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ally negative component of D (see Theorem 7.7), then, under the as-
sumption that dim I hD > 0 for some h, there exists an integer m and 
there exist m effective cycles B„ B2, • • • , B„, (with rational coefficients) 
such that 

B7t 	nC + Bv(n) 

where v(n) is one of the integers 1, 2, • • • , m (Theorem 8.1; Theorem 10.1; 
Theorem 11.4). Thus, under the assumption that dim I hD I > 0 for some 
h, B„ is bounded (from above) if and only if D is arithmetically effective.' 

(7) If the quadratic form (pi, is of type (0, t), the function v(n) which 
occurs in (6) is periodic (Theorem 11.4). 

(8) The ring KID] (introduced in § 2) is finitely generated over k if 
and only if one of the following conditions is satisfied: 

(8a) q is of type (1, t) and some multiple I h(D — 	(6 " = arithmetic- 
ally negative component of D) has no fixed components; 

(8b) (pi, is of type (0, t) (Theorem 10.6; Proposition 11.5). 
In the case (8b), RID] has transcendence degree < 1 over k. 

APPENDIX 

THE CANONICAL RING OF AN ALGEBRAIC SURFACE 

BY DAVID MUMFORD 

In this appendix we wish to examine how the general theory developed 
by 0. Zariski applies to the canonical divisor class. To be precise, suppose 
F is a non-singular algebraic surface over an algebraically closed field k, 
which 

(a) is not birationally equivalent to a ruled surface, and 
(b) is minimal [11]. 

Moreover let K be the canonical divisor class. We set 

R = 97,=0 11°(DF(nK)) , 

and we call R the canonical ring of the surface (R = RIK] in Zariski's 
notation). There are three essentially different cases to consider accor-
ding as (K 2) is negative, zero, or positive. We assert: 

9  The assumption that dim I hDI > 0 for some h is necessary. Thus, it is possible to have 
a prime cycle E such that (E 2) = 0 (and which is therefore arithmetically effective, whence 
e = 0) and such that dim InEj = 0 or all n (whence B.= nE, and B. is not bounded). 
To obtain such a cycle E, we use the construction of g2, with the following modifications: 
we take for E' a generic plane section of F', we take for VI the divisor class determined 
on E' by !E'l (i.e., we take for h the integer 0) and we determine 	P.'2, • • 	(where 
m = (E' 2)) by the condition (4). Then it is immediate that the proper transform E of E' 
satisfies the desired conditions. 
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THEOREM. (1) Under the above hypotheses, (K 2) < 0 is impossible. 
(ii) If (K 2) = 0, then for some n either nK 0, or I nK I is a linear 

system without base points, composite with a pencil. Therefore R is a 
finitely generated ring of dimension 1 or 2. 

(iii) If (10> 0, then for sufficiently large n, nK I is a linear system 
without base points. Therefore R is a finitely generated ring of di-
mension 3. Moreover s(nK) = dimli1(op(nK))=0 for su fficiently large n. 

Only the proof of (iii) will be given in this Appendix, since the proof of 
(i) and (ii) is rather long and will be published elsewhere. If the charac-
teristic is 0, the latter proof depends chiefly upon Enriques' theorem: if 
F is a relatively minimal non-singular algebraic surface, and nK I is 
empty for all n, then F is ruled. The first complete proof of this in charac-
teristic 0 (and of its refinement: if 112K1 is empty, then F is ruled) was 
obtained several years ago by K. Kodaira (unpublished). In characteristic 
p, new difficulties arise, but Enriques' result and parts (i) and (ii) of the 
theorem can still be proved. 

We shall now establish (iii). Notice first that by the Riemann-Roch 
theorem, either 1 nK1 or 1 —nK I is non-empty for large n. The latter case 
is impossible. For suppose q is the irregularity of F (= dimension of the 
Picard variety), and p is the base number ( = rank of the Neron-Severi 
group). Then by Noether's formula for pa(F) and by Igusa's inequality," 
we see that 

12(p„(F) 1) = (K 2) — deg (c2) > 2 — 4q + p . 

But since p2(F) = 0, it follows that pa(F) 	—q.1' Therefore: 

8(1 — q) p — 1 . 

But if q = 0, then F is rational, by Castelnuovo's criterion" which we 
have excluded; and if q = 1, then the Albanese map is a regular map onto 
a curve, and p 2. Therefore this last inequality cannot be fulfilled. 

Therefore 1 nK I is at least non-empty for sufficiently large n. Let D 
be any irreducible curve on F. Suppose (D • K) < 0. Then by Hodge's 
index theorem, since (K2) > 0, it follows that (D2) < 0. But also —2 
2p“(D) — 2 = (D2) + (D • K). Therefore pa(D)= 0; i.e., D is a non-singular 
rational curve, and (D2) equals —1 or —2. In the first case, D would be 

10  See J. I. Igusa, Betti and Picard numbers of abstract algebraic surfaces, Proc. Nat. 
Acad. Sci. U.S.A., 46 (1960), p. 724 

11  See Y. Nakai, On the characteristic linear systems of algebraic families, Ill. J. Math., 
1 (1957), p. 552. 

12  See 0. Zariski, On Castelnuovo's criterion of rationality pa = 232 = 0 of an algebraic 
surface, Ill. J. of Math., 2 (1958), p. 303. 
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exceptional of the first kind and F would not be minimal [11]. Therefore, 
we conclude: 

(*) If D is an irreducible curve, and (D. K) < 0, then D is a non-
singular rational curve, (D2) —2, and (D. K) = 0. 

Notice that there can be at most a finite number of such irreducible 
curves D. In fact, by the Riemann-Roch theorem, there is an m such that 
dim mK1 2. Then every curve D such that (D • K) = 0 is either a fixed 
component of the linear system mK I or else is disjoint from every divisor 
of I mK In either case, there is only a finite set of such irreducible curves. 

Let E1, E2, • • • En  be the set of all irreducible curves D such that 
(D • K) = 0. Then by a very beautiful theorem of M. Artin," which is the 
central point of this proof, there is a normal surface F*, and a regular 
birational map f: 	F*, with the following five properties: 

( i ) f is biregular on F — UE, 
(ii) f maps each E, to one point, 
(iii) the canonical divisor K* on F* is a Cartier divisor, 
(iv) f'(K*) = K , 
(v) Pa(F) = PAP') . 

By (iv), the linear systems I nK (on F), and I nK* I (on F*) are canonically 
isomorphic. The proof that for sufficiently large n, I nK* has no base 
points proceeds in three steps: 

Step I. For all sufficiently large n, InK (and hence InK*1) is non-empty. 
This is a corollary of the Riemann-Roch theorem. 

Step II. For all sufficiently large n, nK* I has no fixed components. 
For let k and I be relatively prime integers such that I kK I and 1 1K are 
non-empty. Then by Theorem 9.1 above, for all sufficiently large n, the 
only fixed components of nkK I and I nlK I are the irreducible curves E„ 
But since all sufficiently large integers are of the form nk + n'l, for "suf-
ficiently" large n and n', it follows that the only fixed components of I nK I 
for sufficiently large n are the curves E„ Hence by (ii) and (iv), the cor-
responding linear system nK* I has no fixed components. 

Step III. For sufficiently large n, nK I has no base points at all. The 
proof of this depends on a slight extension of Theorem 6.2 above. Namely, 
notice that this theorem, together with the proof of that theorem (§ 6), 
are equally valid whenever (in the notation of that theorem) V is a normal 
surface, and D is a Cartier divisor. Now let k and 1 be relatively prime 
integers such that I kK* I and I 1K* I have no fixed components. By (iii), 

13 See M. Artin, Some numerical criteria for contractability of curves on an algebraic 
surface, Amer. J. Math., forthcoming, Th. (2.7). 
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and this extension of Theorem 6.2, for all sufficiently large n, the linear 
systems nkK* I and nlK* I have no base points. Hence just as before, 
for all sufficiently large n, nK* (and hence nK ) has no base points. 

The result on the superabundance follows from (v) and Theorem 6.5 
above, once one observes that for sufficiently large n, the linear system 
nK must define a regular map of F into projective space, with image F*. 

Finally, one sees that R is finitely generated as follows: Let k and 1 be 
relatively prime integers such that I kK and 1K I have no base points. 
Then by Theorem 6.5, the rings R*[kK], and R*[1K] are finitely generated. 
But these two rings together generate a `subring of R that contains all 
but a finite number of its homogeneous components. As each component 
of R is a finite dimensional vector space, R itself is therefore finitely 
generated. 	q.e.d. 
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