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Abstract. This article is the text of a talk at the meeting on Random Matrix
Theory at CMSA (Harvard) in Jan 2017. The goal of this talk is to present
a new approach to the limit PDE obtained by Matytsin [13] in his analysis of
the asymptotics of the HCIZ integral. The main new idea is to treat this PDE
as a zero dispersion continuum limit of the Calogero-Moser system.
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1. Introduction

1.1. The mass transportation problem. My most direct goal is to gain a better
understanding of the following boundary value problem. Consider a compressible
fluid with density ρ(x, t) and velocity field v(x, t) satisfying Euler’s equations

(1.1) ∂tρ + ∂x(ρv) = 0, ∂tv + v∂xv − π2ρ∂xρ = 0.

Here x ∈ R, t ∈ (0, 1), ρ(x, t) ≥ 0, and the boundary conditions are

(1.2) ρ(x, t)|t=0 = ρA(x), ρ(x, t)|t=1 = ρB(x),

where ρA and ρB are given density fields. Our goal is to obtain explicit understand-
ing of how the probability measure ρA is transported to the probability measure
ρB according to the flow of (1.1).

The system (1.1) may be rewritten as follows. Define the complex field 1

(1.3) f(x, t) = v(x, t) + iπρ(x, t),

and observe that the system (1.1) is equivalent to the single equation

(1.4) ∂tf + f∂xf = 0.

This looks like Burgers equation, and it is tempting to think of (1.4) in terms of
the (implicit) solution formula

(1.5) f(x, t) = f0(x− tf(x, t), f0(x) := f(x, 0).

However, since f(x, t) is complex at each point where ρ(x, t) > 0, we must treat
the equation more carefully. To see what the issue is, recall that the linear partial
differential equation

(1.6) ∂tf + c∂xf = 0,

is the transport equation when c is real. In this case the solution to (1.6) is simply
f(x, t) = f0(x − ct). Further, this solution formula makes sense even when f0 is
a function with minimal smoothnes. On the other when c = i, f is necessarily
complex, and equation (1.6) is the Cauchy-Riemann equations in disguise. More
generally, when the imaginary part of c is non-zero, f is complex, and (1.6) is an
elliptic equation and the formal solution formula f(x, t) = f0(x− ct) is meaningful
only if the domain of f0 can be extended into a complex neighborhood of the real
line. Thus, it can be solved only for analytic initial conditions.

Returning to the complex Burgers equation (1.4), we see that whether it is
hyperbolic or elliptic at a point (x, t) depends on whether ρ(x, t) > 0 (hyperbolic)
or ρ(x, t) = 0 (elliptic). The fact that (1.4) is elliptic also explains the fact that
we prescribe boundary conditions on only ‘half the variables’ (i.e. only on ρ, not
on v). The problem is over-determined if both ρ and v are prescribed at t = 0 and
t = 1.

1.2. The asymptotics of the HCIZ integral. The above boundary value prob-
lem arises in a central problem in random matrix theory– the asymptotic analysis
of matrix integrals. The integral of interest here is the HCIZ integral defined as
follows. Assume given two strictly increasing sequences of real numbers, denoted
a1 < a2 < . . . < aN and b1 < b2 < . . . < bN . Form the diagonal matrices

(1.7) AN = diag(a1, a2, . . . , aN ), BN = diag(b1, b2, . . . , bN ),

1As usual, i denotes
√
−1.



THE COMPLEX BURGERS EQUATION, THE HCIZ INTEGRAL AND THE CALOGERO-MOSER SYSTEM3

and consider the matrix integral over the unitary group U(N) with normalized Haar
measure

(1.8) IN (AN , BN ) =
∫

U(N)

eNtr(AN UBN U∗) dU.

Harish-Chandra (HC) discovered [10], and Itzykson and Zuber (IZ) re-discovered [11],
the beautiful exact formula

(1.9) IN (AN , BN ) =
1

ωn

det
(
eNajbk

)
1≤j,k≤N

VN (AN )VN (BN )
,

where VN (AN ) denotes the Vandermonde determinant

(1.10) VN (AN ) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . aN

a2
1 a2

2 . . . a2
N

...
...

aN−1
1 aN−1

2 . . . aN−1
N

∣∣∣∣∣∣∣∣∣∣∣
=
∏
j<k

(ak − aj),

VN (BN ) is defined in an identical manner, and ωN is the volume of U(N), given by

(1.11) ωN =
N−1∏
j=1

j!.

It would take me too far afield to derive this formula, since there are at least three
different approaches [18]. The most intuitive (to me) uses the fundamental solution
to the heat equation in the space of Hermitian matrices with metric ds2 = tr(dM)2.
A second proof uses the character expansions for U(N). Finally, a third proof is
based on the Duistermaat-Heckman theorem from symplectic geometry. The last
of these proofs has a rather striking consequence – since our interest is in large N ,
if one naively applies the saddle-point method to the right hand side of (1.8), we
find that it yields (1.9) exactly!

The asymptotic problem is as follows. We fix spectral measures,

(1.12) µA(dx) = ρA(x) dx, µB(dx) = ρB(x) dx,

and consider sequences of diagonal matrices AN = diag(a(N)
1 , . . . , a

(N)
N ) and BN =

diag(b(N)
1 , . . . , b

(N)
N ) whose spectral measures

(1.13) µAN
=

1
N

∑
j=1

δ
a
(N)
j

, µBN
=

1
N

∑
j=1

δ
b
(N)
j

,

converge weakly to µA and µB respectively. 2 In a beautiful paper, Matytsin [13]
discovered that in this regime

(1.14) lim
N→∞

1
N2

log IN (AN , BN ) = F0(ρA, ρB),

where

(1.15) F0(ρA, ρB) = S(ρA, ρB) +
1
2

(m2(ρA) + m2(ρB))− 1
2

(Σ(ρA) + Σ(ρB)) .

2Since we assume that we have limit densities ρA and ρB , this simply means that the distri-
bution functions µAN

(x) and µBN
(x) converge pointwise to µA(x) and µB(x) at each x.
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The key term here is the coupling S(ρA, ρB). It turns out that it is the classical
action

(1.16) S(ρA, ρB) =
∫ 1

0

∫
R

(
1
2
ρv2 +

π2

6
ρ3

)
dxdt,

evaluated on the (unique) solution to (1.1) with the boundary condition (1.2). Each
of the remaining terms in (1.15) depends on either ρA or ρB , but not both of them.
For instance,

(1.17) m2(ρA) :=
∫

R
x2ρA(x) dx, Σ(ρA) :=

∫
R

∫
R

log |x− y|ρA(x)ρA(y) dx dy.

A rigorous formulation of Matytsin’s work has been provided by Guionnet and
Zeitouni [8, 9]. Further, it is of considerable interest to understand higher-order
terms, and to rigorously establish an asymptotic expansion of the form

(1.18)
1

N2
log IN (AN , BN ) = F0(ρA, ρB) +

1
N2

F1(ρA, ρB) +
1

N4
F2(ρA, ρB) + . . .

since the terms in the expansion have deep significance in enumerative geometry [7].
The purpose of a rigorous analysis of (1.4) is now clear. I expect it to complement

the above rigorous results by yielding new exact solutions, numerical schemes, and
perhaps even simpler proofs of some known theorems. The reason is that the
complex Burgers equation is a continuum limit of a fundamental integrable system
– the classical Calogero-Moser system. We may therefore apply several methods
that have been developed for the Calogero-Moser systems to the analysis of (1.4).
The work presented here is a preliminary attempt. There is a great deal more that
one can do 3.

1.3. The Calogero-Moser system. The (classical) Calogero-Moser (CM) is a
system of N identical particles on the line interacting through an inverse square
potential. The coordinates of the particles are x1 < x2 < . . . < xN and their
momenta are denoted p1,p2, . . . pN . The phase space of the system is WN × Rn,
where WN denotes the Weyl chamber

(1.19) WN = {x ∈ RN |x1 < x2 < . . . < xN }.

The potential energy and Hamiltonian of the system are respectively

(1.20) V (x) =
g2

2

∑
k 6=j

1
(xj − xk)2

, H(x, p) =
1
2
|p|2 + V (x).

The equations of motion are given by
(1.21)

ẋj = ∂pj
H(x, p) = pj , ṗj = −∂xj

H(x, p) = 2g2
∑
k 6=j

1
(xj − xk)3

, 1 ≤ j ≤ N.

The parameter g measures the strength of the interaction. When g is real, the
particles repel one another; however, when g is imaginary, the particles are attracted
to one another, and coalesce in finite time. Most of the literature on the CM system
assumes that g is real. In this case, equation 1.20 shows that the Hamiltonian is

3This connection appears as a footnote in [13]. Continuum limits of the Calogero-Moser system
have been studied by several physicists, especially Jevicki, but the version studied here is different,
because it is a zero dispersion limit.
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necessarily positive. If H(x(0), p(0)) = E > 0, then the particles can never get too
close to one another because of the uniform bound

(1.22) 0 <
g2

2

∑
k 6=j

1
(xj − xk)2

≤ E.

Before turning to the exact solvability of the CM system, let us build some intuition
by considering the simplest case, which is N = 2. Without loss of generality, we
may assume that the center of mass and mean momentum are 0. Therefore, using
equation (1.21) we find that s = x2 − x1 satisfies the second-order differential
equation

(1.23) s̈ =
4g2

s3
.

This equation may be integrated using conservation of energy. We find that

(1.24) ṡ2 = 2E − 2g2

s2
, or ṡ = ±

√
2E − 2g2

s2
.

The phase portraits for this system when g = 1 (repulsive) and g = i (attractive) are
shown in Figure 1. When g = i, for each E < 0, there is a unique, positive solution
on a maximal interval (−T (E), T (E) with limt→±T (E) s(t) = 0. This solution has a
square-root singularity s(t) ∼ (T (E)−t)1/2 and s(t) ∼ (t+T (E))1/2 as t → ±T (E),
since ṡ ∼ ±s−1 as s → 0+. This critical solution is of interest to us for the following
reason. It gives rise to an exact solution to the boundary value problem (1.1)–(1.2).

1.4. An exact solution to complex Burgers. Bun, Bouchaud, Majumdar and
Potters [5] 4 observed that (1.1)–(1.2) may be solved exactly by substituting the
ansatz

(1.25) f(x, t) = b(t)x + i

√
4σ(t)2 − x2

2σ(t)
, |x| ≤ 2σ(t),

in equation (1.4), and solving the resulting ordinary differential equations for b(t)
and σ(t). The exact form of this solution may be found in their work; what I would
like to point out here is that σ(t) and b(t) are related as follows:

(1.26) σ̈ = − 4
σ3

, b(t) =
σ̇

σ
.

That is, the N = 2 CM system is embedded within this exact solution, and b is
obtained by the Riccati transformation of σ(t). The solution is symmetric about
t = 1/2 and may be extended to a maximal time interval corresponding to the
critical solution to the CM system with N = 2. This calculation is reminescent
of the construction of solitons and breathers via a pole ansatz, and I suspect that
several other exact solutions may be constructed in this manner.

4Matytsin makes a similar ansatz to solve induced QCD [13, Sec. 4].



6 GOVIND MENON

2. Large deviations for Dyson Brownian motion and the CM system

2.1. The principle of least action. The CM system arises naturally in the study
of the HCIZ integral through a somewhat unexpected confluence of two different
variational problems. Recall that the equations of classical mechanics may be for-
mulated using the principle of least action. The Lagrangian for the CM system is
the function

(2.1) L(x, y) =
1
2
|y|2 − V (x), x ∈ WN , y ∈ RN .

We consider C1 paths γ : [0, 1] →WN with boundary conditions γ(0) = (a1, a2, . . . , aN )
and γ(1) = (b1, b2, . . . , bN ) and we associate to each path the action

(2.2) S[γ(·)] =
∫ 1

0

L(γ(s), γ̇(s)) ds.

The principle of least action asserts that the ‘true’ path is a minimizer for the above
variational principle. In this case, the Euler-Lagrange equations are precisely the
equations of motion for the CM system (we’re using p = ẋ). This is a formal
principle and it is not always true that there is a minimizing path for the repulsive
CM system. Surprisingly, the attractive CM system is better behaved.

Lemma 2.1. Assume g = iκ for some κ ∈ R . Assume given any two points
a and b in the Weyl chamber WN and any T > 0. Then there is a unique C1

path γ : [0, T ] → WN with γ(0) = a and γ(T ) = b that minimizes the action. In
particular, for every a, b ∈ WN and T > 0, there exists a unique solution to the
CM system defined on [0, T ] such that γ(0) = a and γ(T ) = b.

Sketch of the proof. The main point is that when g is imaginary, the Lagrangian
L(x, y) of the CM system is strictly convex in both x and y, since

(2.3) L(x, y) =
1
2
|y|2 +

κ2

2

∑
k 6=j

1
(xj − xk)2

, x ∈ WN , y ∈ RN .

Further, the Weyl chamber WN is a convex set, since it may be written as an
intersection of half-spaces. A standard argument yields existence, uniqueness and
smoothness of minimizers. �

2.2. Large deviations of Dyson Brownian motion. Let us now indicate how
an a priori different variational principle is connected to this approach. The starting
point for Guionnet and Zeitouni, as well as Bun et al , is the large deviations of
Dyson Brownian motion. For each x ∈ WN we define the Coulomb energy

(2.4) U(x) =
∑
j<k

log |xj − xk|,

and recall that Dyson Brownian motion originating at a point a ∈ WN is the unique
solution to the SDE

(2.5) dγl = −∂xl
U(γ) dt + εdBl, γ(0) = a,

where dBl, l = 1, . . . , N are independent standard Brownian motions. Let us focus
on Dyson Brownian bridges γ with γ(0) = a and γ(1) = b. Ignoring technicalities,
as ε ↓ 0, such a bridge concentrates at the path that minimizes the Wiener action

(2.6) W [γ(·)] =
1
2

∫ 1

0

|γ̇ +∇U(γ)|2 ds,
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where we again minimize over all C1 paths γ : [0, T ] → WN with γ(0) = a and
γ(1) = b.

There is a lovely identity that connects the variational principle for the Wiener
action with the principle of least action for the CM system. Since U(x) is the
Coulomb energy, we differentiate to find

(2.7) ∂xl
U(x) =

∑
j 6=l

1
xl − xj

, l = 1, . . . , N.

Therefore, observing that the cross-terms cancel, we find

1
2
|∇U(x)|2 =

1
2

N∑
l=1

(∂xl
U(x))2(2.8)

=
1
2

N∑
l=1

∑
j 6=l

∑
k 6=l

1
(xl − xj)(xl − xk)

=
1
2

∑
k 6=j

1
(xj − xk)2

=
1
g2

V (x),

where V (x) is the potential energy for the CM system defined in (1.20).
We apply this identity to the Wiener action, to obtain

(2.9) W [γ(·)] =
∫ 1

0

(
1
2
|γ̇|2 +

1
g2

V (γ)
)

ds−
∫ 1

0

γ̇ · ∇U(γ) ds.

The last term is a total differential (a null Lagrangian in the terminology of the
calculus of variations), since

(2.10)
∫ 1

0

γ̇ · ∇U(γ) ds =
∫ 1

0

d

ds
U(γ(s)) ds = U(b)− U(a).

To summarize, we have obtained the following identity for the Wiener action

(2.11) W [γ(·)] =
∫ 1

0

(
1
2
|γ̇|2 +

1
g2

V (γ)
)

ds− (U(b)− U(a)) .

In particular, when g = i, the classical action S[γ()] and the Wiener action W [γ()]
are minimized on the same path. Further, the minimum values are related by the
difference in the Coulomb energy

(2.12) argminW [γ(·)] = argminS[γ(·)]− (U(b)− U(a)) .

2.3. The Hamilton-Jacobi equation and Matytsin’s approach. Let us now
connect the principle of least action to the Hamilon-Jacobi theory. Following
Arnol’d [3, §46C], we define the action function

(2.13) S(x, t) =
∫ t

0

L(γ(s), γ̇(s)) ds,

where γ(t) is the extremal path connecting γ(0) = a to an arbitrary point x ∈ WN

at time t. Any initial condition would do, we have chosen γ(0) = a, only to
be concrete. By Lemma 2.1, the action function is well-defined when g is purely
imaginary. It then follows that S(x, t) solves the Hamilton-Jacobi equation

(2.14) ∂tS = H(x, ∂xS), i.e. ∂tS =
1
2

N∑
j=1

(
∂xj S

)2 +
g2

2

∑
k 6=j

1
(xj − xk)2

.

The reason for introducing this formalism here is to contrast Matytsin’s ap-
proach to the HCIZ integral with Guionnet’s. Matytsin’s approach is not explicitly
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probabilistic. More precisely, he uses the heat equation in the space of Hermitian
matrices, but not Dyson Brownian motion. His starting point is the fact that a
time-dependent version of the HCIZ integral solves a heat equation in WN . He
then makes a WKB (or inverse Cole-Hopf) transformation to convert the linear
heat equation to a nonlinear Hamilton-Jacobi equation, obtaining after some cal-
culations a Hamilton-Jacobi equation with diffusion

(2.15) ∂tS̃ =
1

2N

N∑
j=1

∂2
xj

S̃ +
N

2

N∑
j=1

(
∂xj

S̃
)2

− 1
2N3

∑
k 6=j

1
(xj − xk)2

.

At this stage, everything is exact. His key assumption is then to neglect the diffusion
term, obtaining the Hamilton-Jacobi equation [13, Eqn (2.7)]

(2.16) ∂tS̃ =
N

2

N∑
j=1

(
∂xj S̃

)2

− 1
2N3

∑
k 6=j

1
(xj − xk)2

.

We may write this equation in the form

(2.17) ∂tS̃ = H̃N (x, S̃), H̃N (x, p) =
N

2
|p|2 − 1

2N3

∑
k 6=j

1
(xj − xk)2

,

Aside from scaling factors, equation (2.16) is identical to (2.14). Thus, implicit in
Matytsin’s calculation is a reduction of the HCIZ integral to the CM system. (This
rescaling is discussed in Section 5.)

The corresponding Lagrangian of the rescaled system is

(2.18) L̃(x, ẋ) =
1

2N

N∑
j=1

ẋ2
j +

1
2N3

∑
k 6=j

1
(xj − xk)2

.

As explained in Section 5 when N →∞, the above Lagrangian has the the contin-
uum limit

(2.19) L̃(ρ, v) =
∫

R
ρ(x, t)

(
1
2
|v(x, t)2 +

π2

3
ρ3(x, t)

)
, dx,

Continuum limits of the CM system have been considered in the physics litera-
ture [1, 17]. In these papers, N → ∞, but g does not depend on N . In our
work, we must also take g → 0 at the rate 1/N . This changes the character of the
problem; we now have a zero-dispersion continuum limit, much like the celebrated
Lax-Levermore-Venakides theory.
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3. Solving the Calogero-Moser system

There are many distinct solution techniques for the CM system. Two of these are
considered here: (i) the projection method of Olshanetsky and Perelomov; and (ii)
the use of pole dynamics and the doubled Benjamin-Ono equation (2BO). There
is also a third approach that I have not worked out. This involves the use of
τ -functions and the KP hierarchy. I remark on this briefly at the end of this note.

In this section N is held fixed, and we drop the subscript N in the notation. We
assume given a, b ∈ WN and we write A = diag(a), B = diag(b). We set T = 1 and
focus on solving the boundary value problem for the CM system corresponding to
the principle of least action for paths γ : [0, 1] →WN with γ(0) = a, γ(1) = b. This
is equivalent to determining the most likely path for the Dyson Brownian bridge
connecting a and b as the noise vanishes when g is purely imaginary. In order to
explain the solution to this boundary value problem, it is important to first recall
the solution to the initial value problem for the CM system.

3.1. Moser’s matrices and the projection method. Consider the CM system

(3.1) ẋj = yj , ẏj = 2g2
∑
k 6=j

1
(xj − xk)3

,

with the initial conditions x(0) = a ∈ WN , y(0) = v ∈ WN . Moser showed that
this problem is completely integrable 5 by introducing the following matrices. Given
(x, y), introduce the matrices P (x, y) and Q(x, y) with entries

Pjj = yj , Pjk =
ig

(xj − xk)
, j 6= k,(3.2)

Qjj = −
∑
l 6=j

ig

(xj − xk)2
, Qjk =

ig

(xj − xk)2
.(3.3)

For comparison with continuum results with the Hilbert transform of the density,
we also introduce the discrete matrix

(3.4) Hjj = 0, Hjk(x, y) =
1

xj − xk
, j 6= k.

While it requires considerable ingenuity to discover these matrices, a direct com-
putation shows that (3.1) is equivalent to the Lax equation

(3.5) Ṗ = [P,Q].

As a consequence, the eigenvalues of P are constants of motion for (3.1). These
can be shown to be in involution and it follows that (3.1) is an integrable system.

Given a matrix H with real, distint eigenvalues, let eig(H) ∈ WN denote the
eigenvalues listed in increasing order. We will use the following refinement of
Moser’s method introduced by Olshanetsky and Perelomov [15] to directly solve
the initial value problem for (3.1). Given (a, v) ∈ WN × RN , define the matrix
P (a, v) as in (3.2). Then as long as the solution to (3.1) exists, it is given by the
simple formula

(3.6) x(t) = eig(A + tP (a, v)) .

There is an important difference between the repulsive case (g real) and the at-
tractive case (g imaginary). When g is real, the matrix H(t) := A + tP (a, v) is

5He implicitly assumes g is real, but this is not necessary.
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Hermitian, the eigenvalues are real for all t, and the energy bound (1.22) ensures
that the eigenvalues never collide. Thus, for each (a, v) ∈ WN × RN there is a
solution to the CM system for every t ∈ R.

This is no longer true when g = i. The initial value problem is not defined for
all time, and the eigenvalues collide. In fact, since A+ tP (a, v) is a real matrix that
is not symmetric, there is no a priori reason to expect that it has real eigenvalues
(though this follows from (3.1), and remains true until the first collision of eigen-
values). The above solution formula is called the projection method, since the CM
flow is obtained by projecting the linear flow H(t) = A + tP (a, v) in Her(n) (when
g is real) or GL(n; R) (when g is imaginary) onto WN via the map H 7→ eig(H).

Nevertheless, Lemma 2.1 always allows us to solve the boundary value problem.
More precisely, when g = i, given a, b ∈ WN , there is always a unique path with
γ(0) = a and γ(1) = b that minimizes the action. This path is necessarily smooth,
and in particular, if we set v = γ̇(0), we find that

(3.7) b = eig(A + P (a, v)).

Observe that b is given and v is determined implicitly through (3.7). This so-
lution formula yields a shooting method to solve the boundary value problem.This
yields the initial condition v for the CM flow connecting a to b. The entire flow is
then given by (3.6).

This solution formula allows us to approximate and visualize the transport map
from ρA to ρB that seems so mysterious when written in the form (1.1)–(1.2).
Roughly, all we have to do is to approximate the spectral measures µA and µB

with N suitably chosen point masses, choose g = i/N , and find the CM solution
that connects a and b. For instance, given ρA and ρB and N , let us define the
vectors a, b ∈ WN by setting

(3.8) aj = µ−1
A (

j

N
), bj = µ−1

B (
j

N
), 1 ≤ j ≤ N,

where µA(x) :=
∫ x

−∞ ρA(s) ds is the distribution function of µA, and we define the
inverse as µ−1

A (α) = infx{µA(x) ≥ α}. We then apply the numerical scheme below.

3.2. A naive numerical scheme. In order to solve the discrete transport map
numerically, it is only necessary to determine the initial velocity v that solves equa-
tion (3.7). We use an eigenvalue solver and a Newton scheme as follows. Define the
nonlinear map

(3.9) v 7→ λ(v) := eig(A + P (a, v)),

and consider the quadratic cost function

(3.10) h(v) =
1
2
|λ(v)− b|2.

The Newton-Raphson scheme to solve h(v) = 0 consists of an iterative sequence
v(n) ∈ RN defined by

(3.11) v
(n+1)
j = v

(n)
j − h(v(n))

∂vj h(v(n))
, j = 1, . . . , N.

By the product rule, the gradient of h is

(3.12) ∂vj h(v) = (λ(v)− b) ·
(
∂vj λ(v)

)
=

N∑
k=1

(λk(v)− bk)
(
∂vj λk(v)

)
.
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Therefore, our problem reduces to standard perturbation theory for eigenvalues.
Let us recall the general facts, and then apply them in our context.

Consider a smooth curve (−1, 1) 3 τ 7→ C(τ) ∈ GL(N, R) in the space of ma-
trices, such that eig(C(τ)) ∈ WN , τ ∈ (−1, 1). Let U(τ) denote the matrix of
eigenvectors and Λ(τ) = diag(eig(C(τ)) denote the diagonal matrix of eigenvalues.
We differentiate the equation

(3.13) C(τ) = U(τ)Λ(τ)U−1(τ),

and rearrange terms to obtain

(3.14) U−1ĊU = [U−1U̇ ,Λ] + Λ̇.

The diagonal entries of the commutator [U−1U̇ ,Λ] vanish. Thus,

(3.15) Λ̇ = diag
(
U−1ĊU

)
.

We apply the general formula(3.15) to our situation as follows. In order to
compute the derivative

(3.16) ∂vj λ(v)
∣∣
v=v(n)

we consider a curve C(τ) with

(3.17) C(τ) = A + igH(a) + ig diag(v(τ)), v(τ) = v(n) + τej

where ej ∈ Rn is the j-th standard basic vector. In this case,
(3.18)

C(0) = A + igH(a) + ig diag(v(n)) = A + P (a, v(n)), and Ċ(0) = diag (ej).

We then have

(3.19) ∂vj
λ(v)

∣∣
v=v(n) = ig diag

(
U−1 diag(ej)U

)
,

where U = U(v(n)) is the matrix of eigenvectors of A + P (a, v(n)).
In summary, the numerical scheme is as follows. Given v(n), we compute the

eigenvalues λ(n) and eigenvector matrix U (n) of A + P (a, v(n)) using an eigenvalue
solver for non-symmetric matrices. We then compute the cost function h(v(n))
and its derivative using the formulas (3.10), (3.12) and (3.19). These yield the
next iterate v(n+1) in the Newton-Rapshon scheme. The scheme requires a careful
choice of initial conditions. 6 In particular, since the matrix A + P (a, v(n)) is not-
symmetric, we must stop the iteration if it has complex eigenvalues.

6As of Feb. 2016, I have not been able to use this scheme to solve the BVP! It appears that
what one needs is a multiple shooting method.
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(a)

(b)

Figure 1: Phase portrait for attractive CM system when N = 2.

4. The complex Burgers equation

4.1. Matytsin’s functional equations. In this section, I will explain how the
CM system provides the correct interpretation for the complex Burgers equation.
In order to explain the main issues, let us return to the PDE (1.4). Since this
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equation is elliptic at all points where ρ(x, t) > 0, we cannot use the solution
formula (1.5) without assuming that f0 is analytic in a complex neighborhood of
the x-axis. However, f0 cannot be analytic for any ρA with compact support, not
even for the exact solution (1.25)!

Matytsin does not let such mathematical niceties stop him, and he solves induced
QCD by the method of characteristics as follows. Let f0 and f1 denote f(x, 0) and
f(x, 1) respectively. Define the forward characteristic map G+ : x 7→ x + f0(x) and
the backward characteristic map G− : x 7→ x − f1(x), and (formally) use (1.4) to
obtain the identities

(4.1) G−(G+(x)) = x, G+(G−(x)), x ∈ R,

Matytstin formally solves these functional equations with boundary conditions

(4.2) Im(G+(x)) = πρA(x), Im(G−(x)) = πρB(x), x ∈ R,

by making a clever ansatz.
In my view, the use of this functional equations does not actually shed any

light on the problem, since it is an easy consequence of the (unjustified) use of the
method of characteristics. Further, when one applies this method to the study of
the Kosterlitz-Thouless phase transitions as in [14], the functional equation leads
to a problem with small divisors, a sure sign that there is something rather subtle
in the background. Therefore, it strikes me as important to nail down the method
of characteristics in this problem. In particular, this requires a more careful speci-
fication of the domain of the problem (Is x real or complex? How is f0 defined in
the complex plane, when we only prescribe ρA and ρB on the line? etc.).

4.2. The Hilbert and Cauchy transforms. Given a complex function u(x),
x ∈ R, its Hilbert transform is defined by

(4.3) Hu(x) =
p.v.

π

∫
R

1
λ− x

u(λ) dλ = x ∈ R

The principal value integral is defined by

(4.4) Hu(x) =
p.v.

π

∫
R

u(x− s)
s

ds =
1
π

lim
ε→0

∫
|s|>ε

u(x− s)
s

ds.

The Hilbert transform is a bounded operator on Lp(R), 1 < p < ∞. When the
Fourier transform of u is defined by

(4.5) û(ξ) =
∫

R
e−2πixξu(x) dx,

the Hilbert transform has the multiplier 7

(4.6) (̂Hu)(ξ) = −isgn(ξ) û(ξ), ξ ∈ R.

When u is real, the Hilbert transform provides the boundary values of the com-
plementary harmonic function for the harmonic extension of u. Here is what this
means. Assume u is real and consider its Cauchy transform

(4.7) Cu(z) =
∫

R

1
λ− z

u(λ) dλ, z ∈ C\R.

7We use Stein’s convention to define the Hilbert transform, but the modern sign convention
for the Fourier transform. This is why the multiplier is −i sgn(ξ), as compared with i sgn(ξ) [16,
p.55].
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The function Cu is analytic in C\R. When u is a positive density it is a Herglotz
function.8 Let (Cu)±(x) denote its boundary values as z → x ∈ R from the upper
and lower-half plane respectively. Then

(4.8) Cu±(x) = πHu(x)± iπu(x), x ∈ R.

4.3. Free convolution with the semicircle law. To build some intuition for
complex Burgers equation, let us first recall the following fact from free probability
theory. Let νt denote the semicircle law with width 2t

(4.9) dνt(x) =
1

2πt

√
4t− x2, |x| ≤ 2t.

Assume given a measure µA with density ρA, and let µt = µA � νt denote the free
convolution of µA with the semicircle law νt. Let ρt denote the density of µt and
(abusing notation) let us set f(z, t) = Cµt(z) = Cρt(z). Then a basic fact in free
probability theory is that f solves the complex Burgers equation

(4.10) ∂tf − f∂zf = 0, t > 0, z ∈ C+.

The difference with (1.4) is that we are not explicit about the domain of our func-
tion, and the use of complex characteristics is completely justified. The character-
istics of (4.10) solve the ordinary differential equation

(4.11) ż = −f(z, t), z ∈ C+.

On the real axis, these ordinary differential equations become

(4.12) ẋ = πHρt(x), ẏ = −πρt(x), x ∈ R, t > 0.

Since ρt ≥ 0, the characteristics always flow out of C+. Thus, the domain C+

is positively invariant under the flow (4.11). This property is what allows us to
use the method of characteristics in this problem. In summary, in the absence of a
boundary condition at t = 1, equation (1.4) is well-posed on the domain C+×(0,∞)
by extending ρ(·, t) to the analytic function f(z, t) using the Cauchy transform. It
may also be checked that for each t > 0 the PDE continues to hold on the x-axis.
With a little work, one can now establish regularity for ρt (Biane does not explicitly
use the method of characteristics, but it is implicit in his proof[4]).

The complex Burgers equation (4.10) should be thought of as the analogue of the
heat equation in free probability. The solution admits the following direct stochastic
interpretation. Let St denote a standard free Brownian motion, and let A be an
operator with spectral measure ρA that is free with respect to the process St. Then
ρt is the spectrum of A + St. The appearance of complex Burgers equation in

8There is a rather annoying difference in sign conventions between the use of Cauchy transforms
in the theory of Herglotz function and in free probability theory. Herglotz functions are analytic
function f : C+ → C+. A classical representation theorem asserts that each Herglotz function
is the potential of a positive measure, that is f = Cµ where µ is a positive measure on R. This
sign convention ensures that Herglotz functions are closed under composition and that they are
matrix monotone [6]. In the literature on free probability, the Cauchy transform is normalized as
Gµ(z) := −Cµ(z). The transform Gµ is an anti-Herglotz function, that is Gµ : C+ → C−. This
convention has the unfortunate effect of flipping the sign in the inversion formula. For simplicity,
assume µ has a density ρ. Then

lim
y↓0

Re Gµ(x + iy) = πHρ(x), lim
y↓0

Im Gµ(x + iy = −πρ(x),

in comparison with (4.8). Since Matytsin’s starting point is the function f = v+ iπρ, we have pre-
ferred to use the convention on Herglotz functions, rather than the convention of free probability.
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Matytsin’s work also has a free probability interpretation. However, now we must
consider a free Brownian bridge, not a free Brownian motion. Let S be a standard
semicircular operator, and let A and B be operators with spectral measures ρA

and ρB respectively, and suppose A,B and S are free with respect to one another.
Then the density ρ(·, t) corresponding to the solution to (1.4) is the law of the free
variable 9

(4.13) Xt = (1− t)A + tB +
√

t(1− t) S, t ∈ [0, 1].

4.4. The domain for (1.4). In order to solve (1.4) by the method of character-
istics, we must extend the spatial domain from x in the support of ρ, to a suitable
subset of the complex plane. Classical potential theory and the calculation above
suggests that the natural extension of ρ to the complex plane is provided by its
Cauchy transform. Further, the calculations above show that each positive density
ρ induces a velocity field πH(ρ)(x). However, when solving the boundary value
problem (1.2)–(1.4), it is clear that the ‘shooting velocity’ from ρA cannot simply
be πH(ρA), since this would imply ρt = ρA � νt. Thus, we are finally led to sepa-
rate the velocity field into two parts: a self evolution corresponding to the Hilbert
transform and free convolution, and a second part, which ‘shoots’ ρA at t = 0 to
ρB at t = 1. 10

This idea is implemented as follows. For each δ > 0 we define the open strip
Sδ = {z || Im(z)| < δ }. Given ρA and ρB we seek δ > 0 and a function f = f+ + f−
such that f− is analytic in Sδ and

(4.14) f+(z, t) = Cρ(·, t), z ∈ C\R.

Observe that this separates the velocity field v(x, t), x ∈ R into two parts:

(4.15) v+(x, t) = πH(ρ(·, t))(x) = Re f+(x, t), v−(x, t) = Re f−(x, t), x ∈ R.

The first part corresponds to the ‘self-velocity’ of free convolution. The second
part is the ‘driving’ velocity that steers ρ(·, t) from ρA to ρB . The point is that the
solution formula (1.5) may be rigorously applied for z ∈ Sδ.

The difference between the velocity v(x, t) and Hρ(·, t) may be computed for the
exact solution (1.25) constructed in [5]. In this example, we find that

(4.16) f−(z, t) =
(

b(t) +
1

2σ2(t)

)
z.

In this case, Sδ = C and f−(z, t) is an entire function of z. Matytsin always assumes
that the ‘driving’ velocity field is a polynomial, which is what allows him to use the
method of characteristics. However, this situation is atypical, and for many other
interesting solutions, f− is analytic only in a strip of finite width.

4.5. A generalized Hilbert transform. Aficionados of integrable systems are
aware of many unexpected connections between distinct models. For instance, it
has been known since the work of Airault, McKean and Moser that the CM system
describes the evolution of rational solutions to the KdV hierarchy [2]. Roughly, the
poles of certain rational solutions to KdV evolve according to the CM system. Such
connections were treated systematically for the KP hierarchy by Krichever [12]. The

9This statement follows Guionnet [8]. But surely one should be able to use a ‘true’ free
Brownian bridge (i.e. a process St), rather than just scaling a fixed free variable S.

10In the discrete CM system, this splitting correspond to the off-diagonal and diagonal terms
of the matrix P defined in (3.2).
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version of this set of ideas that is most useful for us is a connection between CM
solutions and the doubled Benjamin-Ono equation studied by Abanov, Bettelheim
and Wiegmann [1] (see also [17]).

In order to introduce these equations, we will modify the definition of the Hilbert
transform as follows. Consider a simple closed curve Γ that separates the complex
plane into exterior and interior domains, denoted Ω± respectively. Given a suffi-
ciently regular function ϕ : Γ → C we extend it to the analytic functions

(4.17) ϕ±(z) =
1

2πi

∮
Γ

ϕ(s)
s− z

ds, z ∈ Ω±.

The Plemelj formulas provide jump and continuity conditions on the curve z ∈ Γ

(4.18) ϕ−(z)− ϕ+(z) = ϕ(z), ϕ−(z) + ϕ+(z) =
p.v.

πi

∮
Γ

ϕ(s)
s− z

ds.

Therefore, we may define the Hilbert transform with respect to Γ, as

(4.19) HΓϕ(z) =
p.v.

π

∮
Γ

ϕ(s)
s− z

ds = i (ϕ−(z) + ϕ+(z)) .

Of particular importance for us are the following eigenfunctions of the operator HΓ.
Using the above formulas, we find that when

(4.20) ϕ(z) =
1

z − a
, a ∈ Ω+ ∪ Ω−,

(4.21) HΓϕ(z) = −iϕ(z), a ∈ Ω+, HΓϕ(z) = +iϕ(z), a ∈ Ω−.

These eigenfunctions are computed as follows. To be concrete, we assume a ∈ Ω+.
Then ϕ(z) is analytic in a sufficiently small neighborhood of Γ, and the integrand
in (4.17) may be written as follows:

(4.22)
ϕ(s)
s− z

=
1

z − a

(
1

s− a
− 1

s− z

)
.

Substituting in (4.17), we find that

(4.23) ϕ−(z) =
−1

z − a
, ϕ+(z) = 0.

Similarly, when a ∈ Ω− we find

(4.24) ϕ−(z) = 0, ϕ+(z) =
1

z − a
.

We substitute (4.23)–(4.24) in (4.19) to obtain (4.21).

4.6. The doubled Benjamin-Ono equation. The Benjamin-Ono equation with
respect to the curve Γ is the PDE

(4.25) ∂tf + f∂zf =
g

2
∂2

zHΓf, z ∈ Γ, t > 0.

This PDE is connected to the CM system via the following ansatz. Assume Γ is a
sufficiently curve that circles a sufficiently large interval I on the x-axis. Assume
N and M are integers, and let x1(t) < x2 < . . . < xN (t) be points on I, and let
{wk(t)}M

k=1 be points in Ω+ ⊂ C. We substitute the ansatz

(4.26) f(z, t) =
N∑

j=1

ig

z − xj(t)
−

M∑
k=1

ig

z − wk(t)
,
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into (4.25), use (4.20)–(4.21), and the identity

(4.27)
1

z − α

1
(z − β)2

+
1

(z − α)2
1

z − β
=

1
α− β

(
1

(z − α)2
− 1

(z − β)2

)
,

to obtain the ordinary differential equations

ẋj =
N∑

l=1,l 6=j

ig

xl − xj
−

M∑
m=1

ig

wm − xj
, j = 1, . . . , N,(4.28)

ẇk = −
N∑

l=1

ig

wk − xl
+

M∑
m=1,m 6=k

ig

wk − wm
, k = 1, . . . ,M.(4.29)

Thus, we obtain a closed system of N +M equations for the evolution of the poles.
Now it turns out that one may further differentiate these equations, and use (4.28)
and (4.29) to eliminate ẋj and ẇk to find that

(4.30) ẍj =
∑
l 6=j

2g2

(xj − xl)3
, j = 1, . . . , N.

Thus, the poles xj satisfy the CM system (1.21). In order to ensure that these
solutions stay real, we must ensure that the initial w’s are such that ẋj(0) is real
for each j. Equation (4.28) shows that this always holds provided M is even and
the poles w are pairs of complex conjugates. The w’s satisfy a complementary CM
system. Except for the coupling through the initial condition, these two systems
evolve independently (despite what (4.28)–(4.29) suggests at first sight).

4.7. τ functions and the zero dispersion continuum limit. Though the de-
tails are not presented here, it is a short step from (ii) to the use of τ -functions
to construct multi-soliton solutions to (1.1). Roughly, exact solutions to the CM
system may be expressed as determinants using τ -functions for the KP hierarchy.
Further, the N →∞, g = O(1) continuum limit of these solutions has already been
worked out by Abanov et al . However, it does remain to see how this approach
yields solutions to the complex Burgers equation when we also take g → 0. If we
recall that the zero-dispersion limit of (real valued) KdV is Burgers equation – this
is the core observation of Lax and Levermore – we see exactly how the N → ∞
limit studied by Matytsin is an analogous zero-dispersion limit. In order to explain
this point, let us examine the scaling limit more carefully.
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5. The scaling limit

Our starting point is the Calogero-Moser system with the rescaled Hamiltonian

(5.1) H(x, p) =
N

2
|p|2 − κ2

2N3

∑
k 6=j

1
(xj − xk)2

.

In the notation of equation (1.20), we have chosen

(5.2) g =
iκ

N
,

where κ is a fixed parameter, independent of N . In most of what follows κ = 1.
This parameter is included to provide a unified treatment of the attractive and
repulsive CM system.

Recall that fluid equations such as (1.1) may be written in either the Eulerian or
Lagrangian formulation. We first write the equations of motion for the particle sys-
tem with Hamiltonian (5.1) in a way that is suggestive of the continuum limit in the
Lagrangian formulation. To this end, let α ∈ [0, 1] denote the material coordinate;
the position of the particle x(α, t) is given implicitly through the relationship

(5.3)
∫ x(α,t)

−∞
ρ(s, t) ds = α,

and the map α 7→ x(α, t) is an increasing function. At points where ρ(x, t) > 0, we
may differentiate (5.3) to obtain the relationship

(5.4) x′(α, t) := ∂αx(α, t) =
1

ρ(x, t)
.

The Lagrangian form of equation (1.1) is the system

∂tx(α, t) = u(α, t),(5.5)

∂tu(α, t) = −κ2π2 x′′

(x′)4
,(5.6)

where the Eulerian and Lagrangian velocity fields are related via

(5.7) u(α, t) = v(x(α, t), t) = v(x, t).

The equivalence between the two systems of equations at points where ρ(x, t) is
strictly positive and differentiable may be established by differentiating (5.5) and
using (5.3), (5.4) and (5.7).

We now explain how to obtain (5.5) as the N →∞ limit of the CM system with
Hamiltonian (5.1). For each N , let us denote the vector x ∈ RN (resp. v, p), as
a function x(N)(α, t) defined at each lattice point αk = k/N , 1 ≤ k ≤ N by the
relation

(5.8) x(N)(αk, t) = xk(t), p(N)(αk, t) = pk(t), u(N)(αk, t) = uk(t).

In these variables the equations of motion for the Hamiltonian (5.1) take the form

∂tx
(N)(α, t) = Np(N)(α, t),(5.9)

∂tp
(N)(α, t) =

2κ2

N3

∑
β 6=α

1(
x(N)(β, t)− x(N)(α, t)

)3 ,(5.10)
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where the Lagrangian coordinates α and β range over the index set k/N , 1 ≤ k ≤ N .
In the limit, we expect the particle velocities to be well-defined, and working with
v(N) instead of p(N), we find

∂tx
(N)(α, t) = u(N)(α, t),(5.11)

∂tu
(N)(α, t) =

2κ2

N2

∑
β 6=α

1(
x(N)(β, t)− x(N)(α, t)

)3 .(5.12)

It is easy to see how (5.11) converges to (5.5), when we scale the momentum as
in (5.1). Indeed, with this scaling, the kinetic energy in the Hamiltonian is

(5.13)
N

2

N∑
k=1

p2
k =

1
2N

N∑
k=1

u2
k =

1
2N

N∑
k=1

∣∣∣u(n)(αk, t)
∣∣∣2 ≈ 1

2

∫ 1

0

|u(α, t)|2 dα,

using the Riemann sum to approximate the integral under the assumption that

(5.14) u(n)(αk, t) ≈ u(αk, t), 1 ≤ k ≤ N.

However, it is necessary to treat the singular terms systematically in order to
obtain the continuum limit (5.6) from (5.12) under the scaling (5.2). We will explain
a general procedure to approximate such singular sums.

5.1. Approximations with the Euler-MacLaurin formula. Assume f : [0, 1] →
R is a C∞ function. The Euler-MacLaurin formula∫ 1

0

f(α) dα =
1
N

(
1
2
f(0) +

N1∑
k=1

f(
k

N
) +

1
2
f(1)

)
(5.15)

+
1

12N2
(f ′(0)− f ′(1))− 1

720N4
(f ′′′(0)− f ′′′(1)) + . . .

provides an asymptotic expansion for the Riemann integral of f . Observe that the
error terms are controlled by the derivatives of f at the endpoints 0 and 1.

Our interest lies in the leading order asymptotics of sums of the form

(5.16)
N∑

k=1,k 6=j

1
(xk − xj)p

,

when j = Nα where α ∈ (0, 1) is held fixed, and p is an integer (p = 1, 2 and 3). In
order to apply the Euler-MacLaurin formula to such functions, we will replace the
summand with a suitably regularized function fp, (p = 1, 2 and 3) that regularizes
the singularity near k = j. In what follows, we fix α, set j = αN , and we use
k = βN to denote the indices being summed over.

5.1.1. Case 1. p = 1 . Fix ε > 0 and consider separately the sum over β such that
|α−β| ≥ ε and |α−β| < ε. In the region |α−β| ≥ ε, the summand is non-singular
and we find

(5.17) lim
N→∞

1
N

∑
|j−k|<εN

1
xk − xj

=
∫
|α−β|>ε

1
x(β)− x(α)

dβ.

In order to treat the singular region, we consider the function

(5.18) f1(s) =
1

x(α + s)− x(α)
− 1

x′(α)s
, |s| < ε.
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Under the assumption that x(β) is C2 at β = α, we find that

(5.19) lim
s→0

f1(s) =
1
2

x′′(α)
x′(α)

.

We apply the Euler-MacLaurin approximation to f1 on the interval |s| < ε to obtain

(5.20)
1
N

∑
|l|<εN

(
1

x(α + l/N)− x(α)
− N

x′(α)l

)
=
∫
|α−β|<ε

f1(β) dβ + O(
1
N

).

On the other hand, we also have

(5.21)
∑

|l|<εN, l 6=0

1
x′(α)l

= 0.

Therefore, we can remove this term from the summand. Further, we can also
remove the regularizing term in the integrand, provided we replace the divergent
integral with its principal value. Combining these steps, we find that

(5.22) lim
N→∞

∑
|l|<εN

1
x(α + l/N)− x(α)

= p.v.

∫
|α−β|<ε

1
x(β)− x(α)

dβ.

5.1.2. Case 2. p = 2 . As in Case 1, it is only necessary to consider the sum in
the range |β − α| < ε for some fixed ε > 0. The regularizing function in this case
takes the form

(5.23) f2(s) =
1

(x(α + s)− x(α))2
− c0 + c1s

s2
, |s| < ε,

where the coefficients c0 and c1 are determined by the condition that f2(s) is con-
tinuous at s = 0. We find after some algebra (as explained below for the case p = 3)
that

(5.24) f2(s) =
1

(x(α + s)− x(α))2
− 1

(x′(α)2s2
+

x′′(α)
x′(α)s

, |s| < ε,

Thus, adding the regularizing terms, and using the fact that
∑
|j−k|<ε,j 6=k(k −

j)−1 = 0 and
∑∞

l=1 l−2 = ζ(2) = π2/6, we obtain the approximation

1
N

∑
|j−k|<εN,j 6=k

1
(xk − xj)2

=
Nπ2

3x′(α)2

+
1
N

 ∑
|j−k|<εN,j 6=k

1
(xk − xj)2

− N2

(x′(α)2(j − k)2
+

Nx′′(α)
x′(α)(j − k)

+ O(
1
N

).

By the Euler-MacLaurin expansion, the second term on the right hand side is O(1),
since it converges to the integral

∫
|s|<ε

f2(s) ds. Thus,

(5.25) lim
N→∞

1
N2

∑
|j−k|≤εN,j 6=k

1
(xk − xj)2

=
π2

3x′(α)2
.

This also shows that the discrete CM potential energy has the scaling limit

(5.26) lim
N→∞

−κ2

N3

∑
k 6=j

1
(xk − xj)2

= −κ2

∫ 1

0

π2

3x′(α)2
dα.
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The above convergence of the potential energy is enough to deduce that (5.6) is the
continuum limit of the CM system, but let us also show that the same technique
yields the convergence of (5.12) to (5.6).

5.1.3. Case 3. p = 3 . Observe that in Case 2, the leading order term is local (i.e.
not a singular integral, unlike Case 1). This is typical for all p ≥ 2. When p = 3,
we proceed as for p = 2, seeking a function

(5.27) f3(s) =
1

(x(α + s)− x(α))3
− c0 + c1s + c2s

2

s3
,

that is continuous as s → 0. Assuming that we have found such an expansion, we
fix an ε > 0, use the fact that

(5.28) 0 =
∑

|j−k|<εN,j 6=k

1
(j − k)3

=
∑

|j−k|<εN,j 6=k

1
(j − k)

and apply the Euler-MacLaurin expansion to f3 in the interval (α − ε, α + ε), to
obtain the asymptotic expansion

(5.29)
1

N2

∑ 1
(xk − xj)

3 = c1

∑ 1
(j − k)2

+
1

N2

∑
f3(xk − xj),

where the sum is over the index k in the range |k − j| < ε, k 6= j.
The coefficients c0, c1 and c2 are computed as follows. For brevity, let us denote

the Taylor expansion

(5.30) x(α + s)− x(α) = a1s + a2s
2 + a3s

3 + . . .

The continuity of f3 at s = 0 imposes the requirement that

(5.31) s3 − (a1s + a2s
2 + a3s

3)3
(
c0 + c1s + c2s

2
)

= O(s6),

which yields the following set of polynomial equations for c0, c1 and c2 in terms of
a1, a2 and a3:

O(1) : c0a
3
1 = 1,

O(s) : c1a
3
1 + 3c0a

2
1a2 = 0,

O(s2) : a3
1c2 + 3c1a

2
1a2 + 3c0

(
a1a

2
2 + a2

1a3

)
= 0,

These equations have a unique solution when a1 6= 0. We find that

(5.32) c0 =
1
a3
1

, c1 = −3
a2

a4
1

, c2 = 6
a2
2

a5
1

− 3
a3

a4
1

.

Equations (5.29) tells us that we only need c1. Thus, using the fact that a1 and
a2 are the first two terms in the Taylor expansion of x(α + s)− x(α), we use (5.29)
and (5.32) to find that for every ε > 0,

(5.33) lim
N→∞

1
N2

∑
|j−k|<ε,j 6=k

1
(xk − xj)3

= −π2

3
3
2

x′′(α)
x′(α)4

= −π2

2
x′′(α)
x′(α)4

.

We apply (5.33) to (5.12) to obtain equation (5.6), the continuum CM system in
Lagrangian coordinates.
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6. The Lax pair for the continuum limit

We have now found two distinct descriptions of the continuum limit of the CM
system. The Eulerian formulation (1.1), and the Lagrangian formulation (5.5) and
(5.6). It is easy to guess the form of the Lax pair for the Lagrangian formulation
using the formulas (3.2)–(3.3), though these must be written in weak form.

Let h : [0, 1] → C be a test function that vanishes at all points where x′(α) = 0,
and define the singular integral operators

Ph(α) = u(α)h(α) + κ p.v.

∫ 1

0

h(β)
x(β)− x(α)

dβ(6.1)

Qh(α) = −κ p.v.

∫ 1

0

h(β)− h(α)
(x(β)− x(α))2

dβ.(6.2)

These operators are formal limits of the Lax pair (3.2)–(3.3), when g = iκ/N . The
condition that the test function h vanishes at all points where x′(α) = 0 is necessary
to ensure that the integrals are meaningful. This condition is cumbersome and it
is simpler to work with the operators written in Eulerian coordinates.

Let ϕ : R → R be a smooth test function and recall that ρ(x, t) and v(x, t) are
the Eulerian density and velocity field for (1.1). We define the operators

Lϕ(x) = v(x, t)ϕ(x) + κ p.v.

∫
R

f(s)
s− x

ρ(s, t) ds,(6.3)

Mϕ(x) = −κ p.v.

∫
R

f(s)− f(x)
(s− x)2

ρ(s, t) ds.(6.4)

We claim that when κ = 1, (1.1) and (1.4) is equivalent to the Lax equation

(6.5) L̇ = [L,M ].

While we have been led to this Lax pair by taking the continuum limit of the
N particle CM system, it may be used directly for the analysis of (1.1). The
verification that (6.5) is equivalent to (1.1) requires a careful computation, at the
heart of which is the following commutator identity for the Hilbert transform. As
with many Fourier identities, it is enough to check the lemma on functions in
the Schwartz class S(R), and then to use standard density arguments to extend
the identity to general function classes, say Lp(R). Given a Schwartz function
n ∈ S(R), we define the multiplication operator Mn : S → S by h 7→ Mnh,
Mnh(x) = n(x)h(x).

Lemma 6.1. Suppose p ∈ S(R). Then we have the following commutator identity

(6.6) [H,MHp] = Mp +HMpH.

The precise domain of definition of the above operators takes some care, since
the Hilbert transform does not map S(R) into itself, but I’m going to ignore these
technicalities for now. The main point is really that the above lemma provides the
right way to think about the cancellation (4.28), which underlies the equivalence
between the Lax equation (3.5) and the discrete CM system (3.1).

Proof. The lemma is best proved with Fourier multipliers. Let ϕ ∈ S(R) and
consider

[H,MHp]ϕ = HMnϕ−MnHϕ.
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Since H has multiplier −isgn(ξ) and M̂nϕ = n̂ ? ϕ̂, we find that

(6.7) ̂HMHpϕ = −isgn(ξ)
(
Ĥp ? ϕ̂

)
(ξ) = −sgn(ξ)

∫
R

sgn(η)p̂(η)ϕ̂(ξ − η) dη.

A similar computation reveals that

(6.8) M̂HpHϕ = −
∫

R
sgn(η)sgn(ξ − η)p̂(η)ϕ̂(ξ − η) dη.

Thus, we have found that the Fourier transform of [H,MHp]ϕ is

(6.9)
∫

R
sgn(η) (sgn(ξ − η)− sgn(ξ)) p̂(η)ϕ̂(ξ − η) dη.

Now an elementary computation shows that

(6.10) sgn(η) (sgn(ξ − η)− sgn(ξ)) = 1− sgn(η)sgn(ξ − η), ξ, η ∈ R.

Therefore, the Fourier transform of [H,MHp]ϕ is

(6.11)
∫

R
p̂(η)ϕ̂(ξ − η) dη −

∫
R

sgn(η)sgn(ξ − η)p̂(η)ϕ̂(ξ − η) dη,

which is the Fourier transform of (Mp +HMpH)ϕ. �
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