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Galton-Watson trees 
Describe the genealogy of birth-
death processes.

The Loewner equation 
Gives a bijection between 
(certain) growth processes in the 
upper half-plane and (certain) 
evolving measures on the real 
line.

Continuum Random Tree 
The CRT is a random metric 
space that is a universal scaling 
limit of these trees, conditioned 
to be large.



The main questions

Q1.  Can we use the Loewner equation to construct natural graph 
embeddings of Galton-Watson trees in the upper half plane?

Q2.  Can we construct a graph embedding of the CRT as a scaling limit 
of these embeddings of finite Galton-Watson trees?

Q3.   What does this construction say about "true trees"  (conformally 
balanced embeddings) and the Brownian map? 

At first sight, there is no random matrix theory here. But the above 
problems are closely related to map enumeration.



Outline

(a)  A brief introduction to the CRT.

(b)  Loewner evolution with branching (tree embedding).

(c)  Scaling limits: the SPDE in the case of a Feller diffusion.

(d) Some remark on true trees and the Brownian map.

(a)  is (necessary) background. Basic reference: Le Gall (1999). 
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Def: A real tree is a pointed compact metric space with the tree property.

Construction: Let                       be continuous, and f (0) = f (1) = 0.f : [0, 1] � R�0

Consider
d(u, v) = f(u) + f(v) � 2 min

s�[u,v]
f(s)

and   
u �f v �� d(u, v) = 0.
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Definition: The continuum random tree (CRT) is the random real tree 
coded by the normalized Brownian excursion   . 
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As the uniform distribution on rescaled Dyck paths of length 2n 
converges to    , the uniform distribution on plane trees conditioned to 
have n edges converges to the CRT. 

The continuum random tree

The CRT was introduced by Aldous (1991-93). 
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The Riemann mapping theorem implies that for each t there is a unique 
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Let γ : (0, T] → ℍ be a simple curve with γ(0) ∈ ℝ. 

The Riemann mapping theorem implies that for each t there is a unique 
conformal mapping gt such that 

1) 

2)

gt : H \ γ((0, t]) � H

gt(z) = z +
b(t)
z + O

�
1

|z|2
�

, z � �.

Loewner (1920s):     gt satisfies the initial value problem

ġt(z) =
ḃ(t)

gt(z) � U(t) , g0(z) = z.



Chordal Loewner evolution

General  version:   Let gt(z) denote the solution to the initial value problem

ġt(z) =

�

R

μt(du)

gt(z) � u , g0(z) = z.

Conditions: {µt}t ≥ 0 is a family of nonnegative Borel measures on ℝ that is right 
continuous with left limits in the weak topology. 
For each t, µs (ℝ) and supp (µs) are each uniformly bounded for  0 ≤ s ≤ t.

Then gt is the unique conformal map from Ht onto ℍ with the hydrodynamic 
normalization.  The hull is the set  

Let  Ht = {z ∈ ℍ} for which gt(z) ∈ ℍ is well defined.

Idea: The measure is supported on points that are escaping ℍ.

H\Ht = Kt.



Examples

Question: Which measures generate embeddings of trees?

3)                        generates SLEκ.

1) μt = δU(t)

2)                             produces the multislit equation (Schleissinger ’13):

μt = δ�
κBt

ġt(z) =
N�

i=1

1
gt(z) � Ui(t)

.

μt =
N�

i=1
δUi(t)



What's new

The general form of Loewner evolution is rarely used. However, it is central to 
our approach. The one line summary of our work is the following conjecture:  
 

Graph embeddings of continuum trees are generated by Loewner evolution 
when the driving measure is a suitable superprocess.

The simplest example in this class is what we call the Dyson superprocess. 
It is the free probability analogue of the Dawson-Watanabe superprocess.



Loewner evolution driven by Dyson BM with branching

.
(Simulation courtesy of 

Vivian Healey and 
Brent Werness.)



SPDE for the Dyson superprocess

�t� + �x (�H�) = �
�

� Ẇ ,

µt(dx) = �(x, t) dx, x � (��,�), t > 0,

where            is space-time white noise and         is the Hilbert transformẆ

The SPDE is formal, but convenient.  The measure valued process is actually 
defined through a martingale problem.

H

(Hµt) (x) =
p.v.

�

� �

��

1
x� s

µt(ds).



Comparison with the Dawson-Watanabe superprocess

The Dawson-Watanabe superprocess is the scaling limit of  branching 
Brownian motion when the discrete branching processes converges to the Feller 
diffusion. The spatial motion of each particle is independent.

The Dyson superprocess is the free probability version of this SPDE: 

�t� =
1
2
�� + �

�
� Ẇ , x � Rd, t > 0.

Unlike Dawson-Watanabe, this is a superprocess of interacting particles. 

�t� + �x (�H�) = �
�

� Ẇ , x � R, t > 0.



The  SPDE and stochastic Loewner evolution

Consider the Cauchy-Stieltjes transform

Define the Gaussian analytic function                                  with covariance kernel

E
�
h(z, t)h̄(w, t�)

�
= �(t� t�)

� �

��

� �

��

1
z � s

1
w̄ � s

µt(ds).

h(z, t), z � H

f(z, t) =
� �

��

1
z � s

µt(ds), z � H.



The Dyson superprocess and Loewner evolution

Let          denote white-noise (in time alone). Then (formally)Ḃ

This SPDE may be solved by the method of characteristics

The stochastic Loewner evolution is given by the subordination formula

�tf + f�zf = �hḂ, z � H, t > 0.

dz

dt
= f(z, t), df = �h(z, t) dB, z � H.

ġt(z) = f(gt(z), t), g0(z) = z, z � H.



Absolute continuity w.r.t. Lebesgue measure

Dawson-Watanabe superprocess: 

Dyson superprocess:  we don't know yet. The basic regularity estimates for free 
convolution with a semicircular law were obtained by Biane (1997).  Unlike 
Dawson-Watanabe we would like         to be singular with respect to Lebesgue 
measure.  

µt(dx) ?= �(x, t) dx

d = 1        is absolutely continuous (Konno-Shiga, Reimers, 1988).

d � 2        is  singular (Perkins, 1988).

µt

If a density exists, then the hull cannot be a tree, so this is a crucial property. 

µt

µt



Tree Embedding

Question: In the deterministic setting, what conditions guarantee that 
the hull is a tree?

Fundamental step: What conditions on the driving measure guarantee 
that the generated hull is a union of two simple curves in ℍ that meet at 
a single point on ℝ at nontrivial angles (not 0 or π)?



Tree Embedding: (α, β)-approach

Setup: Let U1, . . . , Un be n continuous functions Ui : [0,T] → ℝ 
that are mutually nonintersecting Ui (t) < Ui+1 (t) for all i = 1, . . . , n and 
all t ∈ [0,T], except for Uj (0) = Uj+1 (0). Let μt be the discrete measure

μt = c
n�

i=1
δUi(t)
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Tree Embedding: (α, β)-approach
Setup: Let U1, . . . , Un be n continuous functions Ui : [0,T] → ℝ 
that are mutually nonintersecting Ui (t) < Ui+1 (t) for all i = 1, . . . , n and 
all t ∈ [0,T], except for Uj (0) = Uj+1 (0). Let μt be the discrete measure

Definition: Let α, β ∈ (0, π) such that α + β < π. We say that Kt 
approaches ℝ at Uj (0) in (α, β)-direction if for each ε > 0 there is 
s = sε > 0 such that there are exactly two connected components of Ks 
that have Uj (0) as a boundary point, and

Kj
sε � {z � H : π � β � ε < arg(z � Uj(0)) < π � β + ε},

Kj+1
sε � {z � H : α � ε < arg(z � Uj(0)) < α + ε}.

μt = c
n�

i=1
δUi(t)

(Motivated by Schleissinger ’12.)



Tree Embedding: (α, β)-approach

α
β



Tree Embedding: (α, β)-approach

Theorem (Healey): In the setting above, the hulls Kt approach ℝ in (α, 
β)-direction at Uj (0) if 

where φ1(α, β) and φ2(α, β) are explicitly computable functions.

lim
t�0

Uj(t) � Uj(0)�
t

= φ1(α, β) � φ2(α, β)

lim
t�0

Uj+1(t) � Uj+1(0)�
t

= φ1(α, β) + φ2(α, β),



Tree Embedding: (α, β)-approach
Balanced case: If 0 < α = β < π/2, then φ1 and φ2 simplify to

φ1(α, α) = 0 and φ2(α, α) =
�
2c

�
π � 2α

α .

Intuitively: Loewner scaling

•If μt generates hulls Kt, then ρμt/ρ2 generates the hulls ρKt. 

•So we expect to see √t whenever a hull is preserved under dilation.



Let T = {ν , h(ν)} be a marked plane tree. (Think of h(ν) as the time of 
death of ν.) Let μt be indexed by the elements of T alive at t:

A driving measure for any tree

μt = c
�

ν�ΔtT
δUν(t).
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Tree Embedding

On time intervals without branching, chose the Uν to evolve according to

μt = c
�

ν�ΔtT
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Let T = {ν , h(ν)} be a marked plane tree. (Think of h(ν) as the time of 
death of ν.) Let μt be indexed by the elements of T alive at t:

The driving measure

Theorem (Healey) : If T is a binary tree such that hν ≠ hη, then for each 
0 ≤ s ≤ max{h(ν)}, the hull Ks generated at time s by the Loewner 
equation driven by μt is a graph embedding of the subtree

Ts = {ν � T : h(p(ν)) < s}

in ℍ, with the image of the root on the real line, and Ks ⊂ Ks’ if s < s’.

On time intervals without branching, chose the Uν to evolve according to

μt = c
�

ν�ΔtT
δUν(t).

U̇ν(t) =
�

ν �=η�ΔtT

c1
Uν(t) � Uη(t)

.



The proof relies on ODE results about the particle system

Tree Embedding

U̇ν(t) =
�

ν �=η�ΔtT

c1
Uν(t) � Uη(t)

.

• Extend the solution backward to the initial condition Uj (0) = Uj+1(0).

• Show that the solution generates curves away from t = 0.

• Show that the generated hull approaches ℝ in (α, α)-direction for 

α =
π

2+ c1
2c

.

Proof (idea):

□



Example: Galton-Watson Trees with deterministic repulsion

A sample of a binary Galton-
Watson tree with exponential 

lifetimes.
(Simulation courtesy of 

Brent Werness.)

If θ is distributed as a 
binary Galton-Watson 
tree with exponential 
lifetimes, then the 
theorem guarantees that 
the Loewner equation 
driven by μt generates a 
graph embedding of θ 
with probability one.



Embedding the CRT?

Question 2: Let {θk} be a sequence of random trees that (when 
appropriately rescaled) converges in distribution to the CRT when θk 
is conditioned on having k edges. Does the law of the generated hulls 
converge to a scaling limit?



Embedding the CRT?

Question 2: Let {θk} be a sequence of random trees that (when 
appropriately rescaled) converges in distribution to the CRT when θk 
is conditioned on having k edges. Does the law of the generated hulls 
converge to a scaling limit?

First step: Find the scaling limit of the corresponding sequence of 
random driving measures.



Choosing a Sequence of Measures
Let {Tk} be a sequence of random trees, and let        and        be two 
sequences with elements in ℝ+. For each k, define

{ck} {ck1}

μk
t = ck

�

ν�ΔtTk

δUν(t),
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Choosing a Sequence of Measures

Let {Tk} be a sequence of random trees, and let        and        be two 
sequences with elements in ℝ+. For each k, define

{ck} {ck1}

where the Uν(t) evolve according to

• Same setting as tree embedding theorem.

• How do we choose the trees {Tk}?

μk
t = ck

�

ν�ΔtTk

δUν(t),

U̇ν(t) =
�

ν �=η�ΔtTk

ck1
Uν(t) � Uη(t)

.



Theorem (Aldous): If θk is distributed as a critical binary Galton-Watson 
tree with exponential lifetimes of mean      , conditioned to have k 
edges, then θk converges in distribution to the CRT as

1
2
�
k

k � �.

Galton-Watson trees to the CRT



if for each k, θk is distributed as a critical binary Galton-Watson tree 
with exponential lifetimes of mean      , conditioned to have k edges?1

2
�
k

Galton-Watson trees to the CRT

Question 2a: Can we find a scaling limit of         defined by

μk
t = ck

�

ν�Δtθk

δUν(t),

where the Uν(t) evolve according to

{μk
t}

U̇ν(t) =
�

ν �=η�Δtθk

ck1
Uν(t) � Uη(t)

,

Theorem (Aldous): If θk is distributed as a critical binary Galton-Watson 
tree with exponential lifetimes of mean      , conditioned to have k 
edges, then θk converges in distribution to the CRT as

1
2
�
k

k � �.



For each k, the driving measure      is really a measure-valued process 
defined for                  . 
By convergence of driving measures we mean convergence in the 
Skorokhod space                         of functions from            to Mf (ℝ) with 
càdlàg paths (right continuous with left limits).
Called superprocesses.

[0, �)DMf(R)[0, �)

t � [0, �)

The Scaling Limit

μk
t

How to prove convergence of superprocesses?

• Tightness
Prokhorov: tight ↔ relatively compact subset of                        .

  In particular, there is at least one limit point.
DMf(R)[0, �)

• Uniqueness of the limit point. (Conv. of finite dimensional marginals.)



Theorem (Healey, M.):  (a) For each k, let θk be distributed as a critical 
binary Galton-Watson tree with exponential lifetimes of mean      , 
conditioned to have k edges, and let {μk} be the corresponding sequence 
of measures. If the scaling constants are

ck = ck1 =
1�
k

1
2
�
k

then the sequence {μk} is tight in                    DMf(R̂)[0, �).

Scaling limits: tightness
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Theorem (Healey, M. ): For each k, let θk be distributed as a critical 
binary Galton-Watson tree with exponential lifetimes of mean      , 
conditioned to have k edges, and let {μk} be the corresponding sequence 
of measures. If the scaling constants are

Why these constants?
• Choose             , since the ratio           determines the branching angle.
•                   is the rescaling for which the total population process of 
θk  converges to      , the local time at level t of the normalized 
Brownian excursion.

Scaling limits: tightness

ck = ck1 =
1�
k

Lt
ck = 1/

�
k

ck1/ckck = ck1

1
2
�
k

then the sequence {μk} is tight in                    DMf(R̂)[0, �).
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The Scaling limit

Local time at level t of
normalized Brownian 

 excursion: Lt

Normalized Brownian 
 excursion ( )0�t�1

tim
e 
→

Galton-Watson 
process

Contour function for critical binary GW trees



The Scaling limit

Theorem (Pitman): If for each k, Nk is the total population process of 
θk, then Nk

t�
k

� Lt ,

as             , in the sense of convergence in distribution of random 
variables in                        .DMf(R)[0, �)

k � �



Conditioned v. unconditioned limits

Standard unconditioned result: For each k, let       be a discrete critical 
Galton-Watson process (all lifetimes of length one) whose offspring 
distribution has finite variance. Then

�Nk
t

as             , in the sense of convergence in distribution of random 
variables in                        , where Xt is the Feller diffusion.
(Need                           , since the Feller diffusion is absorbing at 0.) 

DMf(R)[0, �)
�Nk
0/k � x0 > 0

Theorem (Pitman): If for each k, Nk is the total population process of 
θk, then Nk

t�
k

� Lt ,

as             , in the sense of convergence in distribution of random 
variables in                        .DMf(R)[0, �)

k � �

k � �

�Nk
kt
k � Xt,



The scaling limit: characterization

Theorem (Healey, M. ): In the unconditioned case, each subsequential 
limit  solves the martingale problem for the Dyson superprocess:

Remark: (a) Don't know yet if the solution to the martingale problem is 
unique. 
(b) Similar result for the conditioned case (Pitman, Serlet).

�µt,�� = �µ0,�� +
� t

0

�

R

�

R

�(x) � �(y)
x � y

µs(dx)µs(dy) + Mt(�),

where the local martingale         has quadratic variationM

[M(�)]t =
� t

0
�µs,�

2� ds.



Conformally balanced trees in 2

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 1.1: A conformally balanced tree with 500 edges, generated using the treeweld software.

connection of finite and continuum trees to continuous paths, whose values encode the

distances of points on the tree from its root. Just as Brownian motion gives a universal

limit for a class of random continuous functions, the normalized Brownian excursion gives

a universal limit for the contour functions of certain random trees, properly rescaled.

On the other hand, we consider the problem of conformal welding. A conformal map

is a complex analytic function which is a homeomorphism between two open subsets of

the extended complex plane C⇤. Given a lamination L, which can be thought of as an

equivalence relation on the unit circle T = {z 2 C : |z| = 1}, a conformal welding map for

L is a conformal map � of the disk such that � extends continuously to the boundary, and

if � 2 C⇤ is the image of T under �, then the equivalence classes of L consist of exactly

the pre-image sets ��1(z) for z 2 �. A natural question is which laminations L admit a

conformal welding map �. We address this question in the case of laminations corresponding

to trees.

The correspondence between continuous paths and trees also gives a natural way to

A planar tree  is conformally balanced if  

(a) each edge has equal harmonic measure from infinity
(b) edge subsets have the same measure from either side.

Balanced trees are in 1-1 correspondence with Shabat polynomials 
(Bishop, Biane). However,  these polynomials are poorly understood.

C

Joel Barnes (Ph.D, 2014, U. Washington).



Conformally balanced trees in C
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2 Planar Trees and Noncrossing Partitions

Let us consider, in the complex plane, the 2nth roots of unity and the arcs of
the unit circle joining them. Let π be a partition of these arcs into n pairs,
which is noncrossing. This means that if one draws the n segments joining the
middles of the arcs which are in the same pair of π, these segments do not
cross. The quotient of the unit circle by the equivalence relation identifying
the two arcs of each pair is a planar tree. Each planar tree can be so obtained,
and the corresponding partition is unique, up to some rotation of the circle.
Here is an example, for n = 4, of a noncrossing partition and its associated
planar tree.

BD

F

G

H

A

C

E

Fig. 1. A noncrossing partition

B H
E F

G

A

D
C

Fig. 2. The planar tree

Let us now assume that we identify each pair of arcs according to the
natural length. This means that if we identify [2kπ

2n , (2k+1)π
2n ] with [ (2l−1)π

2n , 2lπ
2n ]

(for parity reasons, these are the only possible identifications) we have to
match the points (2k+θ)π

2n and (2l−θ)π
2n , for θ ∈ [0, 1].

Shabat Polynomials and Harmonic Measure 149

3 Conformal Mapping and Harmonic Measure

Proposition 1. Let π be a noncrossing pair partition of the unit circle. Then
there exists a unique conformal mapping from the outside of the unit disk to
C, with a Laurent expansion

z + . . . (1)

which extends continuously to the boundary of the circle and such that the
equivalence relation on the unit circle induced by this map is the noncrossing
pair partition π. The image of the unit circle by this map is an embedding of
the tree associated with π.

The equivalence relation on the circle in the proposition is the one for which
two points are in the same class if they have the same image by the continuous
extension.

Sketch of proof. The conformal mapping of the proposition can be con-
structed in the following way. Choose a leaf of the tree (a vertex with only
one adjacent edge), it corresponds to some 2nth root of unity whose adjacent
arcs are in the same part of the partition π. We can assume, without loss of
generality, that this root of unity is 1, then the maps φθ, θ ∈ [0, π

n ] given by

φθ(z) =
(
z2 + 1 + 2 sin2(θ/2)z + (z + 1)

√
z2 + 1 − 2z cos θ

)
/(2z)

glue the two intervals according to their natural length. These maps define
a conformal mapping from the exterior of the disk to a domain which is the
complement of the disk centered at 0, with radius cos2(θ/2), and of the seg-
ment [cos2(θ/2), (1+sin(θ/2))2]. For θ = π/n we have glued the two intervals.

B

A

C

B A
C

Fig. 3. The domain

Let us map the partition π to the new circle C1. This gives a noncrossing
partition of n − 1 pairs, corresponding to the tree obtained by erasing the
initial leaf from the original tree. These arcs are no longer identified throughBiane (2009):  builds a conformal mapping of the exterior domain by welding edges in 

pairs.  End result is a conformal mapping, continuous onto the boundary, that gives 
exactly the non-crossing partition.



The CVS  bijection and the Brownian map

Image from Le Gall (ICM, 2014).

6 Jean-François Le Gall
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Figure 2. The Cori-Vauquelin-Schae↵er bijection. On the left side, a well-labeled tree
(the framed numbers are the labels assigned to the vertices). On the right side, the edges
of the associated quadrangulation Q appear in thick curves.

left part of Fig. 2 (in particular the successive children of a vertex appear from
left to right). Then the vertex set of Q will be the union of the vertex set of ⌧
and of an extra vertex, and we now explain how to construct the edges of Q. First
recall that a corner of the tree ⌧ is an angular sector between two successive edges
of ⌧ around a given vertex. The set of all corners of ⌧ is given a cyclic ordering
by moving clockwise around the tree. To construct the edges of Q, we first add
an extra vertex @ outside the tree, and we connect each corner of the tree ⌧ with
label 1 to the vertex @ by an edge starting from this corner. Then every corner of
⌧ with label k � 2 is connected by an edge to the next corner (in cyclic ordering)
with label k � 1. The construction can be made in a unique way so that edges
do not cross and do not cross the edges of the tree. The resulting collection of
edges forms a quadrangulation Q whose vertex set is V (Q) = V (⌧) [ {@}. This
quadrangulation is rooted at the edge connecting the first corner of the root of ⌧
to @, which is oriented so that @ is the root vertex. See Fig. 2 for an example.

The previous construction yields a bijection from the set of all well-labeled trees
with a fixed number n of edges onto the set M4

n of all rooted quadrangulations
with n faces. This bijection is called the Cori-Vauquelin-Schae↵er bijection (the
CVS bijection in short). Furthermore, the following important additional property
holds. If (⌧, (`v)v2V (⌧)) is a well-labeled tree and Q is the associated quadrangu-
lation defined as above, then, for every v 2 V (Q)\{@},

d

Q
gr(@, v) = `v. (2)

In other words, distances from the root vertex in the quadrangulation Q are given



Conformal CVS



Conformal CVS



Given the conformal map, each labeling gives a nested family of geodesics in the 
upper half plane with endpoints on its preimage. 

The image of these geodesics under the conformal map is a quadrangulation of the 
upper half plane.


