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Two goals

(1) To communicate interesting (and simple!) exact solutions in Burgers 
turbulence, and the kinetic theory of shock clustering.



(2) To illustrate the utility of these exact solutions as a useful test 
case for numerical schemes for complex stochastic systems. In this 
talk, the scheme is the "equation free" method developed by Yannis 
Kevrekidis and his collaborators.





Burgers model (1930s)

Consider the scalar conservation law

with white noise  as initial data. 

Main question: How does the equation evolve white noise or other random 
data?
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The entropy solution emerging from  white  noise.  

She, Aurell, Frisch,  Comm. Math. Phys. 148,(1992),  
Sinai,  Comm. Math. Phys. 148, (1992).

Shocks form instantaneously. They then collide and cluster. 



This problem is exactly solvable!

Here an exact solution means that we can explicitly describe the 
statistics of the solution. 



Recall that the existence of a unique entropy solution to the PDE was 
established in the 1950s by Hopf, Lax and Oleinik. So the point is that 
the law (i.e. probability distribution of the solution) can be described 
exactly for some classes of random initial data.

Example 1: Solution with white noise (Groeneboom, 1985).

Example 2: Levy process initial data (Carraro-Duchon, Bertoin, 1996).



Groeneboom (1985): The exact  solution with white noise.

It is enough to determine the solution at time 1. Then: 

(1) The solution u(x,1) is a Markov process in  x. 

(2) The generator of u(x,1) is the integro-differential operator:

A�(u) = ��(u) +
� u

��
n�(u, v) (�(v)� �(u)) dv

with a jump  density n    given explicitly  on the next slide. 

Both (1) and (2) are surprising :

(1) because it is “structural”: white noise --> Markov ?! 

(2) because it is so explicit. 

*



The exact  solution with white noise (contd.)

The jump  density n   depends on two positive function J and K

n�(u, v) =
J(v)
J(u)

K(u� v), u > v.

The Laplace transforms of J and K are given in terms of Airy functions.

j(q) =
1

Ai(q)
, k(q) = �2

d2

dq2
log(Ai(q).
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The  unique entropy  solution is given by a  variational principle.

u(x, t) =
x� a(x, t)

t

a(x, t) = argmin+
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0
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u(x,t) is the velocity field,  U is called the potential, and  a(x,t) the inverse Lagrangian  
function.   The variational principle is a geometric recipe that uses  the initial potential.    
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Roughly, a(x,t)  gives the `correct’ characteristic  through the point (x,t)  in space-time. 

(x, t )

a (x, t ) Space

Time



u(x,t)  is of bounded variation.  Jumps in inverse Lagrangian, a,  give rise to shocks  in 
u. These correspond to `double-touches’ in the geometric principle. 
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The basics of  Levy processes

(a) The simplest Levy process is the counting function for a Poisson process.



(b) The next simplest Levy process is a compound Poisson process.

(c) Limits of these processes give Brownian motion. 

Probabilists are most interested in diffusions. But since solutions to 
conservation laws are  BV, we will focus on jump processes. 



The Laplace exponent: definition.

In general, in order to understand the statistics of a process, we must 
understand the joint distribution at n-points. For Levy processes, all of 
this information collapses into one function -- the Laplace exponent. 



This is simplest to explain under the assumption that all jumps are 
downward.
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The Laplace exponent: examples.

.



(a) Poisson process of rate       in space, and jumps of unit size downwards. 



E
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�
= e�x(1�e�q).

(b) Compound Poisson process with independent downward jumps with pdf f.
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(c) Brownian motion.
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Fig. 1. Binary clustering of shocks

2.2. The Cole-Hopf formula. The modern notion of an entropy solution stems from the
penetrating analysis by Hopf of the vanishing viscosity limit to (1). His work was based
on a change of variables (re)discovered independently by Cole and Hopf [15, 27]. This
solution is obtained via minimization of the Cole-Hopf function

H(y, t; x) = (x − y)2

2t
+

∫ y

−∞
u0(y′)dy′. (21)

The minimum in y is well-defined for all t > 0 provided U (y) =
∫ y

0 u0(y′)dy′ is lower
semicontinuous and limx→±∞ y−2U (y) = 0. This is a mild assumption and holds for
the random data we consider provided that the mean drift is zero. We denote the extreme
points where H is minimized by

a−(x, t) = inf{z|H(z, t; x) = min
y

H}, a+(x, t) = sup{z|H(z, t; x) = min
y

H}.
(22)

Notice that any z ∈ R such that x = tu0(z) + z is a critical point of H , and represents a
Lagrangian point that arrives at x at time t . Of these z, the ‘correct’ Lagrangian points
are the minimizers of H . If a−(x, t) = a+(x, t), this point is unique, and we have

u(x, t) = x − a±(x, t)
t

, x ∈ R, t > 0. (23)

There is a shock at (x, t) when a−(x, t) ̸= a+(x, t). In this case, the Lagrangian interval
[a−(x, t), a+(x, t)] is absorbed into the shock and the velocity of the shock is given by
the Rankine-Hugoniot condition (conservation of momentum)

u(x, t) = u(x+, t) + u(x−, t)
2

= 1
a+(x, t) − a−(x, t)

∫ a+(x,t)

a−(x,t)
u0(y) dy. (24)

It will be convenient for us to assume that u is right-continuous in x and we call a(x, t) =
a+(x, t) the inverse Lagrangian function. Of course, the speed of shocks are still deter-
mined by the right-hand side of (24).

In order to deal with non-zero mean drift in initial data, we will use the following
interesting invariance of Burgers equation. Assume that u0(x) = o(|x |) as |x | → ∞,

Simplest case: Burgers with monotone, compound Poisson initial data



More generally, can include a deterministic drift in the Levy process
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"Closure": Bertoin's theorem
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�
= 0, x � R, t > 0.

Theorem 1. (Bertoin, CMP, 1996).  Assume the initial data is a Levy process (in x)  
that may include a drift and Brownian motion, but only downward jumps. 



Then for each t>0, the entropy solution remains a Levy process with downward 
jumps.

Remark 1. This theorem should be viewed as an invariant manifold theorem in the 
space of probability measures on the line. 

Remark 2.  Levy processes are very "rigid". For example, white noise initial data 
leads to a Markov process, that is not a Levy process.



Evolution of Levy processes with downward jumps 

u(x, 0)

u(x, t)
Closure  theorem

Kinetic 
equations

Levy-Khintchine

�(q, 0)

�(q, t)

�t + ��q = 0ut + uux = 0

f(s, 0)

f(s, t)



Smoluchowski’s coagulation equations

Unknown : f(s,t) = expected number of shocks of size s per unit length, at time t 



K(r,s) =symmetric rate kernel that describes rate of aggregation of shocks of size 
r and s.



In this case, we have K(r,s) = r + s.

�tf(t, s) = Q+(f, f)�Q�(f, f)

Q+ =
1
2

� s

0
K(r, s� r)f(t, r)f(t, s� r) dr

Q� =
� �

0
K(r, s)f(t, r)f(t, s) dr



Other exact solutions: "monodisperse" data

Assume all shocks are initially of size 1. Then

�0(q) = 1� e�q

The method of characteristics gives the solution in implicit form

�(q, t) + e�qet�(q,t) = 1.

Only need to show that this defines a positive jump measure. In this case, one 
obtains the Borel-Tanner distribution (Stanley, EC 2).



Example: solutions to Burgers equation with Brownian motion 
initial data

If u(x,0) is Brownian motion, then �(q, 0) = q2.

�(q, t) = 1
t2 ��(qt), ��(q) = q + 1

2 �
�

q + 1
4 .

f�(s) = 1�
2�s3 e�s.

The Laplace exponent can be inverted to obtain the jump (shock) statistics



Example: "fat-tailed"- self-similar solutions.

If u(x,0) is an alpha-stable process

we obtain self-similar solutions in the implicit form

�(q, 0) = q�, 1 < � � 2,

�(q, t) = (q + t�(q, t))� , q, t > 0.

f�(s) =
1
�

��

k=1

(�1)k�1sk��2

k!
�(1 + k � k�) sin�k�, � = 1� 1

�
.

Precise asymptotics near zero and infinity can be calculated. Solutions satisfy

� �

0
sf�(s) ds = 1,

� �

0
f�(s) ds = +�.

f�(s) � 1
s1+�

, s��.



The "equation free" schema (Y. Kevrekidis).

Assumption 1: Fast microscopic evolution. Typical cases of interest are 


complex microscopic system that model many physical effects.  



May be modeled by a legacy code, or a multiphysics code, with which it is 
expensive or impossible to compute evolution for long time.  

Assumption 2: There exists a closed macroscopic evolution for a suitable statistic. 
However, we do not assume that the equations for this evolution are known! This 
is why the method is "equation free".



The  essence of the method

Run particle code for short bursts in parallel to compute an average flux for the 
macroscopic statistics. 

s(0) s(�t)

ṡ(0) � s(�t)� s(0)
�t

.�t

�t

sample


microstates

estimate


macrostates

s(�T ) = s(0) + ṡ(0)�T.

O < �t� �T

parallel


computation



Equation free + shock clustering

Microstates: each realization of a random velocity field.

Macroscopic statistics: all contained in the Laplace exponent or jump density. This 
statistic satisfies a closed equation.

However, unlike most problems, the macroscopic equation is known here.



So we can use the equation-free scheme as a numerical method for shock 
clustering. Conversely, we can use exact solutions in shock clustering to 
quantitatively test the equation free method.

History: this test problem was suggested Orszag to Kevrekidis when the method 
was being developed. But he didn't realize that it was exactly solvable.



Implementation

Step 2: Fast computational scheme for sticky particles. Tracking individual shocks, 
requires O(N^2) steps. Instead, like Brenier-Grenier (1998) we compute a convex 
hull of N points in O(N log N) steps.

Step 3: Estimation of a Levy measure given many sample paths. This is tricky, 
because we need to use the empirical measure to estimate the Levy density, and 
then to resample from the estimated density. Also, have to deal with the fact 
that all self-similar solutions have infinite number.

Step 1. Sampling microstates given jump measure: very easy.



Numerical examples: self-similar states, dynamic renormalization.

Test 1. Compute convergence to the self-similar solution with exponential 
tails beginning with monodisperse data.



In addition, to using the equation free method, we include a rescaling step, 
so that each iterate satisfies the "pinning conditions"

� �

0
sfk(s) ds = 1,

� �

0
s2fk(s) ds = 1.

Here        is   the  Levy measure at the beginning of the k step.fk

The reason for adding the second moment condition is that it ensures that 
the iterates are attracted to the self-similar solution with exponential decay.



[M-Pego (CPAM, 2004; CMP, 2006)]



Numerical examples: self-similar states, dynamic renormalization.

Test 2. Compute convergence to each self-similar solution with  fat tails 
beginning with monodisperse data. 



This is not possible without some cheating!  We use the "pinning conditions"

� �

0
sfk(s) ds = 1,

� �

0
s1+�fk(s) ds = 1.

In fact, all fat-tailed self-similar solutions satisfy
� M

0
s1+�f�(s) ds � log M, M ��.
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(a) ρ = 1
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(b) ρ = 0.5

Figure 3: Density of exact and computed self-similar solutions for ρ = 1 and
ρ = 0.5. The lines in (b) correspond to rigorous asymptotics of nρ as s → 0
and s → ∞.
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