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Abstract: Some Aspects of the Problem of Moduli

I. The first aspect which I wish to discuss is the question

of how to make precise the heuristic concept of moduli. For
example, suppose one is concerned with curves of genus g: then,
for every algebraically closed field {L , let 7T§(£Z ) be the
set of curves of genus g, defined over dL y up to isomorphism,
Since the moduli scheme M8 is to classify curves, one asks at
least that there be given an isomorphism between the set of

J) -rational points of Mg and TT%(I[.). This obviously

does not detcrminc Mg ’ howgver. A stronger demand is to ask
for a collection of isomorphisms between the set of R-valued
points of Mg » and the set of curves of genus g over R,

for every commutalive ring R; here a curve over R means a

scheme, simple and proper over Spec(R), whose geometric fibres
are curvés of genus g, Morcover, these isomorphisms should be
functorianl in R. Then, in fact, this determines Mg y if it
exists, An essontinlly cquivalent demand is to ask.that there
exist a "Universal Family" of curves over M8 itself. Such an
M T call a fine moduli scheme; unfortunately, it does not
o*ist unless the classificational problem is slightly modified
(via o "higher level structure"”). For higher dimensions, to
find suitable modifications to "eliminate the automorphisms"
is nnlinteresting problem.

In any cnse, one can compromise for a coarse moduli scheme:

here one mercly asks for some collection of maps, from the sets



of curves over- R to the sets of R-valued points of Mg y which
are (i) functorial in R, (ii) isomorphisms when R is an
algebraically closed field. Finally, to determine Mg completely,
one should ask that it satisfy a universal mapping property with

respect to all other solutions of the first two demands.

II. The next aspect we consider is that of the qualitative
properties of the sought-~for moduli scheme: especially, whether

it is a true scheme, or only a pre-scheme; and whether it is of
finite type over the integers. But, in fact, examples due to
Kodaira, Nagata, Nishi, and oﬁhers indicate the absense of both

of these properties in the general case of classifying higher
dimensional varieties. To remedy this difficulty, the simplest
solution seems to be to modify the problem: instead of classifying
varietie§;fone seeks to classify polarized varieties. By a
polarized variety, we mean a variety V together with a Cartier
divisor class D, determined up to algebraic equivalence and torsion,
such that nD is induced by a projective embedding of V, if

n > 0.

For this classificational problem, Matsusaka and the writer
have shown that the moduli scheme should be a true scheme, if the
varieties are assumed non-singular, and not birationally ruled.
Moreover, note that a Hilbert polynomial P(n)= %( ,Q’V(nn)) can
be attached to any polarized variety, and that it remains constant
in flat families of such polarized varieties. Then we have also
shown that, for non-singular surfaces, the moduli scheme of,

polarized surfaces witﬁ fixed Hilbert Polynomial should be of



finite type. Whether the same is true in dimension 3 is a very
intriguing question. Another difficult problem is to ascertain
how essential is the role of the non-singularity assumption in

these matters. In the complex analytic case, non-singular families
recommend themselves as being differentiably trivial, so that they
can be visualized as families of complex structures on a fixed
manifold. In the algebraic case, however, there seems to be no

compelling reason for thinking that this is a reasonable assumption.

IIT. Beyond the qualitative problems already discussed, there

looms the big question of whether, although possessing all good

local and global properties, the moduli scheme may fail to exist
for more subtle reasons. One may put the problem this way:

the "moduli scheme" may be formally described as the quotient .

of a scheme by some topologically beautiful equivalence relation
but it ﬁay be impossible to give a scheme realizing this quotient.
For instance, it is sometimes impossible to "blow down" certain
subvarieties, or to "divide" some variety by the action of some
group. ;In this case, .there would be only an open subset U of
stable polarized varieties which could be realized as a scheme.
This problem appears to be closely connected with the local
projective differential geometry of embedded varieties V C Pn .
To illustrate, suppose V is a non-singular curve, and that the
embedding is determined by a complete linear system on V. of
high degree. Then the Weierstrass gap theorem, and the Frenet-
Serret equations give a very explicit picture of this embedded

curve. This enables us to do two things: In the first place,
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you can look at the set of x €V vwhere the Frenet-Serret
equations break down. I call these points of Hyper-Oscullation,
and with convenient multipiicities, they can be added together

o give a divisor on V. This possesses two key properties:

(i) as V and the embedding vary continuously, this divisor

varies continuously, (ii) +the maximum multiplicity with which any
x occurs in this divisor is bounded by gz (g=the genus of V).
This being so, projective invariants of V can be constructed

in a highiy explicit fashion out of determinants in the coordi-

nates of these points. This is tantamount to comstructing the

moduli scheme for curves. In the second place, the very explicit
expression of V gives direétly information on the Chow form

of V: especially on the monomials which occur in the Chow form

with non-zero coefficient and are extremal in the convex hull

of all monomials of fixed degree with this property. This, too,
leads to'projective invariants of space curves, hence fo moduli,
In this connexion, the difficulty in the surface case appears to

be lack of very much information‘on the local projective differ-

ential geometry of surfaces in Pn .

IV, Riemann originally asked for 3g-~3 complex numbers, called
moduli, to be attached to each curve over the complex mumbers.
One interpretation of this assertion is to ask, not only for =
constructionv of Mg buf for a projective embedding Mgc PN .
This leads to the fourth aspect: +to study the Picard group of

M . One interesting point in this connexion is that it is

g
possible to define the Picard group of the moduli problem itself



without reference to the moduli scheme. Namely, by a line bundle
on the moduli problem we shall mean, a collection of line bundles,
one on each scheme S for each family of curves over S; plus,
for each morphism between families, a corresponding morphism
between line bundles. Heuristically, such line bundles arise

from attaching canonically one dimensional vector spaces over XoX

to each curve over J{2 ,

i can prove that the group of line bundles on the moduli
problem, i.e. the Picard group, is finitely generated; and that,
up to torsion, there is exactly a subgroup isomorphic to Z of
line bundles which extend to.line bundles on the whole moduli
problem of principally polarized abelian varieties (via the
Jacobian). I conjecture that the group itself is Z , but im
this connexion I can give only some curious relations. For
example,_to any curve C, we can attach two 1l-dimensional vector
spaces: a) /Q%i‘(C,TL), where ()L is the sheaf of differentials
on C, and b) A"TH®(C, (Q)), where (fL)? is the sheat of
quadratic differentials. These extend naturally to line bumdles
Ll and L, on the whole moduli problem. Then, up to torsion:_
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