TWO FUNDAMENTAL THEOREMS ON DEFORMATIONS OF
POLARIZED VARIETIES.

By T. Matsusaka and D. MumMFoORD.*

Introduction. In contrast to the theory of moduli of curves, the global
theory of moduli of higher dimensional varieties—with the exception of
Abelian varieties—is largely unexplored. The work of the authors and of
others 2 has begun at least to clarify the problem, and to pose some plausible
conjectures. One thing that is clear, however, is that there is a complexity
here of a higher order of magnitude from that encountered for curves. The
purpose of the present article is to present two results of a qualitative nature
that limit the degree of possible complexity of various sought for varieties or
scheme of moduli. The first result of ours asserts that two non-singular
projective varieties with polarizations, which are isomorphic as polarized
varieties, remain isomorphic after specializations over a discrete valuation-
ring, whenever they remain non-singular polarized varieties and at least one
of them is non-ruled (ef. Th. 2). The second asserts that a set of non-
singular polarized surfaces, which are deformations of each other, can be
realized as an algebraic family (i.e. a finite union of an irreducible algebraic
family) of non-singular projective surfaces in a projective space, if their
ranks are bounded; and, in fact, the set of non-singular surfaces with non-
degenerate divisors with a given Hilbert polynomial and of any characteristic
can be realized as an algebraic family over the ring of integers. From this,
it can be shown that the variety of moduli of such surfaces, which are not
ruled, is a finite union of @-varieties, which will be discussed in a near future.

In Chapter I, we shall settle the first result we mentioned. In Chapter 11,
we give an estimation for 7(X) when X is a non-degenerate divisor on a pro-
jective variety. Our second main theorem will be settled in Chapter 111, as
well as in Chapter IV, under slightly different technique. In the first three
Chapters, essentially the terminonolgy and conventions of Weil’s book [18]
are followed. In Chapter IV, because of the nature of the technique which
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are followed, essentially Grothendieck’s terminology and conventions in [2]
are followed. However, in order to keep the uniformity, the word “ample”
(rvesp. “mnon-degenerate”) is used for “wvery ample” (vesp. “ample”) in the
sense of Grothendieck.

By a specialization of a variety or a cycle, we understand a reduction of
such over a discrete valuation-ring (cf. [17]). For the theorem of Riemann-
Roch in general, we follow quite often the sheaf-theoretic terminology which
can be found in [15] and [22]. Let V be a normal variety and M a finitely
generated module of functions on V. When Y =infyear(div(g)), the set
A(M) of V-divisors div(g) — Y, g€ M, is called the reduced linear system
determined by M. When F is any positive V-divisor, A(M) -+ F is called a
linear system. Assume that V is complete. When X is a V-divisor, the set
L(X) of functions g on V such that div(g) 4+ X >0 forms a finite dimen-
sional vector space ([18], App. 1, Th. 3). We denote by A(X) the set of
positive V-divisors which are linearly equivalent to X, and call it the complcte
linear system determined by X. We denote by | X'| the support of X. We
have A(X) =A(L(X)) 4+ F, where F =X - inf,erx) (div(g)). We denote
by {(X) the dimension of L(X). When V is a projective variety, we denote
by oy the sheaf of local rings on V, the defining sheaf of functions on a scheme
V. If X is a Cartier divisor on V, we denote by {(X) the corresponding
invertible sheaf. With this sheaf theoretic notations, H°(V,Q(X)) = L(X)
when V is normal. Moreover, when V is a non-singular projective surface,
H*(V,8(X)) is isomorphic to the dual of H°(V,Q(K(V)—X)) and
dim H*(V, (X)) =s(X) is the superabundance of X. When there is no
danger of confusion, we write H*(R(X)) for Hi(V,Q(X)).

Chapter 1.

TaeorEM 1.2 Let V be a complete abstract variety, W an abstract
variety and T a birational correspondence between V and W. Let o be a
discrete valuation-ring with the quotient field k, such that V, W and T are
defined over k. Let (V/,W’,T") be a specialization of (V,W,T) over o an
assume that V', W’ are abstract varieties and that V' is complete. When W’
is mot a ruled variety, there is a component T of T’ with the coefficient 1
in 1" such that 17 is a birational correspondence between V' and W’ and
that pry(T"—T") =0 for i=1,2.

Proof.  From the compatibility of specializations with the operation of
algebraic projection (cf. [17]), we see that 7” has a component 7" with the

®'Lhis theorem was pionted out to us by M. Artin.
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following properties: (a) pr, T” = W’; (b) the coefficient of 77 in T” is 1;
(¢) pro(T”—T”) =0. Let p be the maximal ideal of o and x the residue
field of o with respect to p. Let (2’) be a generic point of a representative
of W’ over «. Then, there is a representative (z) of a generic point of W
over k such that (2’) is a specialization of () over o, over

0
(V, W, T) —— (V, W, 1)

(cf. [17], Th. 7). Let R, be the specialization-ring of the specialization

() -L> (2) in k(z). Then R, is a discrete valuation ring of k(z) (cf.
[17], Prop. 5 and Th. 15). Hence, it determines a valuation v of k(z).
Let @ X (@) be a generic point of T over k. Since V and V’ are complete,
there is at least one representative (y) of @ such that the coordinates y; of

(y) are in R,, that (y’) is a representative of @’ if (Q X (), (y))
0
—> (@' X (2/),y’)) and that @’ X (2’) is contained in |7”|. When

that is so, @ X (2") is contained in 7”; in fact, it is a generic point of 7"
since pr,: I — W’ is birational and (a’) is a generic point of W’ over k. It
follows that @’ is a generic point of the projection 4 of T on V’ over &. Let

R be the specialization ring of (y) —0——> (y’). Then, the valuation v is a
prime divisor of R in the sense of Abhyankar, and W’ is a ruled variety over
A unless A =7V’ (cf. [1], Prop. 3). Therefore, A — V’. When that is so,
T” is a birational correspondence between ¥V’ and W, which can be seen easily,
using the compatibility of specializations with the operation of intersection-
product (ef. [17]).

THEOREM R. Let o be a discrete valuation-ring with the quotient field k;
let V and W be non-singular projective varieties, defined over k, and T the
graph of an isomorphism, defined over k, between V and W. Let X (resp. ¥)
be a non-degenerate divisor on V (resp. W), both rational over k, such that

Y=T(X). Let (V,W,X,Y,T) —0—> (W, W, X, Y, T") and assume that
V', W are non-singular and that X’ (resp. ¥Y”) is also non-degenerate on V’
(resp. W’). Then T is the graph of an isomorphism between V’ and W’
if one of the V', W’ is not ruled.

Proof. By Theorem 1, we have 77— T" -+ T*, where T” is a birational
correspondence between ¥’ and W, and pr; 7% =0 for I —=1,2. Let Fy,- - -, F
be the projections of the components of 7* on V’. Note that none of the F;
is 0-dimensional: for if F; were 0-dimensional, the corresponding component
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of the n-dimensional cycle 7* would have to be of the form F; X W’, and this
contradicts pr, 7% = 0. If X’ is a divisor in A(mX”), then 77 and X", X W’
intersect properly if and only if | X", | D F; for any 4. Let U be the set
of such divisors X’,,. For every such X’,, T7(X’,) is defined. The Chow-
variety of U, i.e. the set of Chow-points of members of U, is an open subset
of that of A(T’/(X’»)). When U is not empty, the mapping X/, — 17 (X"y,)
defines, as is well-known, an injection of U into A(7”(X’w)); and, as a
matter of fact, defines an injective linear rational map of the Chow variety of U
into that of A(7”(X’s)) cf. [18], Chap. IX, Th. 3 and [18], Chap. VIII,
Th. 4). Now assume that (a) 77(X’wm) ~mY’ and (b) I(mX’) =I(mY”)
for large m.

Suppose that P’ is a point of V” and let A(mX’)p be the linear sub-
system of divisors which pass through P’. For sufficiently large m, mX” is
ample, hence P’ is the only base point of A(mX’)p,, hence A(mX")p N U is
not empty. Then the set A of divisors 1V(Z’), Z’€ A(mX’)p- N U, consists
of divisors passing through every point @’ such that P’ X Q"€ |T1”|. If
there were more than one such @’, the closure of the Chow-variety of 4 is at
least of co-dimension 2 in that of A(mY”), since mY” is ample for sufficiently
large m. On the other hand, its co-dimension has to be 1 as the closure of
the image of the Chow-variety of A(mX’)p N U by the injective rational
map, since [(mX’) =1(mY”’). Hence T* =0 and 7" is single-valued on the
points of 7”, hence everywhere regular by Zariski’s Main Theorem. Similarly
T’* is everywhere regular.

To prove (a) and (b), note that p,(mX) = pe(mY) for all integers m.
Hence po(V’) = pa(V) = po(W) = pa(W’) ; and pu(mX”) = pa(mX) = po(m¥’)
= pa(mY”’) for all integers m (cf. [13]). It follows that I(mX) =1(mY)
=1(mX’) =1(mY’) for large positive integer m by the theorem of Riemann-
Roch (cf. [21]). Thus (b) is satisfied. Now let € and D be the supports
of the Chow-varieties of A(mX), A(mY). Since the linear equivalence is
preserved under specializations (cf. [17]), €7, D’ will be the supports of the

Chow-varieties of A(mX’), A(mY”’) for large m, if (C,D) ——0——> (¢, D).
Then (a) follows from the compatibility of specializations with the operation
of intersection-product and from the invariance of linear equivalence under
specializations.

Let V and V”’ be two complete non-singular polarized varieties (cf. [20]),
k a field of definition of V and o a discrete valuation ring with the quotient
field k. Let X be a polar divisor of W and W, W’ the underlying varieties

0
of V, V7. If (W,X)—— (W/,X’) and X’ is a polar divisor of V’, we
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shall say that V” is a specialization of V over o. With this definition, de have
the following corollary.

CoroLLARY 1. Let V and W be two varieties over a discrete valuation
ring o (i.e. p-variety in the sense of Shimura; a scheme in the sense of
Grothendieck). Let generic fibres V, W of ¥V, W be non-singular projective
varieties, defined over the quotient field k of o. Let the special fibres V', W’
be non-singular projective varieties. Assume that V, W, V/, W’ are underlying

e e - 0
varieties of polarized varieties V, W, V', W’ and that (V, W) —— (V’, W)

can be extended to (f/',W)—o-—) (V!,W’). Then, when there is an iso-
morphism | between V and W over k, f can be extended to an isomorphism f
of V and W, if W’ 1is not ruled. Moreover, the graph of | specializes to ire
graph of an isomorphism {’ between V’ and W’ over o.

COROLLARY 2. Let V be a projective, non-ruled, non-singular variety
with a structure of polarization and G the connected component, containing
the identity, of the group of automorphisms of V. Then G is an Abelian
variety.

Proof. The group of automorphisms of V is an algebraic group (cf. [8]).
If G is not complete, the graph of an automorphism, corresponding to a
suitable element of G, can be specialized, over some field of definition of V,
to a ¥V X V-cycle which is not the graph of an automorphism. This is
impossible by Theorem 2. Hence G is complete and is an Abelian variety
-by the theorem of Chevalley (cf. [19], Th. 5).

Chapter II.

Let V7 be a normal projective variety and X a non-degenerate divisor
on V. L(mX) defines a projective embedding f, of V for large m by the
definition. Let W~ be a simple subvariety of 7 and k¥ a common field of
definition for W and V, over which X is rational. Then L(mX) has a
basis over k (cf. [18], Ch. IX, Cor. 1 of Th. 8). Tet 4., - -, 4, be inde-
pendent generic divisors of A(mX) over k. Then every component of
Wnd4a,n---NA4, is simple on V and on W (cf. [18], Ch. V, Th. 1).
We set [W-XO] = (1/m")deg(W-4,- - -4,) and XW=[V-X®]. Then
[W-X®] does not depend upon the choice of independent generic divisors
Ai,- - -, A,. Moreover, it does not depend upon the choice of m, as long
as it is sufficiently large, and is a positive integer (cf. Bezout’s theorem).
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TuroreM 3. Let V» be a mormal projective variety and X a non-
degenerate divisor on V. Then 1(X) =X® 4 n.

Proof. If 1(X) =1, there is nothing to prove. If n—1, our theorem
is an immediate consequence of the theorem of Riemann-Roch. Therefore,
we assume that I(X) > 1 and that n > 1. Let X, be a generic divisor of the

a
complete linear system A(X). Then Xo=XY;+ F, where F is the fixed
1

component of A (X) and Y;5£ Y for 154 j, since A (X) is complete (cf. [18],
Ch. IX, Cor. of Th. 15). If d> 1, the ¥; are generic divisors of one and
the same pencil on V by the theorem of Bertini (cf. [18], Ch. IX, Th. 17).
Hence dim A (X) —=1(X) —1=4d. On the other hand, we get d=X® by

a
computing X = [(X Y;+ F) - X®V]. Therefore, our theorem is true in
1

this case also.

Assume now that d—1. Then X,—=Z - F, where Z is an absolutely
irreducible subvariety of V. Let K be an algebraically closed field, containing
k, over which Z and F are rational, and (Z*,«) a normalization of Z over K.
Let m, be a positive integer such that mX is ample for m =m, and X, a
generic divisor of A(mX) over K for such m. We note that every com-
ponent of X,, N Z is simple both on ¥ and Z and is proper on V. We contend
that: (a) When g€ L(Xpmu—Xn), g—>g*=goa? is a homomorphism of
L(Xpu— Xm) into L(X*), where X* =a(Z - (Xms1—Xm)); (b) The kernel
of the above homomorphism is a vector space of dimension 1; (¢) X* is non-
degenerate on Z* and X*»1)=X®_ OQur theorem will be an immediate
consequence of (a), (b), (¢). TFor, we have I(X*) =X*®D L (n—1)
by the induction hypothesis, hence I(X*)=X® + (n—1) by (c), and
U(X) = (X —Xm) =U(X*) +1 by (a) and (b).

To prove (a), we may assume that ¢* 54 0. We first remark the following
two facts: (i) If U is a subvariety of Z of co-dimension 1, which is simple
both on V and Z, and ¢’ is the function induced on Z by g, then the coefficient
of U in div(g) -Z, that of U in div(g’) and that of «(U) in div(g*) all
coincide; (ii) If W* is a component of div(g*),=g**(w), its geometric
image W by «* is a component of X,,,; N Z, and is simple both on V and Z.
In fact, U has the same coefficient ¢ in div(g) - Z as in div(¢’) (cf. [18]-1X,
Th. 3). Since g* can be written as ¢’ o ™%, and since « is biregular along U,
it follows that the coefficient of «(U) in div(g*) is also a. As for (ii), g*
is not finite along W* (i.e. at a generic point of W* over a field of definition
of W*, containing K), and hence, ¢ is not also finite along W. Consequently,
WC|g*(w)| =]|Xm| and W is a component of Z N Xypus.
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Now let U be a component of X,, N Z or of X, NZ. Since
div(g) Z +Z+ (Xmss—Xw) >0,

it follows that the coefficient of «(U) in div(g*) -+ X* is non-negative by (i).
Therefore, if div(g*) + X* has a component W* of negative coefficient, it is
a component of div(g*),=g** (o), which is impossible by (ii).

To prove (b), let g be a function in L (X, — Xu) such that g* =0.
Then div(g) = W — (X — Xw), where W is a positive V-divisor such
that Z is a component of it. Since W ~ X, —X,,~ X, it follows that
W=Z -+ F and that ¢ is uniquely determined up to a constant factor.
(b) is thereby proved.

To prove (c), choose a positive integer » = m, and identify A (rX) with
the linear system of hyperplane sections of V by means of the embedding f..
Let s be another large positive integer. Then sX,~ srX,,,,—srX, and sX,,
$7 X, 7X .1 are sections of V by hypersurfaces of degrees s, sm, s(m - 1)
respectively, since the linear system of hypersurface sections of a normal pro-
jective variety is complete when the degree of hypersurfaces is large enough
(Zariski’s normalization theorem). Consequently, sX,Z, srXm-Z, srXpu-Z
are also sections of Z by hypersurfaces of degrees s, sm, s(m -+ 1). When s
is chosen large enough so that « is determined by homogeneous functions of
homogenity s, a(sX,-Z), a(srXm-Z), a(srXmi1) are hypersurface sections
of Z* by hypersurfaces of degrees 1, m, m -+ 1 respectively. Hence

a(sX,Z) ~sra(Z- (Xmus—Xm))-

Thus, X* —=a(Z+ (Xm—Xm)) is non-degenerate. A(rX) is the linear
system of hyperplane sections of V. Hence

XMW — (1/rv)deg(X) = (1/r*)deg(Z + F) = (1/r)deg(Z).
A(srX*) is the linear system of hyperplane sections of Z*. Hence X*(1
= (1/(sr)nt)deg(Z*). But deg(Z*) =s"'deg(Z) as is well-known and
easy to see. (c) is thus proved.

Remark 1. Let Q be a non-degenerate invertible sheaf (ample invertible
sheaf in the sense of Grothendieck) on a projctive variety V. Let d be the
leading coefficient of x(Qm). Then it is easy to deduce that dim H°(R)
< d + dim V from our theorem. In fact, when (V*,B) is a normalization of
V and X a Cartier divisor on V* determined by R, then X is non-degenerate
and d = X® if dim V*—=mn.

Remark 2. In our theorem, we assumed that X is non-degenerate.
Assume now that V is a non-singular projective surface and X a V-divisor
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such that X® > 0 and [Y-X] > 0 for all positive V-divisors Y. Then, we
can prove directly that I(X) =X® +2. In fact, we may assume, as in
the proof of our theorem, that a generic divisor X, of A(X) is of the form
Z + F, where Z is an irreducible curve. Let Y be a V-divisor such that
Y ~ X and that | Y| contains neither Z nor any singular point of Z. Then
[X-Z]=[Y-Z]=X® and L(X) and L(Y) are isomorphic. As in the
proof of our theorem, L(Y) induces on Z a module M’ of functions on Z;
a*(M’) is then a submodule of M*=L(a*(Z-Y)) and the kernel of
the homomorphism L(Y)— M* is a vector space of dimension 1. Hence,
we have our inequality by the theorem of Riemann-Roch. Our divisor X is
in fact a non-degenerate divisor on V according to [12], and our theorem
is available according to this. But using this remark and our Theorem 4,
we recover this result.

Chapter III.

Let V be a non-singular projective surface and X, ¥ two divisors. There
is a V-divisor X’ such that X’ ~X and that X’ and Y intersect properly
on V. We denote by X,Y the intersection-product X’-Y, and by [X-Y]
the degree of XAY. When X =1, [X-X] is denoted by X®. We denote by
K(V) a canonical divisor on V and set p (X)) = (1/2)[X - (X + K(V))] + 1.
When X is irreducible, (X 4+ K(V)) X is a canonical divisor K(X) of X
and deg(K (X)) =2pa(X) —2 (cf. [16]). When X =3 a:X;, we have

Pa(X) = 21 tipa(Xi) + % (1/2)a;(a;—1) X;®

+ 2 (1/2)aia,-[X¢,Xj]———2ai—1.
j [3

455 5 154)

(1)

According to the theorem of Riemann-Roch on V, we have
HX) —s(X) + UK (V) —X) =X —po(X) + pa(V) + 2.
1. Denote by = the set of pairs (V,X) of a projective non-singnlar
surface V and a V-divisor X satisfying the following conditions.
(I) [X-Y] >0 whenever Y is a positive V-divisor;
(IT) 0< XD < ey
(III) | pa(X) | < 025
(IV) | pa(V)| < .

In order to simplify further discussions, we assume that the constants c;
(1> 38) which will be introduced are positive integers, satisfying c;> ¢y
and depending only upon ¢, c,, cs.

14
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Levma 1. There are constants cs, 5 such that |[X-K(V)]‘ < ¢y and
that p(mX) >0, I(K(V) —mX) =0, m2X® — py(mX) + pa(V) +1>0
whenever (V,X) €3 and m > 5. '

This is an easy consequence of (I), (1I), (I11), (IV), the theorem of
Riemann-Roch and of the formula (1).

13
Lemya 2. Let (V,X) be a member of 3 and T =2 a:¥s the reduced
1
expression for a member T of A(Rc;X). Then, there are comstants cg, C1, Cs
and ¢, with the following properties:
t
(1) ? ai < Ce3

(i) |[¥e Y5l <ers
(i) |[E(V) Y| <550 = pa(¥e) <
(iv) The multiplicity of any point on Y, is at most co.

t ¢
Proof. (i) is a consequence of Su=a[Y; X]=[T X]=2ccs.
1 1
(ii) and (iii) follow from the three inequalities:
(A) aiY,-(z) —I— E aj[Yi . Y]] = [Y¢ . 205X:| _S_ 2 ai[Yi . 2C5X] é 465261.
]

(B) —R=2p.(Y;) —2= [Yi- (Yi+K(V))]-
(C) Za[E(V) -Yi] =205

In fact, (A) gives an upper bound for every Y;(®. Hence, (B) gives a lower
bound for every [K(V)-Y;]. Then (C) gives an upper bound for every
[K(V)-Y;] and (iii) is proved. Returning to (B), we obtain a lower
bound for every Y, and using this, (A) gives upper bounds for all. [¥;- Y;].
This gives (ii), since [Y;-¥;] =0 if i5%j. Finally, the arithmetic genus
of ¥, is bounded by (ii) and (iii). If the r; are the multiplicities of the
singular points @;; of ¥, an inequality of Noether (cf. [4]) states

]27'ij(7"{j + 1)/2 4 pa(¥i*) = pa(¥4),
where Y;* is a non-singular model of Y. This gives (iv).

The following lemma is an easy consequence of the generalized Riemann-
Roch theorem for curves. -

LeMMA 3. Let W be a non-singular surface in a projective space and
Y a divisor on W. Let C be an irreducible curve on W such that [Y -C]
> 2pa(0) —R2. Then H*((Y)/(Y —C))=0.
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CoroLLARY. Using the same assumptions and notations of owr lemma,
$(Y—C) =s(Y) if and only if

0> (Y —0)) = H(R(Y)) = HO(R(Y) /(Y —C)) — 0.

Proof. This is an immediate consequence of our lemma and of an exact
sequence 0= YUY —C)—> (YY) —->(Y)/&(Y—C)—0.

LevmMa 4. Let T=2X a;Y; be a positive divisor on « non-singular pro-
i

jective variety W, A(A) a complete linear system on W and assume that
[A—T")-Y:i] > 2pa(Y:) —2 for all i and for all T” such that 0 < T"< T.
Then we have H*(Q(A4)/{(A—1T))=0.

Proof. It ¥ a;=1, our lemma follows from Lemma 3. Assume that
our lemma has btaen proved for those positive W-divisors 77 =, a”;Y; with
o' < Da. Set T"=>dY; with a, —1=4a'y, a;=—0a’; for iig 2. In the
gxact colfomology sequenge of an exact sequence ‘

0—>(A4A—T1")/2(A—T)>(4)/2(A—T) > (4) /(4 —T") -0,

we have H*'(R(4)/(A—T")) =0 by the induction assumption, and
H*({QA—T")/(A—T)) =0 by our assumption and Lemma 3. Hence
we get H*(R(4)/(4—T))=0.

CororLarY 1. Let (V,X) be « member of 3 and T = a;Y; the
@
reduced expression for a member of A (Rc;X). Set T"=a"Y, U=a"Y,
with 0=a";, a”; = a;. Then, there is a constant c,, such that

H(&(*me; X —U) /Q(2me, X —U —1T7)) =0
for m = cqp.

Proof. This follows at once from our lemma, (I) and from Lemma 2.
COROLLARY R. There 1s a constant cy; such that
i =8(Rme;X) = s(2(m +1)c; X —B) =s((m 4+ 1)¢;X)
whenever (V,X) €3, 1(2¢;XY —B) =1 and m = cy,.

Proof. This is an easy consequence of Theorem 3, Covollary 1 above
and of Lemma 2. (cf. Remark 2.) '

CorOLLARY 3. There is a constant c¢,, such that A(2me;X) is wrreducible
(t. e. contains an irreducible curve) whenever (V,X) €S and m > cy,.
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Proof. Let T be a member of A(2¢;X). 1f Y is a fixed component
of A(mT), we have I(mT) =1(mT—Y). Then m[T -Y]=s(mT—7Y)
—s(mT) 4+ p,(Y) —1 by the theorem of Riemann-Roch, which leads to a
contradiction if m > max (¢, 2611 + ¢s—1) = ¢14” by the above Corollary 1,
(I) and by (iii) of Lemma 2. If A(mI) is composed of a pencil for

t
m > ¢yy’, a generic divisor of A(mT') can be written as X T, where the T}

1
belong to one and the same pencil by the theorem of Bertini. Clearly, we
have dim A(mT) =+¢ and [T;-T;] =1 by (I). Hence (mT)® =1¢* and
2me;- ¢t =t =dim A(mT). On the other hand,

dim A (mT') = (2m2cs%c; — mescs) — €5
by (1), Lemma 1 and by the theorem of Riemann-Roch. Our corollary now
follows from this easily.

2. When A and A’ are two linear systems on a complete normal variety,
the smallest linear system A’ containing the divisors X 4+ X’, X € A, X" € A/,
is called the minimum sum of A and A’. Then the following lemma is easy
to prove.

LemMma 5. Let A(C) be a non-empty complete linear system on a
complete normal variety W. Assume that A(C) has no base point and that
the minimum sum of A(C) and A(mC) is complete. Let h; be a non-
degenerate map of W into a projective space determined by A(iC) for
t=m, m+ 1. Then there is an isomorphism a between tmages Wy, Wi
of W by humy, hiney Such that Ry — &0 hy,.

In the following three lemmas, denote by (' an irreducible curve on a
non-singular projective surface V and ¢ the intersection of local rings of C
at the singular points of C. Using only those functions of C' which are in R,
we can define linear systems as in the case of normal varieties. Throughout
this chapter, linear systems on curves lying on V are understood in this sense.
By the degree of a linear system on C, we understand the degree of a generic
divisor of the linear system. The Riemann-Roch theorem on C' then states
I(m) =deg(m) —pa(C) + 1+ (K (C) —m) for a C-divisor m (cf. [13],
[16]). The following lemma is known as a lemma of Castelnuovo when C
is non-singular, which can be proved in the same way as in the ordinary case.

Lemma 6. Let A’ be a linear system on C withoul base point and A
a complete non-special linear system on C. Let w be a generic divisor of A’/
and assume that A—mn’ is non-special and is of degree equal to deg(A)
—deg(n”). Then the minimum sum of A and A’ is complete.
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Actually, it is enough to know a special case of this lemma, under an
additional assumption that deg(A) — deg(n’) = 2p,(C), which makes a proof
very easy.

Let A be a linear system A (M) 4 F, where M is a finitely generated
module of functions on V. Let C* be the largest non-singular open subset
of (' and denote by * the vestriction of a C-chain (i.e. a zero-cycle on V
whose support is contained in () to O*. Assume that ¢ and F intersect
properly on V' and that every g in I/ induces a function ¢’ in R¢ on C.
Denote by J/” the set of such functions ¢’ and by A’ the set of C-divisors
(A-0)* 4 (C-F)*, by taking for .\" all divisors from A (M) such that ¥
and C intersect properly on 7. Then A’ is a linear system on C, whose
reduced part is determined by }’. We denote A’ by Tr¢A and call it the
linear system on €' induced by A. When A is a complete linear system A (XX)
whose fixed component F satisfies our requirement, it always induces a linear
system on C, since there is a V-divisor Z such that X~ 7 and that the
support of Z does not contain (' and the singular points of (.

Leyaa 7. Assume that O® >0 and that A(C) has no base point. If
s(ml') is a constant for all positive integers m, the minimuwm sum of A(C)
and A(mC) 1s complete for m > [C-K (V)] 4+ 4.

Proof. Let ¢ be a V-divisor such that ("~ (' and that | ’| contains
neither ¢' nor the singular points of C. We have [C (m()] —2p.(C) >0
when m satisfies our condition. Hence Tr¢ A (m(”) is complete by Corollary
of Lemma 3. By our assumption, Tr¢ A (€”) has no base point. Hence the
minimum sum of Trg A(mC’) and TreA(C”) is complete for such m by
Lemma 6. Thus, the minimum sum of A (m(C’) and A(C") induces on (' a
complete linear system. ILet M be the module generated by f- g with
feL(mC), g€ L(C’"). Then I induces on C the module L((m+41)0"-0).
When A is a function in L((m + 1)(”), inducing 0 on (', we have div (k)
~=C+4H— (m~+1)C" with H >0. Hence / is in M (cf. [18], Chap. IX,
Cor. 2 of Th. 8). Our lemma follows from this at once.

It is not true in general that a complete linear system A(m) on C con-
tains a divisor of the same degree as mi, unless m is positive. But we have
the following.

Leyaya 8. When deg(m) = 2p,(C), A(m) conlains a divisor of the
came degree as m.

Proof. Let a be a positive C-divisor such that deg(m) =deg(a) =m.
Set po(C) =1 and let k be a field of definition for C' over which m and a
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are rational. Then, there are two generic divisors p and q of degrees ¢ over
k and a unit f in Re such that div(f) = (m—a) + (p—q) (cf. [14],
Lemma 3). Since a is positive, a generic divisor of A(a) over k has the
degree m; moreover, we have [(a) = ¢4 1. Therefore, there is a unit g in
fo and a generic divisor o’ =1p -+ b of A(a) of degree m such that div(g)
=a—a’. Then div(f -g) =m—qg—D> and our lemma is proved.

3. TaErorEM 4. There is a constanl ¢,y such that mX 1is ample for
all (V,X) €3, whenever m > ¢i5.

Proof. In order to prove our theorem, it is enough to prove that m,X
is ample for all (V,X) in 3, where m, is a constant, depending ounly on ¢,
Cs, ¢3. In fact, the sum of two ample divisors is also ample; moreover, if ¥
is an ample divisor on a non-singular projective variety W and B=B"—B",
B’ >0, B” >0, is a W-divisor, then, whenever

4= deg(B) - (deg(W) —®) + deg(V) + deg(B"),

dY + B is ample (cf. [18], Chap. IX, Cor., Th. 13). Our theorem follows
from these two facts and from Lemma 1 as an easy exercise.

Let T be a member of A(R¢;X) and Z an irreducible member of A(¢,.T)
(cf. Cor. 3 of Lemma 4). Then we have

(a) [rZ- (RZ+1iT)] > 2p.(rZ) for 0 <r =t and for all i=0. In
fact, this follows from (IT), Lemma 1 and from the formula 2p,(D) —2
=[D- (D+K(V))]

(b) There is a constant d, depending only on ¢y, ca, s, such (hat
A(mdZ) has no base point for m=1. In fact, there is an integer a such
that 8 = a = ¢y; + 3 and that s(aZ —7Z) =s(aZ) (cf. Cor. 2 of Liemma 4).
Set r=%t=1in (a). Then we see that Tr; A («Z) is complete by Corollary
of Lemma 38; moreover, it is of degree > 2pq(Z) since &(aZ)/&(«Z —7) is
isomorphic to {((aZ)aZ). When that is so, A(aZ) has no base point by
Lemma 8.

Now let Z be an irreducible member of A(dZ) (cf. Cor. 3 of Lemma 4).
By Corollary 2 of Lemma 4, there is an integer b such that 3=b=c¢, 43
and that s(bE) =s(bE—E). TrpA(F) has no base point by (b). By
(a) and Corollary of Lemma 3, Trp A(bE) is complete and is of degree
> 2p(F). Moreover, Trz A(F) and Try A(bE) satisfy the conditions of
Lemma 6 by (a) and (b). Therefore, the minimum sum of them is complete,
which implies that Try A(bE + E) it complete and s(bE 4+ B) = s(bE)
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(cf. Cor. of Lemma 3). Repeating this, we see that s(c, ff + 3E 4 mk) is
a constant for all m=1. By (I) and (b), a non-degenerate map h,, of V
into a projective space, determined by A(m(¢iy + 3)L), is a morphism and
has no fundamental curve on V. Then it is a projective embedding for
large m, which is an easy consequence of the possibility of projective nor-
malization in an algebraic extension of the function field (cf. [7], Chap. 1V,
Prop. 8). Then h,, is already a projective embedding if

m > [cin+8)E-K (V)] 4+ 1r=2(ci1+ 3)deiscsey + 4

by Lemma 5 and Lemma 7. Our theorem is thereby proved.

Chapter IV.

So far, we have restricted our technique to the use of irreducible curves
on the surface. Since the generalized Riemann-Roch theorem is available
for such curves, it was easy to see, for instance, whether some linear systems
on such curves are free from base points, etc. On the other hand, if we
generalize a criterion of ampleness to reducible curves by means of the theory
of schemes, we can simplify the latter part of Chapter III to some extent.
T.et V be a projective variety. Denote by Oy the sheaf of local rings on V.
1f D is a Cartier divisor on V, we mean by the associated subscheme © the
;subscheme of the scheme V (a) whose underlying space is the support of D
and (b) whose sheaf Qg is defined at a point @ of D to be O, v/(f) for any
local equation f of the divisor D, where O,y is the local ring of V at . We
further denote by m,,r the maximal ideal of O, . In the following proposi-
tion, we discuss a criterion of ampleness on a positive 1-cycle on V. The
first half of the proposition has been settled essentially in Lemma 4, and we
give only a brief account of the proof for it in the sheaf theoretic terminology.

Prorosrrrox. Let T=éui,Yi be a positive divisor on a non-singular
projeclive surface W. Let = })e the subscheme of the scheme W, associated
to T, und M an invertible sheaf on r. Let d; be the degree of the Cartier
divisor class on Y; defined by MO Oy,. If di>[(K(W) +T")-Y;] for all
divisors T such that 0L T"<L T, and for all 1 such that 1 =1=t, it follows
that H* (M) = 0. Moreover, if di > [ (K(W) 4+ T") - Y] 4+ 2 max,cy, (mulii-
plicity of @ on Y;), then M is ample on .

Proof. We have QOw/Q(—T) =90, Ow/(—T") = O, from the defi-
aitions of O, Or, where «/ is the subscheme of W, associated to 7”. More-
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over, we have {(—1")/{(—T) =2(—T1") ® Oy, when we use the same
notations as in the proof of Lemma 4. Hence, we have the exact sequence:

0>(—T") ®Qy,—> Or—> Or—> 0.

Tensoring the above with I, we get
H(MOX(—T)®Dy,) > H*(M) > H' (MOD) =0

instead of
H (A —17)/(A—T)) > H*({(4)/(4A—T))>
— H* ({(4)/&(A—T"))—>0

in the proof of Lemma 4. Computing the degree of the Cartier divisor class
on Y, determined by M @ L(—T") @ Oy,, we get H* (M) =0 as in the proof
of Lemma 4.

For an invertible sheaf & on a complete algebraic scheme W to be ample,
it is necessary and sufficient that:

(i) the sections of & separate points,

(*) (i) for any point x on W, if we identify the stalk &, with Oy, the
sections of & which are zero al x span Mg,w/ My w.

For every point @ in the support | T'| of T, let D, be a positive W-divisor

such that ¢(D, Y, 2; V) gives the multiplicity of z on Y; for 1 <1< ¢

Moreover, for every pair of distinct points @, y in | T'|, define an invertible
~ sheaf M, on + as follows:

=MAOL(—D,) in |T|—x—(|T|m|Dy|_y),
= IN elsewhere.

Similarly, for every @ in | T |, define M,,, as follows:

My e =MRLX(—2RD,) in |T|—(|T|N | Dy | —z),
= IN elsewhere.

The first half of the proposition implies H*(9M,,,) = 0 for all the pairs (z,y),
because the degree of the restriction of M, , to ¥; is at least d;— 2 max
(multiplicity of z on Y;). Therefore, we have the exact sequence

zeYy

0—> H°(My,y) — HO(M) — H°(M/My,y) = H*(M2,)) =0
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for all pairs (x,y). Now suppose @ 7~ y. Then H°(IMM/M.,,), whose support
is the union of two points  and ¥, contains a section which is 0 at = and a
unit at y. Hence H°(IM) contains a section with the same property. Then
the sections of 9 separates points. Let f=0 be a local equation of D,
at z, f being an element of O,w. Then f induces an element f in O,,, and
we have (M/Mss)e=—Dsr/f*. But this maps surjectively to the ring
Oy,r/Mer2 Hence, if we identify M, to O, r, the sections of M which are
zero at x span Mg, /My "

Using this proposition, we recover Corollary 1 and Corollary 2 of
Lemma 4. Moreover, Corollary 1 can be expressed as H*({(mX —U) @ Or)
— 0 for m = ¢,, where 7 is the subscheme of V, corresponding to a member
T of A(2¢;X). Furthermore, we see that {(mX) ® O, is ample on r for
m = ¢;, when ¢y, is chosen suitably. Then, by Corollary 2 of Lemma 4,
one can find an integer » such that s(c;oT 4 1T) =s(coT 47T 4 T') and
that 0 == ¢y;. Set m =2c;(co+7+1). Since H*({(mX) ®O;) = (0)
and s(mX) —=s(mX —T), it follows that the restriction map H°(Z(mX))
— H°(Q(mX) ®D,) is surjective. Moreover, (mX) ® D, is ample on .
To prove that Q(mX) is ample, we again use the criterion (*) cited above.
Let « and y be two given points on V. Let T, and T', be members of A (c;X)
such that T, goes through = and that T, goes through y (cf. Lemma 1).
When we set T = T3 + T», # and y are in the support of r. Since (mX) ® O-
is ample, there is a section of this sheaf which is zero at « and not zero at y
if =4y, Lifting this to a section of {(mX), the same is true of &(mX).
If 2 =y, set T=2T,. The restriction of functions from V to = induces an
isomorphism between t,,v/m, v and My, r/My 72 When we identify the stalk
of Q(mX) ®D, at & with O, -, the sections of L(mX) ® O, which vanish
at @ span m,,/M,,°. Lifting these sections, we see that the same is true of
Q(mX) and m,y/m,v>. Hence (mX) is ample for m ==Rc;(c; +7+41),
where r is a certain integer such that 0 =7»=¢;;,. Since the sum of two
ample divisors is ample, we see that (dX) is ample for a suitable d, which
depends only on ¢, ¢, ¢s. Then we get our Theorem 4 again.
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