FURTHER PATHOLOGIES IN ALGEBRAIC GEOMETRY .**

By Davip MUMFORD.

The following note is not strictly a continuation of our previous note [1].
However, we wish to present two more examples of algebro-geometric phe-
nomena which seem to us rather startling. The first relates to characteristic
p behaviour, and the second relates to the hypothesis of the completeness of
the characteristic linear system of a maximal algebraic family. We will use
the same notations as in [1].

I.

The first example is an illustration of a general principle that might be
said to be indicated by many of the pathologies of characteristic p:

A non-singular characteristic p variety is analogous to a general non-
Kahler complex manifold; in particular, a projective embedding of such a
variety is not as “strong” as a Kghler metric on a complex manifold;
and the Hodge-Lefschetz-Dolbeault theorems on sheaf cohomology break
down in every possible way.

In this case we wish to look at the two dimensional cohomology of an
algebraic surface F, non-singular, and of any characteristic but 0. The surface
we shall choose will (a) be specialization of a characteristic 0 surface F”, and
(b) will satisfy g=h%*=h"° Consequentily the second Betti number B,
is the same, whether defined (i) as that of F” in the topological sense, (ii) as
B0 4 Bt + h*2, or (iii) following Igusa [2], as Deg(c,) +4g—2. Let p
be the base number of #. Igusa showed that, in fact, B,=p. However, in
characteristic 0, one has the stronger result, B, = h%° 4 ht* 4 %2 = 2p, +p
(where p, — h*° = "% is the geometric genus of F') as a result of the Hodge-
Dolbeault theorems. Therefore the question arises whether this stronger
inequality is valid in characteristic p. The answer is no.

A rather complicated example was discovered in 1961 by J. Tate and
A. Ogg. Here is a very simple example: let E be a super-singular elliptic
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curve of characteristic p (i.e. such that the rank of End(E) is 4). Let
F=F X E. In this case, in fact:

p=B.=6; p,=1.

Here p, =1 since the sheaf Qp*= Or; and B, =6 by Igusa’s definition, for
example, since Deg(c,) =0, and ¢=2. Finally p==6 since in general, for
any two elliptic curves F, and FE,, one knows that the base number p for
E, X E, equals 2 plus the rank of Hom (EF,, F,).

There remains one outstanding conjecture still neither proven nor dis-
proven in characteristic p, which according to the general principle mentioned
above ought to be false. This is the Regularity of the Adjoint, which may be
stated as follows: if V is a non-singular projective surface and if H is a non-
singular hyperplane section, then

H*(0Ov) > H*(0#)

is injective.

II.

The second example concerns space curves in characteristic 0. Let 4
be any family of non-singular space curves, and let a € A represent the curve
y C P;. Let T, denote the Zariski tangent space to A at a, and let N denote
the sheaf of sections of the normal bundle to y in P;. Then it is well-known
[8] that there is a “characteristic” map:

Ty— H°(N).

The problem of completeness consists in asking when, for given v, there is a
family A containing y such that the characteristic map is surjective. Kodaira
[3] has shown that such a family exists if H*(N) = (0). Our example shows
that if H*(N) 5= (0), then there need not be such a family.

In fact, in our example, this incompleteness holds for every curve in an
open set of the corresponding Chow variety. Consequently, it is also an
example where the Hilbert scheme [4] has a multiple component, i.e. is not
reduced at one of its generic points. Another corollary of this example is
obtained by blowing up such a space curve y C P; to a surface I in a new
three-dimensional variety V,. Then Kodaira [5] has shown essentially that
the local moduli scheme of the variety V, is isomorphic to the germ of the
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Hilbert scheme of P at the point corresponding to y. Therefore we have
constructed a non-singular projective three-dimensional variety whose local
moduli scheme is nowhere reduced ; in other words, any small deformation of
Vs is a variety the number of whose moduli is less than the dimension of
H*(®) (where @ is the sheaf of vector fields).

The curves y that we have in mind have degree 14 and genus 24. In
the following, & will stand for the divisor class on y induced by plane sections,
and K., will stand for the canonical divisor on y; also ' will stand for a cubic
or quartic surface in P;, and H will stand for the (Cartier) divisor class on
F induced by plane sections. The first step is partial classification of all
space curves of this degree and genus, which confirms the results of M.
Noether’s well-known table [6].

(A) Any non-singular space curve y of degree 14 and genus 24 is contained
in a pencil P of quartic surfaces.

Proof. Since Deg(4h) =56, and Deg(K,) =46, the linear system
| 4h | is non-special,? and has dimension 56 — 24 =32. Since there is a 34-
dimensional family of quartics in P, (A) follows.

There are 2 cases: (a) the pencil has no fixed components, and (b) the
pencil has fixed components. In case (a), note first that if ¥ and F”’ span
P, then F’+- F” =y + ¢, where ¢ is a conic. Now ¢ has at most double points,
hence y -+ ¢ has at most triple points. Therefore no point z is a double point
for both F” and F”. Noting that both F” and F” are non-singular and
transversal along y—c, hence at all but a finite number of points of v, it
follows that almost every F € P is non-singular everywhere along y.

(B) Ewvery algebraic family of space curves of type (a) has dimension less
than or equal 56.

Proof. It is enough to show that every family of pairs (v, F') consisting
of such curves vy, and quartics #Dy, F being non-singular along y, has
dimension at most 57. Now since all such quartics contains conics, they are
not generic [7], and there is at most a 84 —1—233 dimensional family of
quartics F' involved in such a family of pairs. Moreover, the dimension of
the set of all y on one such F can be computed from the Riemann-Roch
theorem on F':

* Here and below, | D. |, always means the linear system on V in which the Cartier
divisor D varies. Also, (D?)y always denotes the self-intersection of D, as a divisor
class on D (assuming D effective).
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dim |y o= DB 1 4 (aim B (04(;)) —dim (02 (1)) )

But (y*)r=K, on vy, hence Deg(y?)r =46. Moreover, H(Or(y)) is dual
to H>*(Or(—vy)) by Serre duality. This cohomology group can be com-
puted from the exact sequence:

0= O0r(—vy)—>0r— 0,—0.

It follows that both are zero, hence dim |y|r=24. Therefore, indeed, the
set of pairs (v, F) has dimension at most 33 4 24 = 57.2

Now consider case (b). Such a y must be contained in a reducible quartic,
hence in a plane, a quadric, or a cubic surface. The first two possibilities are
readily checked and it happens that they contain no curves of the required
degree and genus. Moreover, such a curve is contained in a wunique cubic
surface ¥, because Deg(y) =14 > 9= Deg(F’-F"), for two distinct cubic
surfaces #” and F”. We will say that y is of type (b,) if the cubic F' is non-
singular ; otherwise, we will say that y is of type (b,).

(C) Every mazimal algebraic family of curves y of type (b,) has dimen-
ston 56.

Proof. Let y be a curve of type (b,), and let ¥ be the corresponding
cubic surface. Since Kp=-—H, by the Riemann-Roch theorem on F':

. D : H)p . .
dim |y | = DB Y HEII | i 12(05(7)) —dim (02 (1))},
But Ky=v:(y+ Kr), hence 46 — Deg(y*)r — Deg(y - H)r = Deg(y?)r — 14,
hence Deg(y*)r=160. Also, Hi(Or(y)) is dual to H**(Or(—H —vy)),
and this group can be computed from the exact sequence:

0— 0F(—I{—y) e @Fﬁ @(H+'y)_>0'

Since H +y is a reduced and connected curve, H°(@n.y) =k (constants),
and this implies H¢(Or(—H —v)) = (0) for i—=1 and 2. Putting all this
together, we see that dim ] v |[:'= 37. Since there is a 19-dimensional family

31t may be objected that we have used the Riemann-Roch theorem, and Serre
duality as though F' were non-singular. But since F' is non-singular along v, the former
can be proved by means of the exact sequence:

00> Op(y) > Oy ((¥*)r) > 0.

And the latter can be proven either (a) directly by resolving the singularities of F and
comparing the cohomology on F and on its resolution, or (b) as a consequence of
srothendieck’s general theory [8]. In the second case, one merely has to note that F'
is always a Cohen-Macauley variety; and since it is a quartic surface the canonical sheaf
is simply Op itself.



646 DAVID MUMZFORD.

of cubic surfaces, (C) follows if we show that a generic y in a maximal
algebraic family is contained in a generic cubic surface. But let yCF be any
curve of the family. Then recalling that the divisor class group of any non-
singular cubic surface is the same as that of any other, it follows that if the
set of all non-singular cubic surfaces are suitably parametrized the invertible
sheaf @r(y) will be a specialization of an invertible sheaf L defined on the
generic cubic surface F*. And since H*(Or(y)) = (0) for =1 and 2, by
the upper semi-continuity of cohomology [9], we conclude that H?(L) = (0)
for =1 and 2, and that all sections of @r(y) are specializations of sections
of L. Therefore dim H°(L) =38 ; and since almost all sections of Or(y) are
non-singular, so are almost sections of L. Hence there is a non-singular
y* CF* gpecializing to yC F. QED.

Now suppose C is the Chow variety of non-singular curves of degree 14,
and genus 24. Let Oy C C be the locus of curves of type (b), and let Cy, C O
be the locus of curves of type (b,). Then it is clear that Cy and €, are closed
(possibly reducible) subvarieties of C. By (B) and (C), every component
of ' — O has dimension = 56, and every component of Oy — (5, has dimen-
sion = 56. Therefore if €, equals C minus Cp, and minus the closure of
0 —Cy, (o is an open set in the Chow variety, of dimension 56, and para-
metrizing almost all curves of type (b,).

We shall now single out a set of components of €, such that, if N is the
normal sheaf to a y in one of these components, then dim H°(N) —5%7. In
fact, we say that yCF is of type (b’,) if there is a line K on F such that
y=4H -+ RF on F. Then the corresponding ¢”,CC, which is the locus of
such curves is clearly closed in C,. But it is also open: if y* C F* specializes
to yCF, and if y=4H -} 2EF on F, then first of all, there is a line E* CF'*
(possibly only rationally defined after a suitable base extension) which
specializes to E; and secondly, since the divisor class group is discrete and
constant for all non-singular cubics,

y—4H —2E =0 implies y* —4H* —2F*=0.
Therefore y* is of type (b).
(D) If yCF is of type (b's), then dim HO(N) = 57.

Proof. Let Np be the sheaf of normal vector fields to y and in F, and
let Np be the sheaf of normal vector fields to F, and in P, which are defined
along y. Then we have the sequence:

0—>Nyp—>N-—->Np—0.
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But if D is a non-singular divisor on a non-singular variety V, then its
normal sheaf is isomorphic to Op((D?)v). Therefore Ny= 0,((y%)r) and
Np= 0,(3h). But since Ky=(y*)r+y ' Kr= (y*)r—h, it follows that
(y*)r is a non-special divisor, of degree 60 in fact. Therefore H*(Ny) = (0)
and dim H°(Np) =60 — (24 —1) = 3%7. On the other hand, by the Riemann-
Roch theorem for curves,

dim HO (0 (3h)) =42 — (24— 1) -4 dim H°(0 (K, — 3h))
—19 4 dim H (0 (v*) r — 4h) )
—19 + dim H° (0 (2y- E))

(using the hypothesis y=4H - 2F). But now, use the exact sequence:
0> 0r(—4H) > 0r(RE) > 04(2y-E) — 0.

It is readily seen that H*(Or(—4H)) = (0) for i=0 and 1, and that
dim H°(0Or(RE)) =1. Putting all this information together we conclude:
dim H°(N) =387 +19 +1—=57. QED.

It remains only to note:

(B) If F is any non-singular cubic surface, and ECF is any line, there
exist non-singular curves y € | 4H + 2F |, and they have degree 14 and
genus 24.

Proof. The degree and genus of such a y are computed by the usual
formulae, recalling that Deg(B?)p=-—1. To see that such a y exists, it
suffices, by the characteristic 0 Bertini theorem, to prove that | 4H - 2 | has
no base points. But the only possible base points are the points of F, and
we use the exact sequence:

0—0r(4H + L) > Or(4H +2E) — 05(2) — 0.

Since the sections of @r(2) have no base points, it suffices to prove
H'(0r(4H 4 E)) = (0). But this follows from the sequence:

0— Gr(4H) = Or(4H - B) — 0z(3) =0,
since H'(@r(4H)) = (0), and H*(05(3)) — (0). QED.

HARVARD UNIVERSITY.
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