Deep Hidden Physics Models

Deep Learning of Nonlinear Partial Differential Equations

A long-standing problem at the interface of artificial intelligence and applied mathematics is to devise an algorithm capable of achieving human level or even superhuman proficiency in transforming observed data into predictive mathematical models of the physical world. In the current era of abundance of data and advanced machine learning capabilities, the natural question arises as how can we automatically uncover the underlying laws of physics from high-dimensional data generated from experiments? In this work, we put forth a deep learning approach for discovering nonlinear partial differential equations from scattered and potentially noisy observations in space and time. Specifically, we approximate the unknown solution as well as the nonlinear dynamics by two deep neural networks. The first network acts as a prior on the unknown solution and essentially enables us to avoid numerical differentiations which are inherently ill-conditioned and unstable. The second network represents the nonlinear dynamics and helps us distill the mechanisms that govern the evolution of a given spatiotemporal data-set. We test the effectiveness of our approach for several benchmark problems spanning a number of scientific domains and demonstrate how the proposed framework can help us accurately learn the underlying dynamics and forecast future states of the system. In particular, we study the Burgers', Korteweg-de Vries (KdV), Kuramoto-Sivashinsky, nonlinear Shrödinger, and Navier-Stokes equations.

Conic Economics

Conic Economics is an attempt to model modern general equilibria under uncertainty based on the recognition that all risks cannot be eliminated, perfect hedging is not possible, and some risk exposures must be tolerated. Therefore, we need to define the set of acceptable risks as a primitive of the financial economy. This set will be a cone, hence the word conic. Such a conic perspective challenges classical economics by introducing finance into the economic models and enables us to rewrite major chapters of classical micro- and macro-economics textbooks. The classical models dictate that economic players are able to trade the whole of their endowments at what is known as a market-clearing price and direct all proceeds to the consumption of goods and services. According to these models, the aggregate consumption does not exceed the total endowment, suggesting that finance is not a necessary component in the economy. Conic Economics proposes a case in which some gap occurs between the aggregate supply and demand whereby the financial primitives cover the aforementioned gap. This also generates a bid-ask spread at equilibrium depending on the cone of acceptable risks. This work questions the traditional law of one price and poses a direct challenge to Adam Smith's invisible hand theory. Since the housing crisis in 2008, economists and statisticians have questioned the law of one price. The implications of this academic debate are sweeping and affect players at all levels of the economy.

Deep Learning of Vortex Induced Vibrations

Vortex induced vibrations of bluff bodies occur when the vortex shedding frequency is close to the natural frequency of the structure. Of interest is the prediction of the lift and drag forces on the structure given some limited and scattered information on the velocity field. This is an inverse problem that is not straightforward to solve using standard computational fluid dynamics (CFD) methods, especially since no information is provided for the pressure. An even greater challenge is to infer the lift and drag forces given some dye or smoke visualizations of the flow field. Here we employ deep neural networks that are extended to encode the incompressible Navier-Stokes equations coupled with the structure's dynamic motion equation. In the first case, given scattered data in space-time on the velocity field and the structure's motion, we use four coupled deep neural networks to infer very accurately the structural parameters, the entire time-dependent pressure field (with no prior training data), and reconstruct the velocity vector field and the structure's dynamic motion. In the second case, given scattered data in space-time on a concentration field only, we use five coupled deep neural networks to infer very accurately the vector velocity field and all other quantities of interest as before. This new paradigm of inference in fluid mechanics for coupled multi-physics problems enables velocity and pressure quantification from flow snapshots in small subdomains and can be exploited for flow control applications and also for system identification.