A REMARK ON MORDELL’S CONJECTURE.

By Davip MuMFORD.*

It is somewhat surprising that the systematic evaluation of the heights
of rational points on a curve and on its jacobian variety and particularly of
their relation to each other should yield any new information. Nonetheless
this appears to be the case and the result is described in this article. Although
the main theorem is not even a special case of the very fascinating conjecture
of Mordell, still it is an estimate that already reveals that rational points
on curves of genus at least ® are much harder to come by than on curves
of genus 0 or 1. It is a quantitative limitation on the heights of such points
which is well-known to be false in the case of genus 0 or 1. Incidentally,
there is a good explanation why an estimate of this type can be obtained so
cheaply, whereas Mordell’s conjecture itself could not : namely, results obtained
by our methods will more or less automatically apply to the analogous “func-
tion field” case [where the ground field is a function field in one variable
over a finite field, rather than an algebraic number field]. And in this case,
unless further restrictions are imposed, there are curves of any genus with
an infinite number of rational points whose heights increase cxactly at the
rate which we will find.

Let & be an algebraic number field of finite degree over Q. Let C be a
non-singular projective curve over k& of genus g at least 2. Mordell’s con-
jecture asserts that the set of k-rational points on C' is finite. Now suppose
that a projective embedding of (' is fixed, allowing us to talk of the heights,
It(x), of k-rational points of @. Then my result is this:

Tueorem. There are real constants a and b, a >0, such that if the
countable set of k-rational poinis of C' is ordered by increasing height—call
the points xy,a.,+ - - —then

hi(2;) = evit?,
Because of the well-known properties of heights, this result is not affected

by changing the projective embedding of ¢'. An example of the theorem is
given by Fermat’s curve:
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CoroLLARY. Let (@i, Bi,vi) be an infinite set of distinct positive integral
solutions of the equation
X Yn=7Zn

such that @i, Bi, vi have no common factors and such that {y:} is an increasing
sequence. Assume nz=4. There are real conslants a and b, a > 0, such thal

Yi. ; e(eahb).

A final word: that the proof of the theorem appears in as natural and
simple a form as it does is due to the collaboration of John Tate; that it
appears in print, needless to say, is not.

1. The theory of heights. We fix an algebraic number field &, of finite
degree over Q. The main result of the “classical ” Theory of Weil (cf. [1]
and [4]) is the construction of a set of functions as follows:

Given: a scheme X, projective over k, and an element & € Pic(X).
Constuct: a real-valued function on the set of k-rational points X, written

hg(w), z€V;

In fact, 25 is not constructed precisely, but only the class of all functions,
differing from one member of this class by a bounded function is constructed.
This construction has the following properties (where O (2) denotes a bounded
tunction of z):

a) Iff: X—Y is a k-morphism of schemes X and Y as above, and if
3 € Pic(Y), then

hs(f (@) ) = by (%) + O ()
b) If 3,8, € Pic(X), for X as above, then
b5, (€) = ho, (@) + hay(2) + O ()

c¢) If D is an effective Cartier divisor on the projective scheme X, and
if D defines the element § € Pic(X), then there is a real constant K such that

hs(z) = K, all @€ X — Support (D).

d) If 8¢ Pic(X) is ample, then for all constants K, the set of points
@ € Xy, such that hs(z) = K is finite.

The lack of a really definite height function is one of the most awkward
aspects of this theory. In case X is assumed to be an abelian variety, this
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defest has been remedied by Néron and Tate (cf. [2], [3], [43]). The simplest
way to state their result is this:

TrroreM. Let X be an abelian variety, and let 8 € Pic(X). Then the
class of functions hs on X contains a “quadratic” function on X, i.e., a
function f satisfying the tdentity:

fledy+2)—f(z+y) —fl@z+2) —f(y+2)
+1(2) +f(y) +f(2) —f(0) =0.

One checks immediately that a real-valued bounded quadratic function is
constant. Therefore, if we put the two requirements on hs that (1) it is
quadratic, and (2) it is 0 at the identity point e, then we obtain a completely
well-defined height function. Moreover, we get the important Corollary :

CororrARY. 1) If X is an abelian variety, and 3,8, € Pic(X), then
the normalized height functions on X satisfy:

hs,i0, () = hs, () + hs, (), all x € X,

) If f: X— Y is any morphism of abelian varieties, and 8 € Pic(Y),
then

hyes (@) = ho(f () ) —ha(f(e)),

all 2€ Xy In particular, of f is a homomorphism (t.e., takes the identity
lo the identity), then

hyss (2) = hs(f (2)).

2. The set-up derived from a curve. We shall assume given a non-
singular projective curve C, over k, with genus g =1. The purpose of this
section is to give a thorough account of the auxiliary varieties associated to
C, the canonical divisor classes that they carry, and their universal properties.
For the sake of simplicity, we also assume that a base point z, € Oy has been
chosen once and for all; and that all other schemes X occurring in the dis-
cussion have base points py. (The base points on abelian varieties will be
assumed to be their identity points).- A general concept which is central to
the discussion is the following:

Definition. Let X and Y be connected dlgebraic schemes over k. A
dwisorial correspondence on X X Y is an element § € Pic(X X ¥) which is 0
restricted to either of the subschemes X X {py} of {px} X Y.

First of all, let J be the connected component of the identity of the
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Picard scheme of C: i.e., the so-called “Jacobian variety” of C. It is an
abelian variety of dimension g. Moreover, J is characterized by the existence
of a canonical divisorial correspondence

8, € Pic(C X J)
which has the universal mapping property (cf. [5] and [6]):

For all connected algebraic schemes X, and all
divisorial correspondences  on C X X, there is
(*) a unique morphism f: X —J such that

(Lo X F)*(8:) =n-
Secondly, on the non-singular surface C' X C the Weil divisor
A—CO X {zo} —{xo} X C
defines an element A* € Pic(C X C) which is clearly a divisorial correspon-
dence. By the UMP (*), there is a unique morphism
¢: C—>J
such that A% = (1¢ X ¢)*(8:).

Thirdly, let J be the connected component of the identity of the Picard
scheme of J : i.e., the dual abelian variety. J is characterized by the existence
of a canonical divisorial correspondence

8, € Pic(J X J)

which has the universal mapping property:

For all connected algebraic schemes X, and all
divisorial correspondences 5 on J X X, there is
(**) a unique morphism f: X —J such that

(17 X 1)*(82) =n.

Fourthly, the morphism ¢ dualizes to a morphism é: J—J. Namely,
apply the Universal mapping property (*) with X =J, 5= (¢ X 17)*(8.).
This means that we get a diagram:_

. e X5 .
CXI———>J XJ

() ll"x‘?’
CxXdJ

such that 8, and 3, induce the same correspondence on €' X J.
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Fifthly, recall the general construction by which divisor classes % on
abelian varieties X define homomorphisms from X to its dual X. There are
three maps from X X X to X—the group law x and the two projections p,
and p,. Then one checks that for any 5 € Pic(X), the divisor class

p*(n) — pa* () — p2*(n)

is a divisorial correspondence on X X X. Therefore, by definition of X,
there is a unique morphism f: X — X such that

canonical class ]

pr—pn—p*n= (1x X )* [OHX w %

We will denote f by A(yn). Recall that A is itself a homomorphism:
Al =7s) =A(91) =A(n2). In terms of this definition, the central result
concerning jacobians is the following (due to Weil [7]).

THEOREM. 3 an ample dwisor ® on J such that
d=—A(0)"

In fact, recall that ® is nothing but the sum of the subset ¢(C) in J with
itself (with respect to the group law in J) (g—1) times. For reference we
write the meaning of this Theorem out as follows:

y=—9"
class of prO— PO —p,*0 = (1; X ¢) *(32).
call this 6

The net vesult of all this is the following: suppose we identify J with
J via the isomorphism ¢, or A(®). Then we have defined the canonical
divisor classes:

On O X O: A%

On CXJ: 8

On J X J: §=class of u*®— p,*®@ — p,*®
=3,

via our
identifications

-

These are related by the equations

(a) A%=(1cX ¢)*(3)
(b)  8i=— (¢ X17)*(0).
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hence
(c) A*=—(¢X¢)*(9).

Proof. (a) has been pointed out before, and (c¢) follows from (a) and

(b). As for (b), first use the fact that A(— ®) =—A(®) =—y. There-
fore
— 0= (17 X (—¢))*8 = (17 X ) *3.
Hence
— Ly X $)*0=3,
and finally:
(1 X ¢) %8, = (¢ X 15) %8, (This is (**%*))

=— (¢ X17)*(1, X $)*6

=— (¢ X $)*0

=— (1o X $)*(¢ X 17)*6.

Since 1¢ X é is an isomorphism, (b) follows. Q.E.D.

3. The basic estimates. Once again, we consider a curve C over a
number field %, as above. Now we will use the maps obtained in §2 to
obtain properties of the height functions introduced in §1. The most
important height function is he(z,y) defined for =,y € J;.

ProrosITION 1. he(z,y) s a symmetric, bilinear form on Ji X J;.
Moreover it is positive definite on Jy/mod torsion.

Proof. Let fi: J = J X J be the homomorphism mapping « to = X e,
and let f, map @ to e X «. Since 4 is a divisorial correspondence, f,%8 = f,*§
=0. Therefore

ho(z, €) = ho(f1(2)) = hy»e(2) =0,
ho(e, x) = ho(f2(2) ) = hppeo () = 0.
But this means that he is a quadratic function on the product of two groups
which is 0 on both factors alone. It is easy to check that this implies that
he is bilinear. .
Let £: J X J—=J X J be the morphism mapping X y to y X . Then
clearly £*6 =46, hence

ho(z,y) = ho((y,2)) = hgea(y, @) = ho(y, ).

To evaluate he(z,x), let A: J—>J X J be the diagonal morphism, and
let Az: J —J be multiplication by 2. Then
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he(z,z) = he(A(z))
= haso(x)
= s (u+0-p,*0-p2*0) (2)
=0 (2) —Rho(2).

since A, =poA, 1;=p;0A. On the other hand, if D is any divisor on J,
let D" be the divisor obtained by reflecting D in the origin. Then A,*(D)
is in the same divisor class as 3D 4 I’. Therefore,

ho(z, 2) — ho («) + ho(2)
=ho(z) + ho(—=)

I claim that if this is not positive, then # must be a torsion point on J.
Namely, assume hg(z,z) =0. Then for all integers n,

he (nx) + he (— na) = he(nz, nz)
= n*he(z, )
=0,

hence either hg(nz) =0 or he(—mnax) =0. This means that if « is not
a torsion point, there are an infinite number of distinct points ; such that
he(z;) =0. Since ® is ample, this contradicts property (d) of heights.
Q.E.D.
By the Mordell-Weil theorem, J; is a finitely generated abelian group.
In particular
X=J,®R

is a finite-dimensional real vector space. Moreover, he makes it into a
Euclidean space: we will abbreviate the norm %e(z,y) to (z,y>. The inner
product <z,y> can be used to compute other heights too:

Prorosition 2. Let n€ Pic(C) be a dwisor class of degree 0. Then
there is a unique point 7€ Jy such that 5 equals the restriction of 8 to
C X {7}, and

{2z, 7> =—hy(z) + O(z), all z€ Oy

Proof. The first assertion is part of the definition of the jacobian J
of . The second is an immediate consequence of (b), §2:

{pz, ) = h"’(‘i"”& 7)
= h(px1+0(@,7) 4 0 ()
=—hs,(7,7) + O(z)
=—1y(z) + 0 (). Q.E.D.
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PROPOSITION 8. (¢, ¢py> =—ha+(z,y) + O (z,9).
Proof. This follows from (c), §2. Q.E.D.

CoroLLARY 1. There is a constant K such that for z,y € Cy, x4y,

$PT, pY> = hay () + hao(y) + K.

Proof. Recall that A*=A— (2,) X C—C X (2,). Apply property
(c), §1 of heights to ha(z, y) ; note that the divisor (z,) X C (resp. C X (,))
is of the form p,*(2 ) (resp. p.*(xo)); hence h(yxc(2,y) equals kg (z) to
within a bounded function and hex (s (2, ¥) equals h,,(y) to within a bounded
function. Q.H.D.

CorOLLARY 2. There is a divisor class x € Pic(C) of degree 0 such that
for x€ Cy,

{$, $px) = 2gha,(2) + he(2) + O0(2).

Proof. The self-intersection number (A?) of the diagonal on C X C is
well-known to be 2—Rg. Therefore the divisor class on A obtained by
restricting the class of A* has degree —2g. Let

f: O>0XC

be the diagonal map. Then there is a divisor class x € Pic(C) of degree 0
such that
(%) —— (290 + x).
Therefore
<9, 4> ——hae (F(2)) + O (2)
=—hpan (2) +0(2)
=2¢hy(2) 4+ he(2) + O (). Q.E.D.

Putting Proposition 2 and Corollary 1 and 2 together, we obtain the
basic estimate :

There is a constant K, and an element k€ J; such that if @, y¢€ (%,
x4y, then

$, $y> = 1/29{<da, $a> + <bas & + by, dy> + <Py, K>} + K.

4. A packing argument. From here on, we have only to make some
elementary observations about Euclidean geometry. First of all, define a new
map:

Cp— X
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via y(z) = ¢ (z) + 29:2. One checks easily that y has the property:

There is a constant K, such that if =,y € Cy, 254y, then
x} >
{@w, wy=1/g [WRIRTGLID ] 4 i,

Let ||z | = V<2 2>, let f(s) =1/2(s+1/s), and let
cos (u,v) =<u, 0>/ u || v]

be the cosine of the angle between points «.v € X in the given norm. Then
we can rewrite the above formula as:

K

1 (lyel A
cos (ya, yy) = f‘(lw,y u) MIZAREZL

Now arrange the countable set of points ' in a sequence so that
lya: | < |y | = - -

Note that as || yz | ~ V2 2ghay (), (Cor. 2, §3), it follows that | ya; || > + o
as i—>. The following “packing” lemma is well-known:

LemmA. There is an integer N such that of A,- - -, Ax are any non-
zero elements of X, {then for some pair of integers 1=1,j =N,

cos(4;, 4;) = 3.

CorortArY. If ¢=2 and |yz, || > V12K, then |yapy || = § | ¢2n .

Proof. Tf not, whenever n =1 =j=n -+ N then 1 = | ya; | /[l yz: || < %.

Tence
Iy
1<
=7 (uw,-u) <1/,

and
K,
COS(lPﬂ?], ‘/’mz) < 7/69 + " ',0 ”
This contradicts the lemma. Q.E.D.

Iz

CorOLLARY. If g=2, then there are real comstants a and b, a >0,
such that
| Y || = 2.
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It is now easy to argue backwards and show that | ¢z, ||, and kit (2,),
and finally %ts(2,)—for any 8€ Pic(C) of positive degree—also increase
exponentially. This will be left to the reader.
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