If V is a complete normal variety, dimV =2, and D

is an effective ample Cartier divisor on V, then H°(0p) consists only in
constants.

Proof. In characteristic 0, this follows from Theorem 2: Now assume
that the characteristic is p > 0. Let D be defined by local equations f;=0
with respect to a covering {U;} of V. Since D is ample, D is connected.
Therefore, if s € H°(0p), s is constant on the scheme Dyeq. Assume that Op
has a non-zero section s which is zero on Dyq. Let s be represented in U;
by -a funection

8; € I‘(Uzl, Ov)

Then s;—s;=a;fs, a;; € T(U; N U, Ov).. It follows that for all positive v,
S/va S 8] —_ jpv . fipv'

Therefore the collection of functions {s} defines a section s, of Op, where
D, is the Cartier divisor defined by {f#*}. Notice that s,540: for if 5,—0,
then we would have:

s =i, BET(T,0n).

Then (s;/fi) would be a rational function on V that was integrally dependent:
on T'(U;, Oy). Since V is normal, this would imply that

8 € fi’I‘(Ui, 017)

i.e, s=0. Therefore 5,540, and by the exact sequence



PATHOLOGIES III. 101

H°(Oy) > H°(0p,) > H*(Oy(—D,))
this implies that H*(Oy(—D,)) 5= (0). But
Ov(—D,) == [0y(—D)]®.

Since we can take v arbitrarily large, and since Oy (D) is ample, this contra-
dicts the lemma of Enriques-Severi-Zariski (cf. [5], Th. 4, p. 70). Q.E.D.

Our question is, therefore, equivalent to the injectivity of H*(Ovy)
—> H*(Op). We can further restrict this kernel by examining the frobenius
cohomology operation: 2

F
Hl(Ov) -—)HI(OV)
defined by F({a;}) = {&®} in terms of Cech co-cycles. The point is that
if we consider F on the subspace H*(Ov(— D)), it factors as follows:

H*(Oy) ——— H*(Oy)

H*(Ov(—D)) H*(0Oy(—D))

U
H*(Ov(—pD)).

But, for large.v, H'(Oy(— p*D)) = (0) by the lemma of Enriques-Severi-

Zariski. Diagram (i) implies, by induction, that

F{H*(Oy(—D))} C H'(Ov(—p*D)).
Therefore :

Prorosirion 4. F s nilpotent on the image of H*(Oy(— D)) in H*(Ov).

This Proposition can also be proven by using the fact that elements of H*(Oy)
idempotent for F die in p-cyclic unramified coverings of V (cf. [6],§16)
and by imitating the second proof of Theorem 2. On the other hand, the
elements of H*(Oy) killed by F die in principal coverings of V with infini-
tesimal structure group «,. These facts may be expressed in the language
of Grothendieck cohomologies by:

{a€ H'(Oy) | Fa=oa}=H%,, (V,Z/pZ),

topology

{a€ H'(Oy) | Fa=0}=H'g (V,a,).

topology

2 This fact was pointed out to me by Serre, and has also been noticed by Grauert.
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But principal coverings of V with structure group a,, even if they are varieties
at all, may be non-normal and must be purely inseparable over V. This is
very awkward and is what really leads to the debacle. To present the counter-
example, I want first to make positive use of the preceding remarks via:

LemMA 5. Let f: V=V be a finite surjective morphism of normal
varieties coresponding to a separable function field extension. Let
a€ H*(V,Oy) be non-zero and such that Fa—=0. Then f*a€ H*(V’,0y)
18 not zero.

Proof. Let « be represented by the Cech co-cycle {a;;} with respect to
some open affine covering {U;} of V. Then Fa=0 implies that there are
functions ¢; € I'(U;, Oy) such that

@i = gi— G-
If f*¢=0, then there are also functions h;€ T'(f*(U;),Oy) such that
[* (@) = hy— h;.
It follows that
hi — f*(g:) = h? —*(95),
i.e., there is a constant 8 such that
7*(9) =h# + B, all 4.

"Therefore f*(g;) € k(V’)?. Since k(V”’) is separable over k(V), this implies
that g;€ k(V)2, for all 4. If g;=ko, ki€ k(V), then since V is normal,
it follows that
ke T(U;, Oy).
Then
@ij = ky— k;,

so ¢=0: a contradiction. Q.E.D.

Ezample 6. A normal complete algebraic surface ¥V with an ample
invertible sheaf L such that

a2 (V, L) # (0).

Start with any normal projective algebraic surface V, and a non-zero
element « € H*(V,,Ov,) such that Fa=0: e.g. the product of a super-
singular elliptic curve with any other curve. Let H be a hyperplane section
of V, and let Lo=0vy,(H). We shall let V be the normalization of V, in



PATHOLOGIES III. 103

a suitable finite separable extension field E of k(V,). If =#: V— 7V, is the
projection, let L==*(L,) =Ov(«*(H)): an ample sheaf on V.

Let « be represented, as in the lemma, by {ay;} and let g;€ I‘(Ui, Ov,)
satisfy

U = gi— G-
Let ;=0 be a local equation of H in U, (replacing {U,} by a finer covering
if necessary). Define an extension F; of k(V,) by the separable equation:
2P — hiPz = g;.

We shall let £ be a join of the extensions F;. Then I claim that for this
E and the corresponding V and L, the element #*¢ is actually in the sub-
space:

H*(V,Oy(—=*(H))) C H*(V,Ov).

Cover V by the open affines U;* =#*(U;). Then 2z, € T(U;* Oy) and

n¥*a = coho. class [a;]
==coho. class [a;—2; + 2]
and
G—2+ 2?2 af—2P + 2P
haz hip

=__( gi—2) — (9i—27)
hP

=—2+ (hy/hi)?%
eT(U*NU* Oy).
Therefore, a;;— 2; -+ #; is actually in T(U#* N U, Oy (—a*(H))). Q.E.D.
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