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THE BOUNDARY OF MODULI SCHEMES
by David Mumford

1° Discussion

To begin with, what is a variety of moduli ? Start with the set of
all non-sgingular complete varieties of dimension n and arithmetic genus
p . For each isomorphism class of these, take one point : then try to
put these points together in a variety, There are some more

requirements : a''nearby' pair of varisties Vl, V., should correspond

2
to a "nearby' pair of points : e. g.
Let £ = set of isomorphism classes of V's
U Cgis "open'' , if for all families of varieties of the given typa,
CLrietf__W)
- type occur over an open set in the parameter space,

Another requirement is that for all families

ﬂ:%—)S

suppose you map 35 to A by assigning to each s €35 the class of the
fibre 7 )(s): then this map should be algebraic.

The problem, in this raw form, has been modified bit by bit so as
to make it more plausible ;

(I.) Instead of classifying '"bage'' varietiee V , one seeks to
classify paira (V,2D] where 3‘ is a numerical equivalence class of

very ample divigors on V ,



(I Then break up the set ﬁ via the Hilbert polynomials of the
divisors in %: viz, for every P, let /S P = isom, classes of (V,%)

such that for all D € F

Now we are close to a good problem :

for all D G%

for all bases of HO(V, g_v(D) ) you get a canonical immersion

| ver (n = dtm H(V, 0 (D) -1 )

s.t. hyperplane sections are linearly equivalent to D ,

P certain set of subvarieties V of IP,
id eo g =

certain equivalence relation, eapecially projective
equivalence

(LI} . Why insist that V be non-singular ? The only reason appears
to be that over € families of non-singular varieties are locally
differentiably trivial : so one can view them as families of complex
structures on a fixed differentiable maniforld, (or, as in the
Bers-~Ahlfors approach, on a fixed topological manifeld) , Algebraically,
there is no point : let's let V be any complete variety at all, maybe even

reducible and assume that Q) is a class of Cartier divisora.



To go further, let's stop and ask what problems arise : first we
should take a broad look at the topology which we are getting by
throwing in all varieties - typically it will be very un~separated ; second
we should try to find open subsets U C_% P such that, in their induced

topology, they are separated, and '‘compact' if poseible.

[ This means that if U could be given the structure of a moduli
variety, it would turn out complete 3 and it also means, directly,
that if (V,2) €U, and we specialize the groundfield, then we

can find a specialization (V,%‘ Yof (V,Q) alsoin U. ]

Thirdly, we will finally have to find out if U can be made into a varlety.

(IV,) We understand the last problem better when we realize that,
¢.g. via chow coordinates, almost all of U is bound to come out as a
variety, We saw that /Spwas a quotient of a piece %L of the chow
varlety by an algebraic equivalence relation, Such quotients always

exist birationally, i.e. for a small enough Zariski-open subsets

#» »
U <@, (U"/modulo equivalence relation] will be a good variety., So

d
the 3" problem is like the first two :

The only problem is to pick the '"boundary' components shrewdly,

i.9, to decide which non-generic variaties to allow .



there again, it would prejudice the issue to think that we should necessarily
use all a.nd/or only non-singular varieties., And the choice should be

made by a) checking the topology and b) checking its "algebraizability'' ,

(V.) A final step in setting up the problem reasonably is to
realize that all the same grastions Occur equally well for a much more
general class of problems : viz, that of forming quotients of varieties
by algebraic equivalence relations, Only by realizing this can we hope
to find simple enough examples to study first so as to get the right

feeling, KEspecially, the hard equivalence relations are tne non-compact

one's ; and in the case of moduli, this occurs principally in forming :
%‘-/ { Projective equivalence of V's in IPn}

i.e, in formning an orbit apace by PGL (n) .

2° Present 3tate of the Theory

a—
—

very good (i) anmalogous problem in classifying vector bundles on a fixed curve
pretty good(ii) moduli of curves (canonically polarized)
half good (ili) moduli of polarized abelian varieties

no good  (iv) moduli of surfaces of general type



30 An Example

Rdther thai an'a.iyze an actual moduli problem, I want to take one
of the simpleat non-trivial orbit space problems, in which all the

features of the conjectured results occur :

h
G = PGL(l) acting on IPn , where IPn = nt symmetric product

of IP

| i,e, PGL(l) acting on theset of O-cycles of

degree n ,
(= theory of binary quantics) .

a) jump phenomenon

look at PZ/PGL(I) . There are 2 orbits : {P+Q [P#q )}
and {2P} . Therefore, get 2pts. X,y where x is open

but not closed, y is closed but not open !

This occurs in all moduli problems, and one always must
exclude some points to avoid this.

In IPn , exclude the 0-cycles
kP + (n-k) Q

whose isotropy group is infinite,

b) further non-.separation

take n =6
group A group B
3. i, X '3 e M

generic cycle.



Let 211 pointe in group A come together ; you get in the limit :

Pt o group B
(*) % =SS
3

But suppose, as group A collapses to a, you apply a one-parameter
subgroup Gm CPGL(l) , moving points away from a to 3. Then the

following are projectively.-eguivalent:
A B A B

arvivn, T and LT IR

the latter approacnes :

group A point 8
(%) St %

But the 0-cycles (¥) and (*®) are probably not projectively equivalent.

c) the unitary retraction: to avoid these bad things, define

K ecp
n

n
K= Setof O-cycles T Pi , such that, putting the Pi on the
i=1
3
Gauss sphere, and embedding the Gauss sphere in R~ as
2 2 2 3

x +y +2 =1, then the vector sum of the Pi in R 1is

(0, 0, 0) .



One checks, if x,y €K, then x,y are equivalent under PGL(l) if and

only if they are equivalent under the maximal compact subgroup

K= 883 R)c PGL(l, €) = G.

But X is compact, therefore K /K is compact and separated. And

_ no point Q occurs in with
X. PGL) = { oL multiplicity > n/2; and f Q occurs
with multiplicity n/2 , then
o=2(+Q " } .

d) stability restriction : K +PGL{l) contains a Zariski-open set

- no point Q occurs in ¢ with
Ugtable = toe | multiplicity > n/2 }

So Ustable/G has separated topology, and is compact if n is odd, It

is also a variety by virtue of a general theorem of mine.

e) semi-stability : when n is even, things are less clean,

/G

< showed that there was a matural compactification of Ustabi;

by adding a slogle point representing the cycles n/2{Q+Q') . In fact,
there is a complete variety Vn , with point oo and diagram of algebraic

maps.



Useml-stable > -\Tn
U a )
Ustable Us table /G v (o0 )

whare

U - {9(/| no point Q occurs in &L with )
memi-stable multiplicity > n/2
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FURTHER COMMENTS ON BOUNDARY POINTS
by

David B. Mumford

In these notes, I shall describe some joint work of A, Mayer and myself

as well as some related results, summarizing further comments made in my lecture
and 2 2nd lecture by Mayer. During the institute, lectures were also given by H. Rauch
and L. Ehrenpreis discussing various aspects of the Torelli an‘d Teichmliller covering
spaces of the moduli scheme for curves of genus g (cf. the notes of Ehrenpreis). The
ground field will be assumed to be the complex numbers in our discussion. One word of
apology: the full proofs of many of our results have not been written down, so strictly
speaking, much of what follows should be taken 25 conjectures not theorems.

ﬁl. Compact moduli spaces for vector bundles over curves.
This theory has been worked out by Seshadri, Naragimhan, and myself.

let E be a vector bundle of rank r over a curve C .

Definitions:
i) E is regular if the only endomorphxsms of IE are multiples of the
" identity.
ii) E 1is stable if, for all sub~bundles IF CE, deg [c 1(1F)]<%{%—§-
rdeg o (E)], |

iil) E is semi-stable if, for all sub-bundles IFC E, deg|c (F)] <

rank (IF) ,
rank (E) * 9°8[° ®)],
iv) E is retractable if it is a direct sum of stable bundles.

structure with curvature form 0. |
To obtain a modulus space for vector bundles with given rank and deg(cl),

first one must throw out irregular bundles since they give rise to jump phenomenon, i.e.,

constant families of bundles, which suddenly jump to another bundle (cf. my lecture notes,

"Curves on an al.llgebraic surface', Lecture 7,§4). In the remaining class of bundles, the

topology is still un-separated; but in the set of retractable bundles the topology is both
compact and separated, since this set of bundles is isomorphic to the set of unitary repre-
sentations of TZ " of the base curve (for deg[E (E)] = 0; otherwise the argument can be
modified). Thia set turns out to contain the open set of stable bundles, and to be contained

o,
e’
»

If deg [c (IE)] = 0, E 1s retractable if and only if IE admits a bermitian

Ca Y
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- in the open set of semi-stable bundles (it is not open itself).

-2~

Cne finds that the stable

bundles arc classificd by the points of a non-singular variety V7, and that V™ is an

open subset of 2 compact variety V°. The set of points of Vs isomorphic to the

“(non-algebraic) set of retractable bundles, and there ia even a natural map from the

set of all semi-stable bundles to V','- but non-isomorphic bundles no longer correspond

to distinct points:
L g
regular D stable [ —— pomts of
bundles . bundles

| v , retractable pomts of
A bundles

A o semi- stable
; bundles

_§2. Compact moduli spaces for abelian varieties: Satake
- PAAAASY

Let V' denote the moduh scheme for principally polarized abelian

i vaneties of dimension n . That is,

v = &«n/ r; (as analytic space)

- where -6)/“ is the Siegel upper 4~plane of type n, and [-; is the modular group acting

on 47:1 i V;) has even a canonical structure of algebraic variety over & , due to its

interpretation as a modull scheme*. V;l carries a canonical class of ample invertible

sheaves <L(i) defined for all sufficiently large i, and such that

.
: Z) © T() =<+ )

" when this makes sense. - Therefore one has the graded ring

aJ

EB [ vz

n
i 10

~which is known to be isomorphic to the ring of modular forms on Jy with respect to

%cf, Baily's work, or my 'Geometric Invariant Theory'', |
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" The Satake compactification of V; is then the open immersion: |
fro st ' |
e . ' i - *
! AT ‘ vV, C Proj(R) = V. *, ! ’
. )
It turns out that there is a canonical isomorphism of V2 * --Vo and V© *, so that
| . .
set-theoretically:
] -
x _ VYV 1}V U emacmn=
i V; = V'nU V’n_lu UViUVO
4
(VE is a single point) . This amazing equation suggests that this compact variety,
which is defined only as a kind of "'minimal model", should have an interpretation as
a moduli space. In fact, consider all commutative group schemes X connected anq
3 of finite type over € .
v Definition: X 1is stable if X 1is an abelian variety,
; i L X is semi-stable if X 1is an exténsion of an abelian variety
E s g L P ) " by multiplicative groups (Gm)r
| SR Rt o B A X is relractable if X 1is the product of an abelian variety by
o A 24t multiplicative groups.
. Exactly as before, A. Mayer and I have proven:
. i ok Stable X with il points of | ' b
) I AL polarlzauon . ’
i Vi retractable X points of
_ I e R with polarizatlon ;
|
] = _ | semx-stable X {
b R with polarization ;
<I-J
: ] ; Ex 1a.natxon
10 A polarization of X may be taken to mean a divisor- D on X,
: ' determined up to algebrzuc equivalence, such that if _ |,
T X—> X, .

T
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is the projection of X onto {ts abelfan part, and if D « —mf(Do) (rocall that Ple(X)

= Pic(X,) ),-then D, is ample on X, and !

n ' ' |
0 l :‘ "y ' T
(DO ) = no,

- dimXo .

0

Do

2° A family of these objects is a morphism

f: X—» 8§

with the structure of group scheme (i.e. .. a "ﬁlultiplication"}x: Xx X —> X, etc.) and

., a family of Cartier divisors &£ on X determined up to algebraic équivalence, and re-

- place_frnexnts

Dt = D+ 1)

- for any Cartier divisors 6 on S, and inducing a polarization of each fibre f_l(a) . With

this definition, stable and semi-stable X's form open sets, but retractable X's do not.
3° The meaning of the arrows in the diagram is this: let f{: X — § be a

- family of semi-stable objects where § is a normal algebraic variety. Map § to Vn*

by assigning to each 8 € § the point of V;O corresponding, in the clagsical way, to the
ab?alia.n part of f—l‘(s) . (no = dim of this abelian part). Tberx this is a morphism.
This last result i8 proven by reducing 20 the case where 8§ 1is a curve. Then

Y

" one passes to the corresponding analytic set-up, and replaces S by a disc {z ~ rz}L 13
.where all fibres of f are diffeomorphic except for f—l(O) . Next one introduces the

invariant and vanishing cycles on the general fibre, so as to put the period matrix
_O_ ij(z) of the abelian part of f_l(z) in a normalized form. One then computes (using

‘ - very helpful tricks of Kodaira): T

-(-L- ij(z) I =

1
29ri 0

= S e .

—_— et
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: -\.jacobia'.n varieties. - We have proven that Mg" = M *_1‘ , 8o that

[N

5~

where S is integral, positive definite and symmetric, and is obtained from the

1. “monodromy substitution for the cycle lz | = 1; where A, B, C are holomorphic in

z at z = 0; and whecre C(0) is the period matrix of the abelian part of f_1(0).

! This {mplies that .(lij(z) —> C(0) in Satake's topology, when z —> 0 .

. ,@ 3, Compact moduli spaces for curves

Let Mg denote the moduli scheme for curves of genus g . Let
i

O:M ‘—)V— )
g g .

be the morphism which assigns to a curve its jacobian variety with its theta-polariza-
tion. From the work.of Baily, Matsusaka, and Hoyt, it is known that @ is an

" isomorphism of Mg with a locally closed subvariety of V’é , which we also denote
& ; M;"‘ The simplest approach to compactifying M;L is to use its closure Mg"l in V'g* .

This breaks up into two pieces - b

; . | D
: = (M* - M
-Mg> (gnvg) g’

M" = M* .~ (M*N V),
‘s - B Mg* N V)

Matsusaka and Hoyt showed that Mg‘ is exactly the set of products of lower dimensional

g
x - 'UM UM', U —=—==a M
M, MguMgug_lug_l1 U - UM,
, / :
."(MO = VB is a single point),

The proof is based on two lemmas, and on the results of 2:
Iemma A: Iet C be acurve and let f:X —3 C be a family of curves of

" arithmetic genus g [i.e. , [ 1s proper and flat and its fibres f-l(P) are connected
. curves of arithmetic genus g] . Let P0 € C and assume that £~1(P) is non-singular

Af P4 PO. Then there exists a diagram: I |
S ‘ - . J

t 1
il

Som

o

.
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DA,

P P

~6- |
where * . 1) C'" is a curve and 7 18 a finite morphism totally ramified over
-1 oo .
) R | I
oo Fals, Py: let Pl o=o (Pg) .. |

2) f* is a family of curves over C',

'3) X' - f'_l(Po') is just the induced family of curves over C!' -"Po' , Le, L

© - BJ) xoX = X =171 R,

4) f'"l(PO') is reduced and has only ordinary double points.
Iemma B: Let C be a curve and let '

|

f:% —>C

" . be a family of curves of arithmetic genus g such that each curve f-l(P) is reduced I A
“and has only ordinary double points. Then the set of generalized jacobian varieties of '

the curves fhl(P) forms a family of polarized semi-atable group varieties over C .

These lemmas give the inclusion Mg" - Mg* directly;lemma B and an

" easy conatruction of some actual families give the converse Mg" o Mg* .

.~ Unfortunately, Mg* is not a reasonable moduli space for curves: for

. example, let a point of Mg' correspond to

'Iwhene A1 is an elliptic':curve, and Ag-l is the jacobian of a curve C of genus g-1. .-

Il,et X € A1 and y Xe 1 be any points. Then Alx: A - i8 the generalized jacobjan

g-1
variety of the curve: | |
. : |

|
|
|
|
\ ! . }
[

with an ordinary double point. In other wards, the jacobian is independent of which y is

- chosen: i.e., Torelli's theorem is false for reducible curves. It 1is clearly necessary

to blow up Mg‘ . This phenomenon is closely related to the fact, discovered by Bers and
‘Ehrenpreis that the generic point of Mg‘ is not only sngular on Mg" : it i8 not even

i
vy

’
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- singular points: Mg*
-variety, although it is a Q-variety. There is a proper holomorphic map

' the generalized jacobian varieties of curves’ C .
1 © let J be the generalized jacobian of C . Then one has an isomorphism. ;

7=

nalmost non-singular" ( = "Jungian' = ¥ V-manifold"). In fact, Llemma A suggests

Definition: _
" A curve C of arithmetic genus g 1is stable if C 18 reduced and

connected, has only ordinary double pomts and has only a finite group
of automorphisms.

It appears that the set of all stable curvesisopen and compact and is

naturally isomo rpluc to the set of points of a compact analytic space with almost non=
‘It is gill unknown whether Mg* is a projective algebraic

M* —> M*
g g

2

which is an isomorphism over the open subset Mg‘ One of the remarkable features of

' this case is that there are no semi-stable but not stable curves.

_55'4 Compact moduli spaces for abelian varieties: blown up .
The plecedmg construction suggests the possibility of blowing up V’*

50 as to obtain a V"* which corresponds to a moduh problem with a larger set of

stable objects. We would like the stable points of \f* to correspond to polarized

compactifications of commutative group schemes X . One approach is to compactify
Say C is irreducible and reduced:

/}

. | points of} = { invertible sheaves L on C} .
' J such that Y (L) = X(QC)

We can prove that there i{s a projective scheme J* containing J as an open subset,

and on which J acts, plus a natural isomorphism
points of} 2 {invertible shcaves L on C
' J such that (L) = X(gc)
N N
{pomts of} = {rank 1, torsion-free sheaves &/ on C} .

J* such that X@) = Xog)

. Using this, we find an interesting V'z* , in which only one point is still mysterious: that
is the point which is the image under @ of the curve of genus 2 depicted below:

LI
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