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Abstract
Gradient systems with wiggly energies of the form
i=-V(F@+ea(Z)).,  xeR
€

and A : T¢ — R were proposed by ABEYARATNE, CHU & JAMES [2] to study
the kinetics of martensitic phase transitions. Their model may be recast in the
framework of the theory of averaging as a dynamical system on RY x T¢, with
the slow variable x € R and fast variable # € T¢. However, this problem lies
completely outside the classical theory of averaging, since the vertical flow on T¢
is not ergodic for sets of positive measure, and we must interpret averages to mean
weak limits.

We obtain rigorous averaging results ford = 2. We use SCHWARTZ’s generaliza-
tion of the Poincaré-Bendixson theorem [37] to heuristically derive homogenized
equations for the weak limits. These equations depend on the w-limit sets for the
vertical flow on fibres. When the vertical flow is structurally stable, we use the
persistence of hyperbolic structures to prove that these are the correct equations.
We combine these theorems with a study of two-parameter bifurcations of flows on
T? to characterize the weak limits. Our results may be interpreted as follows. The
space R? breaks into: (-1) a bounded open set surrounding {V F ~1(0)} where there
is only sticking, (-2) a transition region outside this set, where the dynamics is a
combination of sticking and slipping, and (-3) the rest of the plane, which contains
a countable number of resonance zones, with nonempty interior, and their nowhere
dense complement. Inside a resonance zone the direction of the weak limits is
given by the rotation number p € Q. The Cantor set structure of the resonance
zones is described by well-known results of ARNOL’'D [7] and HERMAN [27] in the
theory of circle diffeomorphisms. Consequently, the homogenized equations vary
on all scales. We also study the linear transport equation associated with the wiggly
gradient flow, and show that its homogenization limit is not well posed.
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SMYSHLYAEV has studied this problem independently, and some of our results
are similar [39].

1. Introduction

1.1. Motivation

Let F : R? — R generate the gradient dynamical system
x=—-VFx). (1)

Under natural conditions on F', namely that it is twice differentiable, and F(x) —
00 as |x| — oo, we know that almost all points x € R? are attracted to the wells of
F. This is the invariance principle of LASALLE and BARBASIN & Krasovskif [31,
9].

ABEYARATNE, CHU & JAMES [2] have considered a remarkable modification
of (1) to explain their experiments. They observed hysteresis loops for the volume
fraction (i.e., d = 1) in a martensitic phase transformation, and discovered that
experimental observations were completely at odds with the solutions to (1) with
periodic forcing. To resolve this, they considered a periodic function A : R — R,
and the kinetic law with a wiggly energy

i= —V(F(x) + 8A(§>). @)

The physical insight underlying the modification is that the macroscopic dynamics
may depend essentially on microstructural events like getting stuck in local minima.
The goal is to derive an averaged equation for the macroscopic variable, x, that
includes the effect of the microstructure, A. This was done by a weak convergence
argument in [2], and the authors found excellent qualitative agreement between
the macroscopic kinetic law and experimental measurements over a wide loading
range.

The present article is a mathematical study of wiggly gradient systems ford = 2,
especially the rigorous derivation of averaged or homogenized equations. It is im-
portant to mention that SMYSHLYAEV has studied this problem independently from
a slightly different point of view, and there is some overlap in our conclusions [39].

We were motivated by some problems in mechanics with wiggly energies in
addition to the experiments on martensites. Let us review these, and then com-
ment on the physical meaning of multidimensional problems. ABEYARATNE [1] has
derived the following examples based on Frenkel-Kontorova models: flow rules
for plasticity based on motion of dislocations, and the adsorption of a gas onto a
periodic substrate. WEISs & ELMER’s [44] generalization of the Tomlinson model
for dry friction is based on a wiggly energy (see also [30]). TRUSKINOVSKY &
ZANZOTTO [41] have studied metastability in Ericksen’s bar with a wiggly en-
ergy (though their model is quite different from the phenomenological model of
ABEYARATNE et al. [2]).

A multi-dimensional wiggly energy does not correspond directly to any of these
models. A plausible physical model in higher dimensions would be the evolution of
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a vector-valued order parameter. In two dimensions, we can think of the evolution
of averages of a two-dimensional magnetic fieldm : Q@ — S! on some domain .
Then the mean magnetization x = fQ m/|2| € B(0, 1), and it could be interesting
to study the reorientation of x under forcing. The evolution depends on fine details
such as the domain and wall structure in the sample. But at a crude level, we
may suppose that the detailed microstucture of the sample is modeled by some
generic wiggly perturbation. This system has the feature that both components of
x are comparable and correlated. However, we have not compared our analysis
with any experiments on such systems yet. There have also been several articles
in the condensed-matter physics literature on “landscape paradigms” (for example,
the review [21]) that treat similar phenomenological models with less immediate
physical interpretation. An amusing mental picture is to think of a light particle
sliding down a rough slope. The particle takes a jerky path downhill, possibly
getting stuck along the way.

There is also mathematical motivation to study this problem. The theory of
averaging has a long history in dynamical systems, especially the results of the
Soviet school, from the work of Bogoliubov, Krylov and Mitropolsky for single
phase systems, to the definitive theorems of Anosov, Arnol’d and Neishtadt for
multi-phase systems. We suggest the encylopaedic monongraph [8] as a review on
averaging, and [33] for complete proofs. The averaging results that we derive are
of a completely different nature, largely because of the differences in the source of
the problem. The classical theory of averaging relates to perturbations of integrable
Hamiltonian systems, and hypotheses of ergodicity or non-resonance play a crucial
role. For gradient flows, as in wiggly energies, the hypothesis of ergodicity fails.
Our response is to use weak limits to mean averages. In this sense our work is closer
in spirit to homogenization of partial differential equations (see, e.g., Section 9),
and one of the central questions (and the only one we tackle) is the derivation of
averaged equations. Even this turns out to be surprisingly complicated, and the
averaged equations are continuous, but not Lipshitz. In a different, but related vein,
BORNEMANN has recently shown that weak convergence methods can be used to
provide a unified view of some results in the classical theory of averaging [11].

1.2. The underlying bifurcation problem

We are interested in deriving a differential equation for a weak limit x°(r) with
initial condition x°(0) = xo € R%. For d = 2 the dynamics are remarkably rich in
the generic case. This is because of an underlying bifurcation problem that deter-
mines the weak limits. The macroscopic scale acts as a bifurcation parameter, and
as we move to different points in R? there is an underlying toral flow that changes
topologically. Bifurcations in the microscopic flow are seen macroscopically as the
change in motion between slip, stick, and an intermittent combination of the two.

The connection is via the following blow-up transformation. For ¢ > 0 let

X0
of == mod Z4.
£
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Fig. 1. (a) All orbits are periodic, xg > 1. (b) Birth of a semi-stable rest point in a saddle-

node bifurcation for xo = 1. (c) Semi-stable rest point splits into a stable and unstable rest
point, —1 < xg < 1. (d), (e), (f) The scenario unfolds in reverse.

We identify o® with a point in [0, 1)¢, and call it the phase of x(/¢. The blow-up is

X — Xo

7= +af. 3)

&

Since a is Z¢-periodic we have

o(2) =2 4 w) et

& &

Equation (2) may be rewritten in new coordinates as
ez = f(xo+e(z—a®)) +a(z).
Rescale time by setting T = ¢ /. Then

% = f(xo+ ez —a®)) +a(z), zeRY, )

and in the limit ¢ = 0 we obtain the microscopic vector field

dz
o= [ (0) +a(). ®)
T

This is a vector field on the torus. The term x¢ is a parameter in (5), and the
microscopic flow bifurcates as xq varies.

Let us illustrate this with a one-dimensional example. For simplicity suppose
that F(x) = x2/2, so that f(x) = —x ranges from oo to —oo, and a(z) = sin 27 z.
The qualitative change in the microscopic phase portrait is seen in Fig. 1. According
to the macroscopic kinetic law derived in [2] and Section 4.2, the regions on the
macroscale where all microscopic orbits are periodic ((a) and (f) in Fig. 1), are
identical to the region where % # 0, and the regions where all orbits are trapped
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between rest points ((b)—(e) in Fig. 1), are identical to the region where x° = 0.
Thus we may distinguish between stick or slip on the macroscale by looking at the
orbits on the microscale. The correspondence is quantitative: the effective equation
is X0 = 27/ T (x) where T (x) is the (signed) period of oscillation, and T (x) = 400
when there is a rest point.

The interplay between two scales causes a fascinating bifurcation scenario. In
most bifurcation problems, there is a control parameter A, and variations in A causes
changes in the topological structure of the flow for the vector field x = f(x, A). In
this problem, all possible bifurcation scenarios are contained within one problem,
since the bifurcation parameter is the macroscale.

1.3. Outline of results

Our analysis is based on classifying the microscopic flows, and using this infor-
mation on the macroscale. This approach works for d = 2 because of topological
restrictions. For example, we can combine several powerful results from the theory
of circle maps, with simple geometric arguments (persistence of hyperbolic orbits)
to derive homogenized equations. We outline our results here, and defer the precise
statements of the theorems to later sections.

We show formally in Section 4 that there is a natural differential equation or
inclusion for the weak limits for d = 2, which is valid for almost all points x € R2,
and each A € C"(T?), r > 3. This is based on the generalized Poincaré-Bendixson
theorem on compact two-manifolds of SCHWARTZ [37].

It is far harder to rigorously justify these equations. What we prove is that in
certain (large) regions of phase space the derivation of Section 4 is correct. We call
these the regions of sticking and slipping (see Section 5 and Section 6). The region
of sticking is an open neighborhood of the critical points of F. Here we prove that
%% = 0 (Theorem 2), hence the name “sticking”. The region of slipping is where
{119y, Fll > ||0x;allo for some i = 1,2} and the formal calculation of Section 4 is

restricted to
.0 1 1
tE {m, 0) <p<x>>}eeqrz' ©

The direction of £ is given by the rotation number p, and the magnitude by an
appropriate time period of the microscopic flow. We are able to prove this rigorously
for x¢ a.e. in the case when p € Q (Theorems 3 and 4). We typically expect that the
set where this assumption holds (a resonance zone) is a closed subset with nonempty
interior that extends to co. We have not proved that (6) holds for p € R\Q. This
remains the most important open problem, and a proof of this fact would result in a
highly nontrivial improvement in the regularity of the weak limits following from
a deep linearization theorem of HERMAN [27] on circle maps.

It is not obvious that the inclusion (6) is continuous at p € R\Q. We consider
this question in Section 7. We prove a new result on weak continuity of invariant
measures of circle maps that is of independent interest (Theorem 5), and obtain
continuity as a corollary.
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In Section 8 we give precise meaning to our statements about “typical” behavior,
by studying generic bifurcations in the microscopic flows for C* wiggles. Here we
use the celebrated theorems of ARNOL'D [6] and HERMAN [27,26] on circle maps,
along with some analysis of generic bifurcations to demonstrate the full Cantor set
structure that is present for typical wiggly energies (see Lemma 17 and Theorem 6).

We interpret our theorems as follows. The macroscopic phase space breaks
into three regions: (-1) a bounded open set surrounding {V F —1(0)} where there
is only sticking, (-2) a transition region outside this set, where the dynamics is a
combination of sticking and slipping, and (-3) the rest of the plane, which contains
a countable number of closed domains called resonance zones, with nonempty
interior, and their nowhere dense complement. Inside a resonance zone the limiting
vector field has constant direction given by the rotation number of the microscopic
flow. The direction varies continuously across the boundary of a resonance zone
but not smoothly. A typical initial condition starting far outside {V F~1(0)} would
eventually be attracted to the sticky region surrounding {V F~1(0)}. However, the
path it takes downhill is rough on all scales in the sense that the direction changes
like a Cantor function. For example, in the physical context of a magnetization, the
transformation would be observed to progress as a jump between states in which
the two components are locked in a particular ratio. This idea is illustrated with an
example in the next section.

Finally, we contrast our approach with previous work on homogenization of
transport equations in Section 9. This section is largely independent of the rest
of the article. However, it is an important digression since it identifies the need
for a more careful analysis, and suggests some limitations of the homogenization
method. We conclude in Section 10 with comments about models for dynamical
systems that show rough behavior in time, and examples from physics that we
believe make a mathematical study of such problems unavoidable.

Let us comment briefly on the assumptions we make. It suffices to assume that
F is C2. The assumptions on A are a lot more delicate. The smoothness assumptions
are made in order to invoke either Sard’s theorem, Schwartz’s Poincaré-Bendixson
theorem, or the linearization theorems of Herman. In all three cases, these theorems
are sharp, and the requirement is not technical. In addition we make two global
assumptions on the flow of 7/ = —V A. Of these the Morse-Smale requirement is
natural and generic (Assumption 1), but the second one is not (Assumption 2) and is
undoubtedly technical. The reader uncomfortable with these comments, may safely
assume throughout that A is C* and belongs to an open subset of C°° defined by
the functions with four non-degenerate critical points.

2. Description of an example

Let us now illustrate our results with an example (the details of this computation
can be found in [35]):

F@) =4 (b +aabal) .0 # A1 # 42 0.
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Fig. 2. The critical points and invariant manifolds of the saddle points for (8).

2.1. The wiggly perturbation

The choice of wiggly potential A is governed by the requirements of genericity
and simplicity. A simple scalar function on the a torus embedded in IR? is the height
function; however, it generates a flow with a saddle connection. This is non-generic,
therefore we tilt the torus to obtain the potential (see [35])

A(y,z) = (R+rcosz)sinycos 8 + rsinzsin §. @)
The gradient vector field, —V A, is

y =a(y,z) = —(R +rcosz)cos ycos 3, (8)
7 =b(y,z) =r (cos Bsinysinz — sin B cos 7).

The equilibria of (8) in [0, 277)? are the four points

b4 T 37 ) 37
(Esﬁ)s (5,7‘[‘1‘,3)1 (7, N_ﬂ>, (T,ﬂ_ﬂ>.

These points and the invariant manifolds of the saddle points are shown in Fig. 2.
In our calculation we have fixed R =2,r = 1 and 8 = /3.

2.2. Computation of p

Figure 3 shows the Cantor singular nature of p on the vertical line Q| = 4
(rsin B = 1/2 in this picture). The pictures appear in order of increasing mag-
nification. We can easily observe plateaus at “simple” rational values such as
0,1,1/2,2.... The width of the plateaus decreases rapidly with the order of the
resonance, and they are soon invisible. Figure 4 shows the variation of p in a portion
of the Q2 plane. In this picture the resonance zones for p = 1 and p = 2 can be
clearly distinguished, but the resolution is not good enough to distinguish other
resonance zones.
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Fig. 3. The variation of p on the vertical line Q) =4. R =2,r = 1, and 8 = =/3 in this
computation.
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Fig. 4. Grey scale plot of a numerical computation of p with R =2,r = 1,and 8 = 7/3.
The broad swathe is the region p = 1. The region p = 2 intersects the boundary at 2, ~ 4.
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2.3. Characterization of weak limits

Figure 5 is a schematic picture of the weak limits. This is not a phase portrait
since the time parametrization is typically not unique on one of the trajectories. The
potential A satisfies Assumption 2, and it follows from Theorem 2 that there is an
open region about the origin where the weak limits satisfy x = 0. We do not know
this region precisely, but we do know that it is open. The region p~'{0} is com-
posed of the horizontal strips {|21] > (R + r) cos B, |Q2| < r sin B}. The region
p~ {00} is the vertical strip {|21] < (R +7r)cos B, |Q2| > rsin B}. Outside the
cross formed by these regions we have a countable number of resonance regions,
Sp/4» with nonempty interior. In accordance with Theorem 3 and Lemma 17(iv), the
direction of weak limits in this region is given by p = p/q, i.e., we have rectilinear
motion in each strip. The trajectories can take only a finite number of speeds in this
region given by Theorem 4. The intersection point of the boundaries of p = 0 and
o = Zoo at the points (A1x1, Axx2) = (21, Q22) = (£(R +7r)cos B, £r sin B) are
highly singular. For definiteness, consider the point in the fourth quadrant. On any
horizontal segment to the left of the p = oo boundary, p increases sharply till it
is co. Similarly, on any vertical segment below the p = 0 boundary, p decreases
until it is zero. Therefore, in any open neighborhood of this point, the range of p is

)
TS e
, —’>@
<

Fig. 5. Weak limits forx = —VF(x)— VA(%‘). The shaded region in the center corresponds
to the “sticky” neighborhood of x = 0. Also shown are the resonance bands for p =
{0, 00, 1, £2}. Within these bands the weak limits are straight lines with slope p.
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(0, 00). We expect an infinite number of tongues, one for each p/g € Q[ (0, c0),
which taper in towards the point p~1{0} N p~{o0}.

We have drawn only a few resonance bands, but the reader may fill in a number
of increasingly thinner bands in between these ad infinitum for other rationals. It is
natural to extrapolate the picture to the region p~!{R\Q}. However, we emphasize
that the theorems we prove utilize in an essential way the hyperbolicity of the
microscopic flow, and this assumption is violated when p is irrational. We have
also omitted to describe the dynamics in the region surrounding the region of
sticking, but where |21]| < |lallco Or |22] £ ||b]lco. The w-limit sets are typically
either equilibria or periodic orbits in this region. Therefore, we expect that the weak
limits are either stick, or slip, with the probability of the occurrence being governed
by the sizes of the basins of attractions of equlibria and periodic orbits.

In conclusion, we see that the Cantor sets arising in the bifurcation of circle maps
play an essential role in the homogenization. In addition to the convexification of the
energy observed in one dimension, [2], in two dimensions we see the prevalence of
preferred directions in the vicinity of equilibria. These correspond to the resonances
of low order.

3. Weak convergence and averaging

3.1. Notation

Let us first fix our notation: T¢ is defined as R? /Zd; m denotes Lebesgue
measure on R? and Haar measure on T¢. There is a natural covering map IT :
R? — T, If we let [x] denote the integer part of x, then IT(x) is identified with
the point x — [x] € [0, l)d. For d = 1, we use the notation S! instead of T. For
any integer r > 0, C” (T¢) denotes the space of r-times continuously differentiable
functions, f : T4 — R which may be identified with the class of C” functions
from R? to R that are 1-periodic in each coordinate. When r is not an integer, say
r = [r] + B, then C"(T¢) is the space of C"! functions, with Holder continuous
derivative: |D1(y) — DI"I(x)] < Clx — y|?. We shall use the Sobolev space
Wl’oo([O, T], Rd) which can be identified with the space of Lipschitz functions
from [0, T] — R<. Finally, D" (S') ¢ C”(S") denotes the space of orientation
preserving C” diffeomorphisms of the circle.

3.2. Compactness in W

The problem may be stated as follows. We consider a C” potential A : T¢ — R
and the kinetic law (2). The energies

G*(x) = F(x) + sA(g) )

converge weakly to F in WIL’COO. But G? does not converge strongly in this topology,
since [VG®(x) = VF (%) |loo = VAo > 0.
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If we fix xo € R?, and consider a set of solutions {x¢(7)},0 < ¢ < &, to
equation (2) with lim, o x*(0) = xo, then
sup sup |x°(2)| < o0
& 120
since (2) is a gradient system, and the set {x|F (x) < n} is compact for all n. Since
x%(t) are restricted to a compact set, we also have uniform bounds on the speed,

sup sup |x°(¢)| < oo.
& 120

Thus the set of trajectories {x*} is uniformly bounded in W1 (R ; RRY), and there
exists a subsequence so that x®» A x0in Wl Ry; R9). This means that, for any
0<T < oo,

(-1) x®2(t) = x°(¢) uniformly on [0, T'];

(2) &(1) = £0() in L=([0, T]).

The hypothesis that underlies this work is that all observable trajectories, are weak
limits of solutions to (2). Thus the problem is to classify the weak limits, and to
derive an averaged dynamical system, if it exists. Notice that there may be many
weak limits through an initial point xo. However, in one dimension the weak limit
is unique. The existence of a unique weak limit is essential for the derivation of
macroscopic kinetic laws. In higher dimensions there may be several distinct weak

limits depending on the initial condition. Thus we cannot derive a deterministic
macroscopic equation.

3.3. The method of averaging

We may recast (2) in a form suitable for averaging as follows. Define a phase
variable

X
6 =— mod 1. (10)
€

The phase changes rapidly on the time scale, ¢. If we switch to the fast time scale
T = t/e, we may rewrite (2) as the system

0" = f(x) +a@®), 1D
x'=e(f(x)+a(®)), (12)
where f = —VF,a = —VA, and’ = d/dz. The phase space for this system is
the fibre bundle T¢ x R?: 6 € T is the fibre variable, and x € R? is a point in the
base space. In the limit ¢ = 0, the slow variable x is fixed, and the flow is said to
be vertical.
The following standard multiple-scales argument (see e.g. [33]) suggests the
form that the limiting equations must take. We make the ansatz
X, 1) =x"O) +exVe, )+ (13)
05(1,7) =0°(t) + 0P (t, ) + - - .
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The goal is to compute x°(¢). Let the initial conditions be (8, x). Substituting the
ansatz (13) in (11), and equating powers of ¢ we obtain the following equations for
69 and x9:

0
9 _ FG&O0) +a@”), (14)
dt
and
dx© ax® _ 0 90 15
T =S +a@’ (@), (15)

Let 0°(; 6, x) denote the solution to (14) with initial condition (8, x), i.e., the
vertical flow on the fibre at x. Integrating (15) with respect to t, we find that

——+ fx() + = a@”(s); 6,x7(¢))ds ).
dt T Jo
In order to avoid secular terms in the expansion, the term on the right-hand side

must be zero. This suggests that the limiting equation for x°(z) is

Ve, )= xV@,0)=1 <

dx
dt
That is, the long-time behavior of the vertical flow on the fibres determines the
homogenized equation. In order to obtain rigorous results we need to determine
the limit in (16) (if it exists), and then prove that (16) is the right description of
the average. The first question is considered in Section 4 where we derive averaged
equations for d = 1, 2. A partial validation of these equations is in Sections 5 and 6.
The long-time limit is studied in ergodic theory and the method of Bogoliubov
and Krylov (see [38, Lecture 2]) tells us that there is an invariant probability measure
[y so that with probability 1

f(x) + lim %/Ta(eo(s);e,x)ds. (16)
T—>00 O

lim l/Ta(GO(s;Q,x))ds =/ a(@)dpy(0).
0 Td

T—>00 T

It is clear that there is a unique averaged equation only if the long-time limit in (16)
exists, and is independent of the initial phase 6. The vertical flow is ergodic if
is unique. Ergodicity was precisely linked to averaging by ANosov [5]. Under the
hypothesis that the ¢ = 0 flow is ergodic on almost every fibre, ANOsov showed,
roughly speaking, that x®(¢) is close to x(z), except for a set of initial conditions
of small measure.

Equation (11) is an example of a system for which the limiting flow on fibres
is not ergodic for sets in the base space with positive measure. For example, when
d = 2 the flow is not ergodic on an open and dense subset of the base space
R2. However, the existence of averages, in the sense of weak limits, is little more
than an assertion of compactness, and is independent of assumptions of ergodicity.
The cost of such generality is that the problem appears intractable for d > 2 for
two reasons. Firstly, it is hard to characterize the invariant measures u, in higher
dimensions. Secondly, it is harder to prove that (16) gives the correct averages in
higher dimensions. Before considering these finer questions, we prove some basic
results that rely only on a priori estimates and are independent of d.
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3.4. A priori estimates

A natural question is whether the limiting behavior is gradient-like.
ABEYARATNE, CHU & JAMES [2] found that the macroscopic kinetic law was a
gradient flow: all points flow downhill into a flat valley of equilibria. In this section
we use a priori estimates to show that there is a trapping region.

Suppose that x°(z) is a weak limit. Then for an appropriate subsequence {&,, }°

n=1°

we have x® (1) A x9(z). For any #1, r» € [0, co) the differential equation (2) yields

n dx®n (s)

Fun @) = P = [ VR 2
n §

5]
= —/ |f (x¥n ()% ds
4]

t En
—/zf(xg”(s))-a(x (S)>ds.
n &n

Since weak convergence in w0 implies that x®»(z) — x0(1) uniformly on
compact sets, and F is C2, we have

F(x°(t)) — F(x°(1))

t 15 En
_ _/2 £ (%) ds — lim /Zf(xs"(s))wt(x (S)>ds. (17)
f n—0o0 J &

n

The existence of the limit is part of the conclusion. There is another way we could
calculate the change in energy. From (2) and (9)

G (x*(12)) — G* (x* (1))

5]
—/ IVG® (xf (5))|% ds
1

5]
- / G ()P ds
4|

n . )Cg"(S)
—2/t1 fx (s))~a( - )ds

_/,ltz a(xzrfs))’zds.

Letting n — oo we find that

5]
F(x’(n)) — F(°(r)) = — / |f(0()) % ds (18)

n

t &n
—2 lim /zf(xs”(s)).a(x (S))ds
n—o0 Jp, &

a(xan (s) ) ‘2 ds.

&n

5}

— lim
n—0oo H
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The existence of the second limit follows from the existence of the first. Comparing
(17) and (18) we see that

t , .
FOC) - P = = [ 1r6CenPds + tim [ fa(*12)[ as.
t

n 1 &n

19)

Since |lallc < 00, there is a subsequence, {&,,};°, and an associated Young
measure, vy, such that

xé‘nk (S) 2 %) 5 1%
a ds =/ [M“dv,(A) dt = var(v;) dt.
Eny 1 JR 1]

But since the limit in (19) exists, we see that all Young measures associated with
subsequences of &, have the same second moment (¢ a.e.). Furthermore, the con-
tribution of the wiggles is always nonzero, unless the Young measures are Dirac
masses. But x(¢) is differentiable almost everywhere. Hence

0
W = —IVF&20))? + var(v,), tae. (20)

Hence all weak limits enter wells around V F {0}, and these wells may have width
that is at most ||a||«. The time taken to enter this trapping region is uniform on
bounded sets since (20) provides a lower bound for the speed at which weak limits
cross the contour lines of F. On the other hand, these a priori estimates do not
provide any information about the averaged vector field, or the trajectories. This
requires a more careful analysis, and we only have answers ford = 1 and d = 2.

5}
lim
k— o0 3

4. Averaged equations for d = 1,2

In this section d = 1 or d = 2. We derive averaged equations by calculating
the limits

(a@,x))+ = lim l/ra(eo(s;e,x))a?s. 21
T—>+00 T 0

We expect the limits to depend only on the «- and w-limit sets of 6 and we may
obtain different limits at =0o. We begin with the following examples.

4.1. Examples

4.1.1. Critical points. Suppose w(6) = 0y, a critical point. Then

lim l /ra(eo(s; 0,x))ds = (a0, x))+ = a(by). (22)
0

T—00 T
Similarly, if @ (8) = Oy, then (a(0, x))— = a(By«). Buta(6y) = a(0yx) = —f (x).
It follows that the averaged vector field (16) is

0

dx
e fx) +a(@) =0. (23)
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4.1.2. Periodic orbits. Suppose w(0) is a periodic oribit y* : R — T¢, with period
T > 0. In this case, a calculation similar to the one above shows that

1 T
(a®,x))+ = 7/0 a(y*(s))ds. (24)

Clearly, if a(0) is a different periodic orbit, say y* : R — T¢, then typically,
(@0, x))y # (a(@, x)) .

4.1.3. Ergodic flows. Suppose « () = w(0) = T9. Then the smallest minimal set
is the entire fibre. In this case, the invariant probability measure, 1, , obtained from
the Bogoliubov-Krylov construction is unique, and the flow is ergodic with respect
to this measure. The long-time limits (a (6, x))+ exist for 6 u, a.e., and are equal
by the Birkhoff-Khinchine ergodic theorem [38].

4.2. Averaged equations for d = 1

There are only two possibilities. If there is at least one critical point, then w (6)
is a critical point for each @ € S'. If there are no critical points, then w (9) is S! for
each 6. In the first case, the averaged equation is (23). In the second case, we can
simplify (24) as follows. We invert (14) to obtain

dt 1

do ~ f(x)+a®)’

so that the (signed) time period is

2 4o

T(x) = S
o Jx)+a@)

Thus, the long-time average of @ may be written as

_ LT o _ L[ aw)
(a(@)) = ?‘/(; a(9 (s,@,x))ds— T A mdw

2 f(x) /2” dy 2
== Ay = = _ f(x).
T T b Foran ST W

Therefore, the averaged equation (16) is

dx 2
— =, (25)
dt T(x)

with the understanding that 7' (x) = oo if there is a critical point. Of course, this is
what we expect intuitively. Equations (23) and (25) are the macroscopic equations
in one dimension that were derived in [2] by different methods.
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4.3. Averaged equations for d = 2

In two dimensions the range of possible asymptotic behavior (for sufficiently
smooth vector fields) is limited by Schwartz’s generalization of the Poincaré-
Bendixson theorem. We use the following version (the theorem is more general
and applies to any compact two dimensional manifold).

Theorem 1 (SCHWARTZ [37]). Suppose that ¢g, s € R is a C* flow on T2, and M
is a minimal set for @s. Then M must be one of the following:

(-1) A singleton consisting of a critical point.
(-2) A periodic orbit.
(-3) All of T?.

The smoothness requirement is sharp. DENJOY showed that such an assertion is
false for C! vector fields [16], and HERMAN has shown that for every B8 € (0, 1),
there is a Denjoy counterexample that is C2~# [27].

We use Theorem 1 to characterize typical w-limit sets. The vertical flow on a
fibre satisfies an equation of the form

6=Q+a®), 60eT?, QeR%. (26)

Equation (26) corresponds to the gradient system in R?,

P= Ve ¥ var) -Q-2). (27)
We denote the flow of (26) by ¢, and the flow of (27) by ¢;. The flows of (26) and
(27) are related by T1(¢;(z)) = ¢;(I1(z)). The reason we consider the flow in R2
is that Vg is a Lyapunov function for (27) but not for (26). The following lemma is
needed to classify the limit sets. The proof is standard, and may be found in [35].

Lemma 1. Let A € C"(RY), r > 2d — 1. Then for 2 € R? in a residual set of full
measure:

(a) All critical points of Vg are non-degenerate, and hence there are at most count-
ably many of these.
(b) If z1 and z» are distinct critical points, then Vq(z1) # Va(z2).

The smoothness hypothesisr > 2d — 1 is needed in an application of Sard’s theorem
to prove Lemma 1(b). We need Lemma 1(b) for the following Proposition.

Proposition 1. Let Q2 lie in the residual set of full measure of Lemma 1 and consider
the flow generated by (26). Then for any 6 € T2, the limit set w(0) is one of the
following:

(-1) A critical point.
(-2) A periodic orbit.
(-3) All of T?.

Proof. Suppose that w(9) # T2. We show that we have (-1) or (-2). the limit set
w(0) is closed, invariant and nonempty. Hence, by Zorn’s lemma, it must contain
a minimal set. Applying Theorem 1, we see that either
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Case 1: w(0) D y, aperiodic orbit, or
Case 2: w(0) D {04}, a critical point.

In Case 1, ScHWARTZ showed that w(#) = y [37, Corollary, p. 457]. Thus, the
proposition reduces to proving that w (6) = {6}, and in order to show this we use
the gradient structure.

Suppose that w (0)\{6.} is nonempty. There are again two cases to consider.

Case 2(a): w(0)\{f+} contains a minimal set.
Case 2(b): w(0)\{6«} contains no minimal set.

Case 2(a): By Theorem 1 and Case 1 above, this means that there is a critical
point 6, # 6, in w(0). Thus, there are real sequences s,,f, — 00, such that
@s,(0) — Ox,and ¢y, (6) — Oys. Lifting the flow from T into R? we find an initial
point z € ! {6}, and distint critical points z, and z., such that ¢;, (z) — z and
¢1,(2) = Zx. The function Vg is a Lyapunov function for the flow ¢,. In particular,
it is monotonically decreasing and we find

lim V(@) = lim V(@,() = V().

Similarly, we find lim;_, o V(¢;(2)) = V(z4). Thus, V(z4) = V(z4) Which
contradicts Lemma 1.

Case 2(b): In this case we claim that w(0) contains an orbit homoclinic to 0.
Let ¢ € w(0)\{6«}. Then a (/) C w(#) is nonempty, closed, and invariant. But
the only closed invariant subsets of @ (0) are {6.} and w(0). Thus, 0, € a(¥), and
there is a sequence s, — —oo such that ¢, () — 0. Similarly, 6, € w(y), and
there is a sequence f, — oo such that ¢, () — 6,. But we know that {6} is a
non-degenerate critical point, so it is either a saddle, sink or a source. It cannot be
either a source or a sink because both «(y) and w () are 6,. Thus, 0, is a saddle
point, and @5, (V) € Wit (6x), ¢, () € Wi (6), for large n. Since there are no
other critical points in w (), the orbit through v, denoted y, is homoclinic to 8.

We again draw a contradiction using the Lyapunov function Vg and the flow ¢.
There are two cases to consider. Let z € [T1{6}.

Case (i): 17! {y} C w(z) contains a homoclinic orbit in the plane.
Case (ii): I17!'{y} C w(z) contains a heteroclinic orbit in the plane.

In Case (i) let z1 be a point in the orbit homoclinic to z,.. Then we have the contra-
diction

V()= lim V@) < V@) < lim V@) = V).

In Case (ii), there are two distinct critical points z, and z,, and sequences s, t, —
oo such that @5, (z) — zx and @, (2) — Zs. Since, V(¢;(z)) is a decreasing
function, and V (z4) 7# V (z4) this gives the contradiction of Case 2(a). O

Proposition 1 allows us to compute the limit (a(6, x))+ for every 6. This is
stronger than the u,-a.e. existence guaranteed by the Bogoliubov-Krylov con-
struction. A few immediate consequences of this are:
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1. There are typically as many limits (a (6, x)), as there are distinct «- and w-limit
sets. In the special circumstance where all limit sets are critical points, we obtain
a unique limiting equation.

2. The averaging process has introduced an “arrow of time”. For example, if the
flow decomposes into one attracting periodic orbit, y*, one repelling periodic
orbit, y¥, and their basins of attraction and repulsion, then (a (@, x)) is constant
on the basin of attraction of y* (a set of full measure), and depends only on a/,s.
On the other hand, (a(6, x))_ is constant on the basin of repulsion of y*, and
is generically distinct from (a (8, x)) +.

Remark 1. The additional smoothness hypothesis of the proposition is not needed
when | f(x)| > ||a|lco. In this case we can reduce the problem to a study of circle
maps as long as there is a well-defined flow (e.g., if f is Lipschitz). FURSTENBERG
showed that the ergodic average for every @ € S! exists for any homeomorphsim
of S' [22], and therefore for the flow of (26).

5. Persistence of gradient structure and sticking

In this section we characterize the weak limits in the vicinity of VF ~140} under
some assumptions on the nature of the wiggles.

Theorem 2. Suppose x, € VF 10}, and that A € C?(T?) satisfies Properties 1
and 2. Then there exists r > 0 so that the homogenized equation in B(x,r) is
x0 =0.

Theorem 2 says that all the weak limits are constant near the critical points
of F. Of our assumptions, one is generic (Property 1), and the other is technical
(Property 2).

The proof relies on showing that if the lifts of microscopic orbits into R are
bounded, then all orbits stick on the macroscale. Indeed, if we know that these
bounds persist for some ¢ > 0, i.e., if we have

sup|zf(x) —zf(0)| £ C for 0 <& < g, (28)
T

then since the blow-up transformation and change of time scale are invertible for
& > 0, we must have

sup |x°(t) — x%(0)] £ Ce for 0 <& < g. (29)
t

Thus, if x¢(0) converges to xg, we see that there is a unique weak limit through x,
namely x°(r) = xo. Hence we see sticking on the macroscale. In fact, it is sufficient
to obtain weaker estimates on the drift of trajectories in the microscale (for example
an upper estimate of the form Ce™",0 < v < 1) to obtain the same conclusion.
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5.1. Generic properties

The next step relies on a geometric analysis of a singular perturbation problem
for vector fields in R?. Our arguments require structural stability of the microscopic
flow in the vicinity of x,. This is ensured by the generic hypothesis

Property 1. The flow for the vector field a(6) = —Vy A(09) is Morse-Smale.
Recall that for A in an open and dense set of C%(T?), the flow of
6 =a(®) =—VA®) (30)
has the following properties.

(-1) There are at least four, and at most finitely many critical points. These are all
non-degenerate, and are either sources, denoted {Ak}f:1 , sinks, {Bk}Z:1 , or
saddle points, {Cy}j/".

(-2) Each saddle point, C, has a one-dimensional stable manifold, W*(C) and a
one-dimensional unstable manifold W"(C).

(-3) There are no saddle connections, i.e., the w-limit set of any point on the unstable
manifold, W"(C) is a sink, and the «-limit set of any point on W5(C) is a
source.

(-4) The unstable (or stable) manifold W"(C) (resp., WS(C)) consists of two dis-

joint C! curves imbedded in the torus.

Also,m, n 2 1 since the maximum and minimum of A are generically distinct. The
number of saddle points must equal m + n by the Poincaré-Hopf index theorem [24,
p- 134] (-3) is a consequence of Peixoto’s theorem [23, Section 1.9] and (-4) is seen
as follows. In a neighborhood of C, W!(C) is given as the graph of a C! map over
the unstable subspace of the linearization at C. Hence, we can distinguish between
a “left” and “right” branch of W"(C) in the vicinity of C. Let Dj lie in the left
branch, and D; on the right branch. Then W"(C) = y (D)) U y (Dy), where y (P)
denotes the trajectory through the point P.

The w-limit set of D) is a sink, denoted by B. The closure of W"(C) includes
the endpoints B and C and it is a simple curve in the torus, for it can be written as
the image of a continuous map 7 : [—1, 1] — T2 as follows. Let & : [—1, 1] —
[—o0, oo] be defined by

N
h(s) = ——,
(s) ]

andlet y(—1) =C, y(1) = B, and
Y($) = ons(D1), s € (=1, 1),

where ¢;, t € R denotes the flow generated by (30). The orbit 7 is C! on (-1, 1),
and continuous at the endpoints.

Since the stable and unstable manifolds are simple curves, we shall say that a
saddlepoint C is connected to a source A (or a sink B) if one branch of the stable
(resp., unstable) manifolds of C terminates at A (resp., B).
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5.2. Construction of barriers

At present, we are able to prove (28) only under the following Property on the
flow of (30).

Property 2. There is at least one saddle point, say C € T?, with the property that it
connects to exactly one source A and one sink B. That is, both W*(C) | J{C} | J{A}
and W"(C) | J{C} |J{B} form closed loops (see Fig. 6).

Notice that the simplest generic gradient fields on the torus have four critical points:
one source, one sink and two saddles, and satisfy this hypothesis.

Fig. 6. Property 2.

We need to lift the properties of the gradient field on the torus into R?. For
any point P € T? we use indexed lower-case letters to denote its inverse images
n-4py= {Pnlnez2 € RR? . Notice that every point ¢, € I[17'{C} is connected to
one or two points in [T~ '{A} because C is connected to A. In fact,

Lemma 2. Each saddle point ¢, € TI~Y{C} is connected to two distinct sources in
I1-'{A}, and two distint sinks in TI~'{B}

Proof. Itis sufficient to prove the lemma for sources. Suppose both branches of the
stable manifold of ¢ were connected to the same source a. Then we would obtain a
closed loop in the plane shown in Fig. 7. One branch of the unstable manifold of ¢
must point into the loop, and thus there is a point b € I~ {B} that lies inside the
loop. By Property 2, lifts into R? of both branches of W"(C) connect to b. One of
these (say W' (c)) is shown in Fig. 7. The other branch, W!(c), cannot connect to b
without intersecting the loop aca. Thus, there is another point, say ¢ € I1~'{C}
that connects to b. The saddle point ¢, cannot lie within the loop, for the vector field
is periodic, and thus a translate of the loop aca passing through ¢, would intersect
aca. If c; lies outside the loop then the connection between b and c; intersects the
loop aca. In either case we obtain a contradiction. O
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Fig. 7. Impossibility of closed loops in the plane.

Suppose ¢ connects to two distinct sources a; and az. Then, 0 # a1 — ay =
k e 7Z?. Translating the arc a;cay by nk for all integers 1, we obtain a curve I'® that
separates the plane. Similarly, considering the arc bcb; obtained from the sinks b
and b, connected to ¢, we obtain a second curve, I'*. We call T'" and I" barriers.
The barriers I'" and I'® intersect transversely at ¢, and nowhere else. Considering
integer translates of I'® and I'" we obtain a mesh of invariant cells in the plane
separated by the barriers {I'}, I'/'},cz. The size of each cell depends only on the
vector field a.

5.3. Perturbations of the microscopic flow

Now consider the microscopic flow

6= f(x)+a®), 6eT>. (31)

Lemma 3. Suppose f(xy) = 0. There is anr > 0 such that for |x — x.| <r,

(a) there is a C! family of non-degenerate critical points A(x), B(x) and C(x) in
T? of the same type as A, B and C respectively, and

(b) both branches of W*(C (x)) (and W"(C(x))) terminate at A(x) (resp., B(x)).

(c) The barriers {I";, 'y} continue to a family {T"},(x), 'y (x)}. The variation is
continuous and lim, _, ., dist(I"; (x), I'} ) = 0, uniformly in n.

The proof is almost the same (but simpler) than that of Lemma 5 below and is
omitted (details may be found in [35]). It should be noted that in Lemma 3 (c),
the variation in x may not be C! (for example, see [19]). Lemma 3 allows us to
decompose R? into a periodic mesh of invariant cells separated by barriers. This is
shown in Fig. 8. We denote the diameter of the largest cell by D (xp).
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S

Fig. 8. Barriers I'" (solid line) and I'S (dashed line) in the plane.

5.4. Persistence for e > 0

In order to prove the uniform estimate (28) we prove that the barriers continue
for small ¢ > 0, and the size of the invariant cells is uniformly bounded.

To obtain an effective equation at xg it is sufficient to consider the weak limits
in an arbitrarily small neighborhood of xp. Let x : R — R be the C*° cut-off
function

1, 0<s<1
1—=5
x(s) = { exp 7, ,1l<s<?2 (32)
— s
0, 2<s <o
x(s) = x(—s), —o0 < s < 0.

It can be shown that max(x’(s)) < 2. For any § > 0, define the cut-off function
xs :RZ2 >R

— (2 (%
160.9 = x(3)x(5)- (33)
and consider the modified vector field in R2
7= flxo 46— o)) +a@) € o, ) +ak). (34

The modified vector field agrees with (4) in the region €|z| < §, thatis [x —xg| < §.
It is also uniformly close to the microscopic vector field (5) over the entire plane.
Precisely,
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Lemma 4. The difference between the two vector fields is

(a) sup,egz | f€(x0, 2) — f(x0)| = C(e +9),
(b) SUP,cR2 |sz8(x0» 2)| < Ce.

The constant C depends only the Lipschitz constant of f in an O (8) neighborhood
of xo.

Proof. Let Lip(f) = max,_y,<4s |Df (x)|. From (34)

| f€(x0, 2) = f(x0)| = Lip(f)elz — a[xs(e2)
< Lip(f)(ele”| + mZaX8|Z|X6(SZ))

< V2Lip(f)(e +26).

We used (32) and (33) in the last step. This proves (a). The gradient is estimated
using the chain rule.

|D. f*(x0, 2)|
= |Df (xo + e(z — a®) xs(2)) (exs(e2) + £(z — &) ® D x5(£2)) |
< Lip(f)(e + € max [(z —a®) ® D, xs(2)|) < C(x0, d)e. o

The singular scaling in space prevents us from obtaining a better estimate in
Lemma 4(a). In particular, the modified vector field is not O(e) close in the C?
norm, and it is necessary to use the cut-off functions to control the difference.

We now show that the barriers persist for small & > 0. To simplify notation we
suppress the superscripts u, s and the dependence on xp.

Lemma 5. Let r be chosen as in Lemma 3 and suppose |xo — x| < r.Letn >0
be given. Then there exist §(xg) and ey(xo, 8) such that for ¢ € [0, &g] there is a
family of barriers, {T';}, ez, for the flow of equation (34) and

sup sup dist(I"s, T') < 7.
n &

Proof. Itis sufficient to prove the persistence of an “unstable” barrier I');: the proof
for I') is identical. We prove persistence of the barriers by proving persistence of
the individual unstable manifolds W" (cx) uniformly in k € 72.

Choose 0 < p < 5 so that B(bg, p) is strictly absorbing for all k. This is
possible, since in the limit ¢ = 0 all the sinks, by, have the same linearization.
Then by the implicit function theorem and Lemma 4, for small § > 0 and g9 > O,
each of these critical points persists for ¢ > 0, and the continuation b,‘i € B(bg, p).
Similarly, the saddle points ¢, continue to c,‘i € B(ck, p).

The periodicity of the limit also ensures that § and ¢ may be chosen so that all
the local stable and unstable manifolds of by and ¢y persist. In particular, B(bg, p)
remains a strictly absorbing ball and dist(W"(cx), W"(c;)) = C(8 + &) within
B(ck, p). This follows from the persistence theorems of FENICHEL [19].

A branch of the unstable manifold of ¢ is shown in Fig. 9. Reducing p if
necessary, W"(c) is transverse to the circles S(c, p) and S(b, p). Thus, we can
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Fig. 9. Persistence of a branch of W3(c).

define a Poincaré map PO : (e, g) — S(b, p) that maps an arc (e, g), with midpoint
m = W"(c)( S(c, p), to S(b, p). For small § and &g, this continues to a Poincaré
map P¢. In particular, the map P¢ takes m® = W (c?) () S(c, p) to S(a, p). The
time of flight between (e, g) and S(a, p) is finite, thus the trajectories of m and m®
can be made closer than 5. Furthermore, since all the ¢ are integer translates of c,
and the vector fields (34) and (5) are uniformly close, § and g9 > 0 can be chosen
independent of k, so that the analogous map Py is defined on all integer translates
of the arc (e, g).
Combining the above steps we see that the stable manifolds persist and

dist(cl(W"(c)), cl(W"(cp))) < 1. O

Proof of Theorem 2. Let x*(¢) A x%(r) with x°(0) = x¢ € B(xy, r). For any
8§ > 0, there is a T and &g such that x¢(¢) € B(xp, §) fort € [-T, T], ¢ € [0, g].
Thus, x¢(¢) solves the modified equation (34) within B(xg, §). Let n = 1/4. We
use Lemma 5 to see that for suitable §, g > 0 the barriers persist, and the size of
the largest invariant cell is not greater than D (x¢) + 1. Thus we obtain the uniform
estimate (28). O

6. Persistence of periodic orbits

In this section we derive macroscopic equations when at least one component
of f(xo) — a(0) does not change sign. In this case we can study the problem using
circle diffeomorphisms. Our results of this section may be summarized as follows.
We derive the homogenized equation

) 1 1
0= 7575 (oin): .

where p is the rotation number of the microscopic flow (defined below), and T (x, 6)
depends delicately on whether p is rational or irrational. If p € Q, w () is a periodic
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orbit and T (x, 6) depends on the time period of w (6) (see Theorem 4). If p € R\Q,
T (x, 0) is an ergodic average that is independent of 6.

Under the assumption that xo lies in a resonance band S,,, = p~'{p/q} we
can prove this rigorously, with a minimal smoothness assumption. Let us state the
theorems at the outset.

Theorem 3. Suppose that A € C2(T?), p(xo) is rational, and there is at least one
hyperbolic periodic orbit for the flow of (40) in T?. Then there exists § > 0 and
T (8) > 0 such that

vo(t) -V
u9(t) — ug

forallt € [—T, T1, and any weak limit x°(t) = w°(t), v°(¢)) with x°(0) = xo.
The second theorem needs a slightly stronger hyperbolicity assumption, which is

Theorem 4. Suppose that A € C*(T?), p(xo) is rational, and all periodic orbits
for the flow of (40) in T?are hyperbolic.

(@) If o ((0°, ¥°)) = {}}}, then

0
t —
lim LD 40 _ g (36)
=0, t T}

®) If (0%, %)) = (¥}, then

0

Z‘ —
lim u () —uo — iu (37)
t—0_ t Tk

Conditions (a) and (b) above are statements about the basin of attraction of the
microscopic flow: y;, (y;') are stable (unstable) periodic orbits and T}, T} their
time periods. This theorem is the two-dimensional analogue of (25). We prove later
that the hypotheses of the theorem are satisfied for xo € S)/4 a.e. under the further
assumption that A € C*° (Remark 4).

Note that we have not proved (35) when p is irrational. This question remains
open.

6.1. Preliminaries

We will need to distinguish between the coordinates in this section, and the
notation is unfortunately cumbersome. At a first reading one may suppose for
simplicity that x¢(0) = x°(0), for this simplifies most computations significantly.

The variable x denotes a point in R? and (u, v) its components. The blow-up
transformation about xo = (ug, vg) is written as

— (I/l, U) - (M(), UO)

(¥, 2) + (@, B, (38)
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where («f, B%) = (ug, vg)/e mod 1. The equations of motion are written as

Y = fxo+e((y,2) — (@, B) +a(y, 2), (39)
7 =glo+e((y,2) — (@, B +b(y,2).

In the limit ¢ = 0 we have the microscopic vector field

y' = f(xo) +a(y,2), (40)
7 = g(x0) + b(y, 2).

In the rest of this section we assume for concreteness that f(xg) > ||a|lc. Thus,
y’ > 0, and there are no critical points. Since y is increasing, the trajectories of
(39) are solutions to

dz _ g(x0) +b(y,2)
dy  f(xo)+a(y,z)

We shall denote a solution to (41) with initial condition z(yo) = z0, by Z(y; (30, 20))-
The graph {(y, Z(y; (y0, 20)))}yeR is a trajectory of (40). Since y’ > 0 each trajec-
tory intersects the z-axis transversely at a single point, and it is sufficient to study
trajectories with yp = 0. In this case, we simplify notation and write

(41)

Z(y;0,z20) = Z;, ().

The solution Z is constrained by the periodicity. Suppose n = (ny, n;) € 7? and

(}’1, Zl) = (J’O’ ZO) + (”)77 nZ)'
Then

Z(y; (y1,21)) = Z(y — ny; (Yo, 20)) + nz. 42)

6.2. The rotation number

The properties of the homogenized vector field are strongly dependent on the
rotation number for the microscopic flow. Our results rely heavily on work by
DEeNJOY [16], ARNOL'D [6], BRUNOVSKY [13] and HERMAN [27]. In this section we
use only basic properties of the rotation number, but in the later sections the role
of the stronger theorems will be clear.

There is a huge literature on circle maps because of their mathematical appeal
and ubiquity in applications. HERMAN’s beautiful thesis is an authoritative source
on the subject of circle diffeomorphisms [27]. The first chapter of DE MELO & VAN
STRIEN [15] provides a different perspective and notes on recent developments.
Yoccoz’s article is an extremely concise and elegant survey of the state of the art
(ca. 1989) [45].

Our approach and definitions are specific to the problem at hand. Following
ARNOL’D [6] we define

... . . Z.
Definition 1. The rotation number p = lim,_, o, =% (y).
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The number p is well defined and is independent of zg [7]. We may also consider
the Poincaré map, P, from {y = 0} to {y = 1} and an equivalent definition of the
rotation number is

. P () —z
p= lim ———.

n— 00 n

It is more common to consider pg = p mod 1 as the rotation number when studying
circle maps. We use Definition 1 since it has the natural interpretation of the slope
of the averaged vector field as in (35).

The rotation number p is a rational number if and only if (5) has a periodic
orbit. Suppose p = p/q, with ged(p, g) = 1 (henceforth, we always assume this).
Then there is a periodic orbit Z,, such that

ZZo(y+Q) = ZZ()(Y) +p

In this case we say that the flow is resonant. The following theorem character-
izes the direction of the weak limits in a resonant region, under an assumption of
hyperbolicity. The proof of this theorem relies on a construction of barriers as in
Theorem 2. In this case, the barriers are constructed using the hyperbolic periodic
orbit.

6.3. Modified equations

We choose § > 0 as follows. We have assumed that f(xo) > |lall«. Hence,

f(x) > |lalleo for x € B(xg,§) if § > 0 is small. Suppose x°(z) A x0(¢) and
x%(0) = xo. The speeds |x€(t)| are uniformly bounded. Hence, for any § > O there
is a time T'(8) and g9(8) > 0 such that x*(¢) € B(xg, 8) foreacht € [T, T], and
e € [0, g]. As in Section 5 we use the modified vector field (34). In all that follows
we suppose that |¢| < T'(5) so that all conclusions hold for the unmodified system.
We first introduce simpler notation. Let

FE, 0 = fxo+e((y, ) — (@, B)xs(e(y, ). (43)
The function g°(y, z) is defined similarly. If § is small enough,

sup | 5 (v, 2) — F(x0)] £ % (f (x0) — llalloo) - (44)
DAY

Hence,

A0, 2) = llalloe 2 f(x0) = llalles — 1f5(r,2) — f(x0)l
> 1(f(x0) = llallos) > 0.

It follows that

Lit, — 1] < |[u®(t) —u®(t)] = Mty — 11] (45)
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with

L= 5(f(x0) — llalloo) (46)
M = 33 f(x0) + llalloo)-

Thus, u®, and hence y®, increase monotonically with time, and the trajectories of
(34) also solve

dz _ (3,2 +b(y, 2)
dy  fe(v,2)+a(y,2)’

The solution to (47) through (y¢(0), z#(0)) is denoted by Z¢(y; (y¢(0), z°(0))). In
the limit & = 0 we drop the superscript for Z.

(47)

6.4. Proofs

Let x°(f) = (u®(t), v®(¢)) converge weakly to x°(r). We use the same time
parametrization for microscopic coordinates, i.e., we write

(u® (), v (1)) — (uo, vo)
€

CHORAGIES + (@, B%).

The change of scale is singular. Thus, though x*(0) — xp, the rescaled version
(y°(0), z%(0)) may diverge. The following lemma is used often to quell this minor
annoyance.

Lemma6. Lett € [-T,T],t # 0. Then
(a) limg—0 |.¥8(I)| = 0o,

; ) _
(b) hmsﬁo isﬁ = 0,

; ¥ _
(C) llmg_>() W =0.

Proof. We have |u®(t) — u®(0)| = L|t| by (45). Therefore,

o) = | SO0 | o] 5 WO Zwol
L W)~ O = O ol

&

1\

1

" (LIt] = |u®(0) — uo|) — 1.

But [#°(0) — ug| — 0, and we have (a). To obtain (b), write
z°(0)
ye(r)

Since x¢(0) — xg, we obtain (b). The proof of (c) is similar, and is omitted. O

v¥(0) — vo + eB° < [v¥(0) —vo| + ¢
ué(t) —uog +eaf| =~ L|t| — |ut(0) —ug| — &

The next lemma is the crucial uniform estimate that we need to prove Theorem 3. It
says that we can estimate the solutions of (47) in terms of solutions to the periodic
limit (41).
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Lemma 7. Assume the hypotheses of Theorem 3. Then there exists an ng > 0 such
that for each 1 € (0, ng) we can find o(n) such that

sup  sup | Z°(y; (00, 20)) — Z(y; (Yo, zo))| S 1 +4n
e€l0,e0(n)] yeR

uniformly in the initial conditions (3o, 20).

Proof. Let y denote a hyperbolic periodic orbit in T2. Without loss of generality,
suppose that y is attracting. The images I1~!{y} are a family of curves in R? that
are integer translates of one another. Let I" be a curve in IT~'{y} which passes
through [0, 1)2. We can write I" as the graph of a C! map ¢ : R — R. Then by
(42), o(y + q) = ¢(y) + p. For any 1 > 0 define the strip

S(p,n) = {(y,z) € Rz’lz - = n.}.

Since y is hyperbolic, there is an ng > 0, such that for each n € (0, ng) the strip
of width n about y is strictly absorbing and the vector field (5) is transverse to the
boundary 9S (¢, ) (see Fig. 10). Precisely, let v(y, z) denote the vector field (5)
at (y,z) € R?, and ni(y) denote the outward normal vectors to 3S(¢, 1) at the
points (y, ¢(y) £ n). Then, it follows from the periodicity of (5) that

inf  ni(y)-v(y,e(y) £n+m) = cln) <O,
yeR,meZ
where c(7) is some negative constant.
By Lemma 4, the vector field (47), denoted by v%, is O (g + §) close to (41) in
the C! topology. Thus, there exist § > 0 and &¢(8, ) > 0 such that for ¢ € [0, &o],
we have

c(n)
_— <<

inf ni(y) v (y, () £n+m)= 0.
veR,meZ

Fig. 10. The absorbing strip of width 1 about I".
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This shows that the strips S(¢, n) + m, m € Z remain positively invariant. Thus,
for 0 < ¢ < g9, R? is separated by positively invariant strips of width 27 that are a
unit distance apart in the z-direction. This implies the lemma. O

Proof of Theorem 3. Choose § > 0 so that (44) and Lemma 7 are true, and define
T(8) as in Section 6.3. Since x°(t) — x°(¢) uniformly on [—T', T'],

vé(t) — vp v0(1) — vo

m =9 .
e—0 ué(t) — up u?(t) — ug

But by equation (38) and Lemma 6, the left-hand side is

TOZF 2O
e—0 yE(t) —af  e—0 y&(1)’

We rewrite z°(¢) using (41) and apply Lemma 7 to obtain
() = ZF O (1); (b°(0), 2°(0)) = Z(y* (1); (¥° (1), 2°(0))) + O(1).
By Lemma 6(a), we see that it suffices to evaluate

. Z(y*(n); (y°(0), z°(0)))
1m .
£—0 ye(t)

We exploit the periodicity of Z as follows. Let [(y, z)] € 7Z? denote the integer part
of (y, 2). Let (0%, ¥*) = (¥*(0), z°(0)) — [(»*(0), z°(0))]. Then, by (42)

Z(y; y°(0),2°(0) = Z(y — [Y*(0)]; (6%, ¥*)) + [2°(0)].
Applying Lemma 6 again, we see that

I Z(y*(1); (b°(0),z°(0))) . Z(y*(t) — [y*(0)]; (0%, ¥*))
im = lim .
e—0 e e—>0 ye@) — [y¢(0)]

Furthermore, (6%, ¥¢) € [0, 1)? so that

sup|Z(y, (0%, ¥*)) — Z(y; (0,0))| = 2
y

uniformly in €. Thus, by Lemma 6 the limit is

. Z(y*(1) = [y*(0)]; (0,0)) . Z(y;(0,0))
im = lim ———=p
£—>0 ye@) — [y*(0)] y—>00 y
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6.5. Calculation of the limiting speed
Theorem 3 tells us xY is in the direction (1, p)'. Therefore, in order to compute
its magnitude, |%°], it is sufficient to evaluate #°. We make the further assumption
that all periodic orbits of the microscopic flow are hyperbolic. Then there are an even
number of periodic orbits on T2 which we denote by (Vs o sV VLo Vi)
The superscripts “s” and “u” mean “stable” and “unstable” respectively.

We assume that § and T (§) are chosen as in Section 6.3. For 0 < & < g¢(9),
we may solve (47) for z as a function of y, and invert the blow-up transformation

(38) to obtain

d:f(u,vs(u))—i—a(Z, vg(u))’ (48)
e e
where
v¥(u) = vo — eB° +eZ°(y*(w); (y°(0), z°(0))), (49)
with
U — ug
yi(u) = +a«f, and (50)

(0*(0),2°(0)) = + (@, B°). (51

(®(0), v*(0)) — (uo, vo)
&

Equation (48) can be inverted to obtain

ut (1) du
/uS(O) [, ve W) +a(u/e, v:()/e) :

We take the limit ¢ | O on the left-hand side, and use the uniform convergence of
u (1) to u®(r) to obtain

u® (1) du

lim (52)

200, F @) +ae v@ie

We shall compute the limit on the left-hand side using the microscopic flow. The
following sequence of lemmas progressively simplifies the calculation.

Lemma 8. The following inequatlity holds:

lim sup
e—0

/uo(t) du
w S, vW) +au/e, ve(u))

W) du
—/ < Cre.
uo f(X()) + a(u/e, ve(u))
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Proof. Since f and u® are Lipschitz

|f () = fo)l = [f () = fFEO)]+ | f(x*(0) — f(x0)l
< Lip(f)(M]s] + [x°(0) — xol).

by (45). The denominators in the integrands are bounded away from zero because
f(x) — llalleo > 0in B(xg, 8). Thus it is enough to estimate the difference

() It]
/ |f(u, v* () — f(xo)|du < Mfo | f (u(s), v¥(u(s))) — f(xo)lds

0

[t]
< Lip(f)M / (Ms + [x°(0) — xo]) ds
0
M 2
< MLip(f)(Tt + 11134 0) — x0|>-

The linear term in |¢| vanishes in the limite | 0. O

The phase of the initial conditions plays an important role in evaluating the
limit. As earlier, write

((0), 2°(0)) — [(¥°(0), 2 O)] = (6°, ¥*) € [0, 1],

Thus, there exists a convergent subsequence (6%, ) — 0O, wo) € [0, 1]%. The
limit in (52) exists for all ¢, so it may be computed by evaluating a subsequential
limit. There are three distinct cases to consider:

(-1) (8°, ¥°) lies on an attracting periodic orbit, Ve 1Sk =m;

(-2) (6%, ¥°) lies on a repelling periodic orbit, e 1Sk =m;

(:3) (0°, ) lies in T*/{y8, v k=1,... .m-

We begin with an analysis of the case when (8°, /) lies in the domain of attraction

of an attracting periodic orbit y;. The following lemmas have obvious analogues
for y;' that we do not state explicitly (but see Theorem 4).

Lemma 9. Suppose w((6°, 1//0)) = {y} and u > ug. Let n € [0,n9] be as in
Lemma 7. Then

. u vé(u)
lim sup |a (—,
e—0 € €

) — at* @, ;" @) = Lip(@n.

Proof. Consider the flow in R2. The point 0O, 1//0) € [0, 1]? is absorbed into the
n-strip about I'* € H_l{y,f}. Thus, there is a constant C(GO, wo) such that

dist(Z(y: 0%, y). T (1)) S fory = C.
Since (62, ¥¢) — (8°, ¥°) we can choose gy > 0 so that for & € [0, &g]

dist(Z(y; 05, ¥*), T HyiH <n fory =2C.
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This estimate is equivalent to

dist(Z(y — [y*(O); (3°(0), z°(0))), T {ygh S for y — [y*(0)] Z 2C

by the periodicity of Z (see (42)). We can say that the “time” y — [y®(0)] taken
to enter an absorbing strip is uniform over the initial conditions (y?(0), z°(0)).
By Gronwall’s inequality, solutions to (41) and (47) are O (e + &) close. Thus, for
small §(n) > 0 and gg9(n, §) > 0 the “time” taken for solutions of (47) to enter the
absorbing strip is not greater than 4C. Thus, we have the uniform estimate

dist(Z°(y — [y*O)]; (3°(0), 2°O0)), Ty S for y — [y*(0)] Z 4C.
(33)

By (50), (u, v)/e = (y* (W), Z*(y* (w); (¥°(0),z°(0)))) mod Z. Thus,

a(ﬁ, 2 f‘)) = a(y* (u), Z*(y*(w): (¥*(0). 2° (0))))

&
=a(y* — [y (0], Z° (" () — [y* (0)]; (¥°(0), z°(0)))).

Since u > ug, Lemma 6 asserts that y*(u) — [y*(0)] — oo. The Lemma now
follows from (53). 0O

Lemma 10. Assume the hypotheses of Lemma 9. Then

lim sup
e—0

WO gy u’ (o) du
/uo fo)+ /uo f(x0) + a(y®(u), ¢; (¢ (u)))

< Cnt.

Proof. By Lemma 9,

1 1
fxo) +au/e, v w)/e)  f(xo) +aly® ), g (y*(u)))
Lip(a)n
= (f(x0) = llalles)*
It remains to interchange the integral and the limit, and this is justified as follows.

Let 0 < g° < 1 be a sequence of measurable functions on [0, 1]. Applying Fatou’s
lemma to the functions 1 — g = 0, we see that

lim sup
e—0

(54)

1— /lim supg®dx = /liminf(l —g%)dx
e—0

e—0

< ]imi(l)lf (1-g5dx=1 —limsupfgs dx.
E—>

e—0

Therefore,

lim supfggdx < /lim sup g°dx. (55)

=0 e—0
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Combining (54) and (55) we see that the difference in the integrals is not greater
than

Lip(a)n 0/ < MLip(a)nt
FGo) — lalle? ™ 710l = Gy T al?

We have thus reduced the problem to a computation with the microscopic flow.
Recall that the rotation number is p/q, graph(g;) is a component of ! {y;}, and

o (v +9) =9 (y) + p.
Lemma 11. Let T;} be the time period of y;;. Then
) s
lim du__ _ L
e=0 )y, fxo) +a(y® (), gp(y*(m))) ¢

Proof. The time 7} is the time taken by y to increase from O to g. Therefore,

@’ (t) — uo). (56)

s_ 7 dy
Ty = S . (57)
o fxo) +aly,¢r(y)
Change coordinates using (38). Then
v SO0)+a(yr), g ) o f(xo) +aly, ()

TS
= f(u”(r) —ug) + O(e).
O

Lemmas 8,9 and 10 enable us to compute the speed i°.

Proof of Theorem 4. It is sufficient to prove (a). Let # > 0. By Lemma 8, and
Lemma 10, we have the estimate

lim sup
e—0

u’o) du
/uo f(x0) +a(yt(u), gp (y*(u)))

u’ (1) du
- f £, v5 () + a(u/e, vé (u))
< C(nt +17). (58)

But the limits of both integrals have been computed explicitly in equations (52) and
(36). Thus, (58) can be rewritten as

TS 0 t) —
‘_MU_MO_I‘ <, icr
q t
Letting t — 0, we find
0 0
t) — t) —
lim sup W) —uo _ liminfu()—uO < isn.
t—>04 t t—04 t Tk
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The left-hand side is independent of 1. Hence, u%(¢) is differentiable from above
with limitg/7;. O

The point x¢ has been chosen so that all periodic oribits for the microscopic
vector field (5) are hyperbolic. If § is sufficiently small, {y¢, y'},1 < k < m
and {7}, T} continue for x € B(xo,6) ina C ! manner to the periodic orbits
{y; (x), v¢' (x)} with periods {T}}(x), T (x)}. The function x0(¢) is differentiable
a.e. by Rademacher’s theorem. Thus, for a.e. t € [T (5), T(5)] the upper and

lower derivatives xJ. are equal and the derivative

)'co(t)e<q){ ! ! } (59)
P)ITECO@) T O | 1<pem’

6.6. Irrational rotation number

If p € R\Q, and a is C? the microscopic flow is ergodic. In this case, there
are no underlying hyperbolic periodic orbits, and we cannot use these techniques
to obtain a homogenized vector field. However, it is natural to proceed by analogy
and compute the limiting equation (35). We may rewrite T () as

) 1 [« du
T®)= lim —/ )
u—oou Jo f(xo)+a(u,Zu;0))

(60)

a form that generalizes naturally to irrational p. When the flow is ergodic the limit
above exists for all 6 and is constant.

7. Weak continuity of invariant measures

In this section we show that the “vector field” (35) is continuous at points xg
where p(xp) € R\Q. This follows from the following theorem on weak continuity
of the invariant measures for C2 circle maps with irrational rotation number.

Theorem 5. Let P, : S' — S',t € [0, 11, be a one-parameter family of orienta-
tion-preserving circle homeomorphisms such that

(a) P = Py € C?and p(P) € R\Q,
(b) lim;— [| Pt — Pllco = 0.

Let u; be probability measures invariant under P;. Then the measures [i; converge
weakly to . (written p; — (), where | is the unique probability measure invariant
under P.

Remark 2. The maps P; need not be C 2, and the measures 1, need not be unique.

By continuity of the limiting vector field we mean the following.
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Corollary 1. Suppose p(xo) € R\Q and A, F € C3. Then

)~ )
o T(x,0) \p(x) ) = T(xo) \p(xo)

uniformly in 6 € T2.

Weak convergence of measures is characterised by any of the following equivalent
definitions (see [10, Section 2]):

(1) lim, o [ fdus = [ fdp, forany f € C(S");

(-2) pn(F) 2 limsup,_, o us (F) for all closed F;

(-3) u(G) £ liminf,—q s (G) for all open G;

(-4) w(B) = lim;_q u;(B) for Borel sets B with £(dB) = 0.

The problem may be reduced to the study of irrational rotations as follows. A Borel
measure, v, and a homeomorphism, %, together induce a measure 4, v defined on
any Borel set B by

hv(B) = v(h(B)).

It is easy to check that y; — g is equivalent to hyi; — hyp. Since P is C2,
it follows from Denjoy’s theorem that P is topologically conjugate to the ergodic
translation R, : x > x + p. That is, there is a homeomorphism / of § ' 50 that
hoPoh ! = R,. Thus, to establish Theorem 5 it is sufficient to suppose that
P =R,.

Since (S 1) = 1, the family of measures u; is weakly compact and tight,
so that there exists a subsequence (also denoted ;) that converges weakly to a
probability measure (.. We must prove that w, is @, and because the invariant
measure is unique, it suffices to show that w, is invariant under P. The proof
follows from the following estimate.

Proposition 2. For any ! > 0 let

m = sup lim sup (1), (61)
1 t—0

where the suprememum is taken over all closed intervals I C S Uyith m(1) < 1.
Then

lim n; = 0. (62)
[—0
The proof of Proposition 2 requires some estimates, and we return to it in a moment.
Theorem 5 is obtained from it as follows.

Proof of Theorem 5. Firstly, it is an immediate consequence of Proposition 2
that . is non-atomic. Therefore, property (-4) of weak convergence implies that
1« (G) = lim;_,¢ u;(G) for any open interval G. Hence,

Hs(G) = lim 1, (G) = lim u; (P (G))
t—0 t—0

< limsup [, (P(G)) + e (PH(G)\P(G))].

t—0
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Since w«(P(G)) = lim;_o u;(P(G)), we see that

1+(G) = px(P(G)) + lim sup s (P (G)\ P (G)).

t—0

Now, it follows from Proposition 2 that the second term is zero, so that we have
1x(G) < usx(P(G)). Repeating the argument with P; replaced by P,_l, we find
that 144(G) £ wx(P71(G)) or (P(G)) £ 114(G). Thus, p(P(G)) = p«(G)
for all open intervals G, and hence for all open sets G. Taking complements of open
sets, we find . (P(K)) = w4 (K) for all closed sets K.

Let n > 0. Any Borel set B may be approximated by open and closed sets so
that K C B C G, and

wx(G) =1 = ps(B) = s (K) + 1.

Clearly, s« (P(K)) £ us«(P(B)) £ u4(P(G)). Combining these estimates, we
have

=1 = pux(B) — ux(P(B)) = 1.

This shows that 1, is an invariant measure for P. O

7.1. Proof of Proposition 2

In the following lemmas we fix a rational number ¢/d and a closed interval
I = [a, a + c/d]. The strategy of the proof is to estimate lim sup,_, o u; (/) using
the invariance of u; and the known limit Py = R,,. Since we are interested in the
limit m(I) — 0, we shall suppose that c¢/d < p.

Definition 2. For (x, ) € I x [0, 1] we define the first return time under the map
P, 1 by

N;(x) = inf {P}(x) € I}.
k=1

Lemma 12. The return time N;(x) is jointly lower semicontinuous in x and t.

Proof. Evidently, N;(x) # —oo. If N;(x) is finite, then by definition P,k x) €
SNI for 1 £ k £ N;(x) — 1, and therefore for y near x, and s near f, we
have PSk(y) e S\I for 1 £ k < N;(x) — 1. Thus, N;(x) < N,(y), and hence
Ni(x) = liminf,,,; Ng(y). Finally, suppose N,(x) = oo, but
liminfy x5, Ns(y) = N < oo.Then there exists a sequence y,, — x and s, — ¢
such that Ny, (y,) = N. By the definition of N; this means that Pf;’ (yn) € 1. But
then, lim,,_, oo PS]Z () = PIN (x) € I,sothat N;(x) £ N < oo. This contradiction
shows that liminfy ., s, Ns(y) =00. O

Corollary 2. There exists x; € I so that M, def infyc; Ne(x) = Ne(xy).

The following lemma is a consequence of the monotonicity of circle maps.



230 GOVIND MENON

Lemma 13. For t = 0, the minimum My is attained on a closed interval J C I
with nonempty interior. Furthermore, My is independent of a, and it depends only
on the length of I.

Proof. Observe that My must be finite, since P = R, is an ergodic transla-
tion. Therefore, PMo(]) is a closed interval with PMo(J) (I # ¢. Furthermore,
P¥(a) # a or a + c/d for any k. Thus, PMo(I) (1 is a closed interval with
nonempty interior. Then J is the interval 7 () P~Mo(I). The second assertion is
clear: R, is spatially uniform. 0O

Lemma 14. There exists ty € [0, 1] such that M; = My for 0 <t < 1.

Proof. By the definition of My, we have P(;‘ (DI =¢for0 <k < My— 1.
Therefore, for small #y we must have Ptk(I) NI =¢,t€[0,60],0Sk< My—1.
It follows that forany y € I, wehave N;(y) = Mo, andhence M, = inf,c; N;(y) =
My.

LetJ = [x1, x2]beasinLemma 13.Let J' = [y}, y2] withx| < y; < y2 < x3.
Then for small  we have P,MO(J "y C I, therefore N;(y) < My fory € J'. It follows
that M, = inf, N;(y) = Mp. O

Lemma 15. The following inequality holds:

li () = !
im sup S —.
t—0 MO
Proof. Lett € (0, f9] so that M; = M. Since u; is an invariant measure, there is
x; such that

. 1 n—1 L
wil) = lim kzo x1(PF(x0)),

where x; is the characteristic function for the interval 7. Let {b1b, ... b, ... } denote
the binary string {); (P} (x,))}. If b; = 1 then b;; = O for | < j < M,, by the
definitions of the first return time, and M,. Therefore, if we evaluate the limit along
a subsequence of the form n = pM; we have

P! 11

= lim — Prx) £ — = —

pell) = lim —r I; X (P () = 4 = 4
for0 <t <1. O

Lemma 16. Let I, be a sequence of closed intervals with lengthm((I,) = ¢, /d, —
0. Then My(I,) — oo.

Proof. Suppose there are intervals /, such that sup, Mo(I,) < oo. Passing to a
subsequence we may suppose that My(l,) = M < oo for all n. Furthermore,
since Mo(I) depends only on the length of / we may translate all the intervals
I, so that they are nested, i.e., I,4+1 C I, for all n. By Lemma 13 we know that
J, = PM(1,) () I, is a nonempty compact interval and J, 41 C J, for all n, so that
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ﬂ;’lozl Jn # ¢. Since, the intervals I, are shrinking, this intersection is a singleton,
say {p} and {p} = (2, I = sz PY (L) = {PM(p)}, so that we have a
periodic orbit. This contradicts p € R\Q. O

We have proved Proposition 2 when m(I) = ¢/d € Q. Let m(I) be irrational.
Then we choose a sequence of intervals [ag, ar + ci/dr] D I, with ﬂ,fil lak, ap +
¢k, dx] = I, and apply Lemma 15. This completes the proof of Proposition 2.

Remark 3. We have not considered the question of higher regularity of the con-
vergence. For example, suppose P; is a Lipschitz path in CO(S!) at 0, that is
|Po — Pilloo £ Clt|. An equivalent definition of the rotation number is (see [45])

p(Po) = /Sl (Po(0) —0)do = (Po — Id, po).

BRUNOVSKY has shown that |p(P;) — p(Po)| < ||P; — Pylleo When Py is an ir-
rational rotation [13]. Therefore, |{Py, no) — (Po, )| S 2|Py — Pilloe S Cltl,
so certain functionals of the invariant measure certainly have higher regularity.
It is also amusing to use Theorem 5 and this definition to show that the rotation
number is continuous at xg. Since P; — Py in CO(SI) and u; — wo, by the well-
known combination of weak and strong convergence (P, ;) — (Po, to). Thus,
p(Pt) = p(Po).

7.2. Proof of Corollary 1

Proof. We extend Theorem 5 to flows as follows. Fix xo € R? and consider the C2
vector field, (y', z’) = (f, g)(x0) + (a, b), on the torus with y’ > 0 as in Section 6.
For any « € [0, 1) we have a Poincaré map P, : {y = o} — {y = o + 1}. Notice
that P, are diffeomorphic and have the same rotation number p € R\Q.

Let g : T2 — R be a continuous function. For any 6 € [0, 1)2 the limit
limy, s o0 % fou g(s, Z(s; 0))ds exists. For brevity of notation we drop the depen-
dence on 6. Then, the limit can be rewritten using the periodicity of g as

1n—1

1 1 1
Jim 3 sta. Py 2@y do = | [ sepanmaa o

where , is the unique invariant probability measure for P,. Thus the invariant
measure on the torus factors into Lebesgue measure X 4.

Let x,, — xg. It is clear that the corresponding Poincaré maps Py (x,) — Py.
Therefore, by Theorem 5, any corresponding invariant measures [ly, — M- A
continuous function on the torus can be written as the limit of a sum of products
of the form g(w, B) = g1(x)g2(B). For any product of this type we have, by the
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dominated convergence theorem,

1 1 1 1
/O/Ogl(a)gz(ﬂ)du(ﬂ)da=fo gl(a)/o g2(B)du(p) da

1 1
~ [ s (Jim, [ o208 duen )

1
= tim fo 21(0)22(B) djton(B) de.

Therefore, the invariant measures for the flow converge weakly. In particular, choos-
ing g(a, B) = 1/(f(x0) +a(a, B)) we see that the time periods T (x,, ) converge
to T (xp), and since p(x,) — p(x0), the homogenized vector field (35) is continu-
ous at irrationals. O

8. The bifurcation problem

For generic A € C"(T?), r > 3, what can we say about the bifurcations of the
vector field

0 =Q—-VAWB) =Q+a(®) (64)

as € R? varies? This may be considered the simplest problem, since F(x) =
|x|?/2 is, in some sense, the simplest macroscopic energy. The condition r > 3 is
imposed to discount DENJOY’s counterexample [16]. It is clear from the previous
sections that the qualitative nature of the microscopic flow strongly influences
the macroscopic dynamics. Thus, knowledge of the bifurcation diagram is but a
preliminary step in the determination of the weak limits and the study of a two-
parameter bifurcation problem arises naturally. Our results here are incomplete
since the problem of generic bifurcations in two-parameter circle maps is not fully
understood. In fact, even the basic problem of generic properties of one-parameter
circle maps is not completely understood. BRUNOVsKY studied this problem in
1974 [13], but there was a subtle gap in his proof pointed out twenty years later
by DE MELO & PUGH [14]. Nevertheless, by combining known results and some
heuristic arguments, we can obtain a good idea of the complexity of the averaged
equations.

8.1. Bifurcation of circle maps

In the notation of Section 6 we restrict attention to the case where y' = Q; +
a(y, z) > 0. We only study p(£2) in the open region U = {Q2 € R2|IQ2; > |lalloo)-
This analysis extends immediately to the other case. It is more convenient to work
with the Poincaré maps P : R x U — R, where P = P(-, Q) is the Poincaré map
from {y = 0} to {y = 1} of the flow for (64).

Let us recall some well-known definitions and results [6,13,27]. A continuous
one-parameter family of circle maps, P, t € [0, 1] is said to be increasing if for
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each x € R, P, (x) > P,(x) when #; > t. Decreasing paths are defined in a
similar manner. Notice that for fixed €21, the family P (-, 2) is an increasing family
in Qz.

Lemma 17. Fix Q; and consider the increasing family P(q, .y. Then,

(1) p is a continuous and increasing function of Q2 with range R;

(i) p~ Y} is a singleton for all @ € R\Q.

(iii) Let Jp/q(21) = {Q02|p(2) = p/q}. Then Jy;4(21) has nonempty interior if
and only ingq2 # Ry, where R, : x — x + p.

(iv) If Q2 € Int(Jp4(21)), then there is at least one hyperbolic cycle of periodic
points.

Proofs can be found in [6,13,27]. All of the properties are direct consequences of
the monotonicity of circle maps. These results hold for any vector field a. We are
specifically interested in @ = —V A, and results that hold for generic A : T? — R.
Since, it is easier to study one-parameter families, we begin with the following
proposition.

Proposition 3. Fix Qi > |lalleo. Then for A in a residual subset of C"(T?),
r 2 3, all the intervals J,,4(21), p/q € Q have nonempty interior.

Proof. Let p/q € Q. We show that 0,/; = {A € C’(T2)|Int(Jp/q(S21)) %+ ¢} is
open and dense. The set O, is clearly open. Let A be chosen so that J,/,(£21) is
a singleton. Let Py denote the corresponding Poincaré map. Then Poq x)=x+p
for all x by Lemma 17 above. Thus every point lies on a periodic orbit. To prove
the Proposition it suffices to construct A, € C” (T?) that is O(e) close to A, has
rotation p/q, and whose Poincaré map does not satisfy P¢ (x) = x + p for all x.
We shall accomplish this by a perturbation that destroys at least one periodic orbit,
but not all.

Let y be a periodic orbit for A. In general, yq is only a C"~! curve. However,
we may choose a C™ curve y that is arbitrarily close to g in the C"~! topology.
Further, we may choose a C* coordinate system, (¢, n), in a small neighborhood
of y where (¢, n) denote the tangential and normal components respectively. Let
X : T2 — R be a C® cut-off function that is 1 in the strip of width § about y, and
0 outside the strip of width 28. Let ¥ : T> — R be defined in a 28 neighborhood
of y by ¥(¢,n) = n, and extended continuously to the rest of the torus. Then
A; = A + ey is C” for sufficiently small § > 0, and ||A; — Allcr S ellvxlcr.
Furthermore, VA, - n(0) = ¢ for all 8 € y. It follows that VA, - ng(6) > ¢/2 for
all 6 € yp (here ng denotes the normal to yyp), if y is chosen sufficiently close to
0. In particular this means that PI(x) > x+ p, where x denotes the starting point
7o ({y = 0}, and we have destroyed the periodic orbit 3. On the other hand, for
small § the perturbation is localized, and all periodic orbits of A outside the support
of Y persist. Thus, the rotation number is unchanged by this perturbation. Finally,
by Lemma 17 (iii), the intervals J7 have nonempty interior, and A € Opjg. O

Corollary 3. The conclusions of Proposition 3 remain valid for Q21 in a countable,
dense subset of (|a]so, 00).
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Thus, p is typically a singular function on vertical slices. However, we can control
the regularity of p with an extra degree of smoothness. Suppose that A € C*(T?),
ie. Po € C3. Then

(a) p(L21, -) is absolutely continuous;

(b) ,0_1 (R\Q) has positive measure.

(c) For €2; in a set of full measure we have one of the following. Either p € Q,
or p € R\Q and satisfies the diophantine condition: for every 8 > O there is a
Cg such that

Consequently, by the theorems of Herman and Yoccoz, the map Pq is C>~#
conjugate to a rotation.

Properties (a) and (b) are results of HERMAN [26]; (c) is due to Tsui [42]. Applying
(c) to every vertical slice, and using Fubini’s theorem, we see that for almost all
Q € U the microscopic flow has a periodic orbit, or is smoothly linearizable. Let
us now obtain finer information on the structure of resonance zone boundaries.

8.2. Transversality conditions

In this section we only work with C* functions. Fix 0 < p/q € Q. We define
Sp/q-the resonance zone of order p/q, to be the set o~ Yp/q} C U.The zone Sp/q
is closed, and Q2 € S/, if and only if there exists x € R such that P9(x) = x + p;
e Sp/4 is the natural projection onto U of the set

Vg ={(x, Q) e R x UIPY(x) — (x + p) = 0},

and we write S/, = m2 o V},/,. The boundaries of the resonance zones are degen-
erate critical points, so consider the following subset of V,, ,:

Wy = {(x, Q) € V,/q|DPE(z) — 1 =0}.

Theorem 6. (a) For every A € C 00 (T2), Vp/q is a two-dimensional C* submani-
fold of R' x U.

(b) For A in a residual subset of C*®°(T?), Wp 4 is a one-dimensional submanifold
of R x U.

Remark 4. Of particular interest are the boundaries of the resonance zones. The
projection of the manifold W), , into U are smooth curves that may meet at isolated
cusps. Away from the cusps we have saddle-node bifurcations. Moreover, this also
shows that for x € S/, a.e. the hypotheses of Theorem 3 and Theorem 4 are
satisfied for A € C*°.
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Proof. The proof uses basic transversality theory. Part (a) is a simple consequence
of the regular value theorem [28, Theorem 3.2, p. 22], whereas Part (b) follows
from an infinite dimensional version of the parametrized transversality theorem [28,
Theorem 2.7, p. 79]. In both cases, we write V,,;; and W)/, as zero-level sets of
suitable C°° maps, and it suffices to show that zero is a regular value.

The maps are as follows. Let g : R x U :— R! by g(x, Q) = P9(x, 2, A) —
(x + p). Then V4 = g~ 1{0}. To prove (b) we consider the map G : R x U x
C>®(T?) — R%givenby G(x, Q, A) = (P(x, Q, A)—(x+p), Di P (x,Q, A)—
1). We show that G is transverse to (0, 0). In this case, the parametrized transver-
sality theorem allows us to conclude that for a residual set of A € C OO('11‘2), the
restricted map G4 : R x U — R? is transverse to zero. This will prove (b).

Let Z(y; x, R, A), (or Z,(y) for brevity) denote the solution to

dz Q0 +b(y,2)

= T 0) = x. 65
D tat.2) 2(0) = x (65)

Then P9(x, 2, A) = Z,(q). We use the following notation. DG is the derivative
with respect to x, D>G and D3G are the derivatives with respect to €27 and €2,
respectively, and D4G is the derivative with respect to A.

We calculate the derivatives using the equation of variations. First, the derivative
with respect to x is given by

deZx -3 <Qz+b()’,Z)>
dy ‘\Q+a@y,2)

def
DyZy = h(y) Dy Zy. (66)

7=Zx(y)

Let H(y) = [j h(s)ds. Then D, Z,(y) = e#) D, Z,(0) = ). In particular,
Dig =ell@ 1,

We next calculate the derivative D,g. Differentiating (65) with respect to
Q;,1 = 1, 2 we obtain the equation of variations,

dDgq, Z,

= h(y)De, Zyx + hi(y), =12, (67)
dy
where
(2 + b(y. Z:()) 1
h = — , h = . 68
O =G e zon? PO g xa oy
Solving (67) we find that

q q
DsG = f HDOHOp ()dy,  DsG = / HDO-HO py(dy.  (69)
0 0

In particular, we have Dyg < 0 and D3g > 0. This proves (a).
Notice that we did not need the freedom in A for (a). To prove (b) we will need
to vary A. We show that the derivative DG, written explicitly as

DG — DG D,G DsG D,G
~ \D?G D,D\G D3D\G D4sDiG )’
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has (0, 0) as a regular value. Notice that for (x, 2, A) € G~'{(0,0)} we have
D1G =0, DG, D3G # 0. Thus in order to prove the result it suffices to show that
there is a direction n € C°(T?) such that (D4G, ) = 0 and (D1 D4G, n) # 0. The
derivative D4G (x, 2, A) is abounded linear operator whose actiononn € C* (TZ)
is denoted by the duality pairing (-, -). It satisfies the equation of variations

d{(DaZy,n)
d—y" = {(DaZy,n) + h1dyn + h2d,n, (70)
with the solution
y /
(DaZy(y),n) = / MR (nydyn + hydom) dy'. (1)
0

We will choose a function 7 so that Vi) = 0 on (y, Z,(y)). In this case, the solution
to (71) is (DaZx(y), n) = 0 which implies (D4G, n) = 0. A similar calculation
for the second derivative (D, D4 Z,, n) gives the equation of variations

d<DxDAva 77)

dy =h{(DxDaAZy,n) + (DaZyx,n)DxhDyZy

+ (thlayn + Dy h23;n) + (thxayn + haDyd;1).

If we choose 7 as earlier, this simplifies to

d(DxDaZy,n)

dy = h(DxDaZy,n) + (h1 Dxdyn + h2Dx9:1n), (72)

with the solution

y A
(DyDaZyx, n)(y) = / eAVHO) (b D dyn + haDydom)dy’.  (73)
0

It remains to construct 7. The preimage of Z, in T is a periodic orbit, say .
Choose a C* coordinate system (¢, n), and a cut-off function v in the vicinity of
y as in Proposition 3, and define

n= %wn.z.

Then Vi = 0 on y, and the only nonzero second derivative of 1 is 8,37] =lony.
The bracketed term in (73) is as follows. First

D dyn(y, Zy(y; x, Q, A) = 0;.0(y, Ze (D) D2 Zx (v, Zo () = V32 n.

Similarly, D, d.n = " )92n. The derivatives d;, 7 and 827 are obtained by chang-
ing basis from (¢, n) to (y, z) and using 837] = 1. Using the explicit expressions for
h1 and hj and the fact that 7 is parallel to the vector field on y we find, after some
calculation, that

y
(DyDAZy. n)(y) = €M) fo (@1 +aly, Ze (D).

In particular D1 D4G = (DxDaZy,n)(q) > 0. O
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8.3. Behavior at o0

In the limit when €2; > 1, the bifurcation problem can be understood more
completely, as it reduces to the bifurcation of two parameter circle maps of the kind
studied by ARNOL’D [6].

We take the limit 2; — oo along the line €2,/2; = «. Equation (65) can be
rewritten as

o 2009
dz Q 1 b—aa
T T dh D Yt o T a
dy a(y,z) Q4 =
4+ —— o)
Q1 1

Letn = QLI The Poincaré map associated with this differential equation is

Poy(x) = Ry (x) + ¥ (x, ) =x +a+ny(x,n), (74)

where  is 1-periodic in x. In the limit n = 0, Py, is the rigid rotation R,. Arnol’d
studied (74) for analytic . For typical » we have the following properties. For
small n > 0, the set {«|p(a, n) € Q} consists of a countable number of nontrivial
closed intervals. However, for o in a nowhere dense set of almost full measure,
the rotation number is irrational. Theorem 2 of [6] states that for irrational «
satisfying the diophantine condition | — p/q| = K lg|~3, there exists an analytic
curve a(n) so that p(Py(y),,) = o for small 5. These curves separate the resonant
regions. The width of the resonant zones shrinks rapidly to zero as n — 0, and
they have picturesque names such as horns [25], tongues [6] or wedges [23]. The
assumptions of analyticity are not necessary, and for y € C', the boundaries of the
resonance zones are Lipschitz [27]. HALL showed that the irrational curves « ()
and the resonance zone boundaries are differentiable at n = 0 [25].

The above limit is important for the following reason. Consider the homoge-
nization of

X:—x—i—ra(f), xeRz, VA =q:T? > R% (75)
€

We may assume that ||a||.o = 1. The parameter r is a measure of the amplitude of
the wiggles, and we term it the roughness. We are interested in the limit » — 0. All
the homogenization problems for » > 0 are equivalent to the case r = 1. Indeed
let x = ry, so that

=)
re

and for fixed r, the homogenized limit ¢ — 0 is the same as (75) with r = 1.
Therefore, for small » > 0, most of the macroscopic phase space R? is filled with
Arnol’d tongues and their complements.



238 GOVIND MENON

8.4. Variation of p on Lipschitz paths

Let h : [0,1] — D"(S'),r = 3 be a C' path in the space of orientation-
preserving circle diffeomorphishms. Associated with 4 we can define the map
o :t — p(h(t)). Herman showed that if p(0) # p(1), and p is of bounded
variation, then p is absolutely continuous. The proof requires the full strength of
Herman’s linearization theorems.

A careful examination of Herman’s proof shows that it is sufficient for the paths
to be uniformly Lipschitz (see [26, Section 4, Section 6]), as the c! hypothesis is
only used to derive a uniform Lipschitz estimate. The theorem may then be applied
to any weak limit x0(¢), for these define Lipschitz paths in D" (S') in a natural
way. Therefore, if p(x%(1)) is of bounded variation, it follows that it changes in an
absolutely continuous manner on a weak limit x°(¢). But p(¢) is itself the direction
of the tangent x°(z), and this gives us a highly nontrivial improvement of the
regularity of x%(¢). This “proof” is incomplete, since we have not proved that (35)
holds when p(r) € R\Q or that p(x°(¢)) is BV.

8.5. Bifurcations of equilibria

There are some simplifications in the bifurcation analysis for equilibria. Let y,
be an equilibrium. The linearization of (64) at y, is

v = Da(y.)v. (76)

A necessary condition for a local bifurcation of y, is that Da(y,) be non-degenerate.
But Da(y,) = —D2A(y*), the Hessian matrix of A at y,. The Hessian matrix is
symmetric and its eigenvalues A;,i = 1,2 must bereal. Let y; = {y € T2 |xi (y) =
0}. For generic a we can choose y; to be continuous curves that are smooth except
when they intersect each other. For a local bifurcation of equilibria to occur, they
must lie on the curves y;. Let us call the y;, curves of degeneracy. If arest point y, lies
on a curve of degeneracy, then a bifurcation must occur as we vary 2. This property
allows us to determine curves in the Q2-plane that correspond to bifurcations. Let

I = {Q e R*Q = —a(y) forsome y € y;}.

Thus I'; is the negative of the range of a on the curve of degeneracy. Typically,
we expect that I'; are themselves continuous closed curves. The curves I'; cannot
intersect B(0, r), for if Q2 € B(0, r) then all rest points are non-degenerate. We
can use a homotopy argument to prove that I'; must surround the origin. Suppose
this were not true. Then we could draw a line from the origin to infinity, say
12,0 <t < oo, that does not intersect any of the I';. Let ng be the number of
zeros of a(y). Then the set Z = {¢t € [0, co)|a(y) + t2 has ng zeros} is closed.
But Z is also open. This is because 72 never hits I';, ensuring that all zeros of
a + 12 have non-degenerate linearization. Thus they can be uniquely continued
for a neigbhorhood (t — n,¢ + 1) and are the only zeros in this neighborhood.
Thus, Z = [0, co) which contradicts our earlier conclusion that all zeros vanish as
|| — oo.
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9. Transport equations

The wiggly energy problem admits a formulation in terms of a linear PDE
(partial differential equation) with oscillating coefficients. We might reasonably
expect that homogenization methods should play some role in this problem. In this
section we show that these methods do not provide sufficiently fine information.

9.1. Homogenized transport equation

Consider the linear transport equation

ui + (f(x) + a(?)) -Veu® =0. 77)

The characteristics of (77) are the solutions to (2), thus the study of the two equations
is equivalent.

Homogenization for linear transport equations with incompressible vector fields
has been studied rigorously by several authors [4,12,17,29] (similar results were an-
ticipated in [34]). E’s results are the strongest [17], and in this section we shall repeat
his argument, with the obvious modifications, to derive a homogenized equation.
His argument is an application of TARTAR’s oscillatory test function method [40]
coupled with a compactness theorem of NGUETSENG [36]. NGUETSENG’s theorem
formalizes the heuristic notion that u® depends on two scales, x and 7. A later paper
by ALLAIRE contains an excellent exposition of this theorem with simplified proofs
and generalizations [3]. We need the following version.

Theorem 7 (Nguetseng [36], Allaire [3]). Let sup, ||u€||Loo(R+de) < C < oo

Then there exists a subsequence (also denoted €) and a function U : Ry x R? x
T¢ — R with

1Ul oo, xR <) = C,

such that

lim/ f ué‘(z,x)w(t,x,f)dxdz:/ /f Ut, x, )V (1, x, 0)d0 dx dt
el0 R, JRE & R, JRAJTd

forall y € C°P(Ry x R? x T9). In this case u® is said to two-scale converge to
its two-scale limit, U .

Note that u® —~ de U(t, x,0)dd in L® (R, x RY). Thus the two-scale limit has
at least as much information as the weak limit.

Unlike previous studies, in our problem the oscillatory vector field a () is not
divergence free. In fact, sincea = —VA, if V.-a = 0, then AA = 0. But by
Liouville’s theorem all harmonic, periodic functions are constant and « is trivial
if it is divergence free. This is a serious problem, and we show that the evolution
equations for U are ill posed.
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Fix a set of initial conditions uf)(x) that is uniformly bounded in Loo(Rd).
The solutions to (77) are given by u®(r, x) = uo(X%,(x)), where X? is the flow
generated by (2). Thus,

sup ||M8(t, x)||Lac(R+XRd) < Q.
&€

The boundedness criterion of Theorem 7 is satisfied, hence there exists a subse-
quence &, | 0 and an associated two-scale limit U (¢, x, 6).
Let ¢° € Cgo R4 x R9). A weak solution of (77) solves

+ d

Lety € C° (R4 x R4 xT%) and putg® = ey (¢, x, x/¢),1.e.,¢° isalow-amplitude,
rapidly oscillating function. Substituting in (78), we find

€ /]R+ [Rd ub(t, x)|:1ﬁz + V- (f(X) +a(§>> + YV, - f(x)] dx dt (79)

te fRd ug(x)w<o, X, §> dx

-i—/R+ /Rd uf(t,x)|:<f(X)+a<§)).V91//+V9 .a(x/g)wildxdt —0

The terms on the first two lines are O (g). Letting ¢ | 0 and using Theorem 7 we
have

/ f / U(t,x,0)Vy - [Y(t,x,0)(f(x)+a(0))]d0dxdt =0. (80)
R, JRJT4

And since ¢ € CS"(RJr x RY x T9) was arbitrary, this means that U (¢, x, 0) is a
weak solution to

(f(x)+a@®)-VoU =0, 6 €T (81)

Equation (81) identifies the behavior of U on the microscale. And U is a solution
if and only if it is constant on the characteristics of (81). The characteristics are
solutions to the ordinary differential equations

de d
— = f(x)+a@)), 6T (82)
dt

and we recover the vertical flow on the torus given by (14).

We also need equations to describe the evolution of U on the macroscale. To
this end, let ¥ solve the adjoint equation of (81)

Vo - [(f(x) +a@)y]=0, 6eT (83)
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and let ¢°(¢, x) = ¥ (¢, x, x/¢e) in (79). Then the O (1) term in (79) is zero, so that
we may divide by ¢ and take the limit to obtain

/// U, x, )Y + Vi - (f (x) +a(@)y)]do dx dt
R, JRIJ T4

+/ / U©,x, )Y, x, y)d0dx =0. (84)
R4 JTd

9.2. lll-posed limit

E proved that equations (81), (83), and (84), along with an ergodic hypothesis
are sufficient to determine the evolution of the two-scale limit for incompressible
vector fields [17]. We will show that this does not hold if the wiggly energy A
satisfies the generic hypothesis, Property 1 of Section 5.

Hou and Xin [29], assume ergodicity of the flow generated by a to solve
the linear PDE (81) when d = 2. The following theorem is in this vein. But it is
stronger since it relies on generic hypotheses. For incompressible vector fields there
is no difference between the solvability of equations (81) and (83). The situation is
different for gradient dynamics.

Theorem 8. Let x be fixed so that the flow of

do

—=f@+a@®), 6T

dt
is gradient-like, and the w-limit set of any point 0y is a non-degenerate critical
point. Then

(a) Any continuous solution of (81) is independent of 6.
(b) Any continuous solution of (83) satisfies W (x, 0) = 0 for all 6.

Remark 5. Theorem 8(b) is obvious when d = 1. In this case (83) reduces to

% (f(x) +a@)y) =0,

so that (f(x) + a(@))y is only a function of x. This is incompatible with the
boundedness of ¢ if f(x) + a(0) = O for some 0. The content of Theorem 8 is
that under some global hypothesis on the microscopic flow, solutions to (83) must
blow up in higher dimensions too.

Proof. The number of critical points must be finite, and we denote the stable critical
points by {01, ..., 6,}. The union of the basins of attraction of {61, ... ,6,} is
open and dense in T?. Let o lie in the basin of attraction of 0;, and let 0(7)
denote the solution to the ODE (82) with initial condition 6y. We use the method
of characteristics to solve (83) for ¢ (see [18]):

Y(x,0(t)) =exp ( — /0 V-a(s)) ds) Y(x, 6).
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But 6; is a non-degenerate sink, so that Vy - a(6;) = —28 < 0 for some positive
number 8. So we may choose a trapping ball B(6;, r;) about 6; in which Vy -a(0) <
—B. The time, T, that 6 (t) takes to enter this ball is finite. For all T = T we have

T
¥ (x, 0()] = exp(—/ V-a(e(s>>ds)|mx,eo)|ef‘<’T>.
0

The term v (x, (1)) — ¥ (x,0;) as T — oo because ¥ is continuous. Hence,
Y (x, 0;) is finite if and only if ¥ (x, 8p) = 0. Therefore, ¥ (x, ) vanishes for 6 in
the basin of attraction of 6;. Since 6; was arbitrary, we have proved that v/ (x, -)
vanishes on a dense set. Thus ¥ (x, 8) = 0 for all 6. This proves (b).

The proof of (a) is similar. Let U solve (81). The method of characteristics
implies that U (x, 6;) = U (x, 6p) on the basin of attraction of ;. Thus U (x, 0) takes
only a finite number of values on a dense set and its range is discrete. Connectedness
requires that U (x, 6) is independent of 6. O

Corollary 4. Suppose f(xy) = 0. There is an r > 0 such that if ¥ is a smooth
solution to (83), then ¥ (t,x,0) =0 for |x — x| <r.

Proof. Since a(0) is Morse-Smale, the flows of the vector fields a(6) and f(x) +
a(0) are topologically conjugate for sufficiently small | f (x)| . Thus, the hypotheses
of Theorem 8 are satisfied for sufficiently small » > 0. O

We now construct a nontrivial solution to the evolution equations with zero
initial data. Let  : [0, 00) — R be C* with n(0) = 0. Choose r > 0 as in
Corollary 4 and ¢ € C§° (R9) that is supported within B(xq, r/2). Finally, let
U(t,x,0) = n()¢(x). By construction, supp(U) has empty intersection with the
support of any i that solves (83). We may then verify that (81), (83), and (84) are
true. This shows that the homogenized transport equation does not have a unique
solution.

10. Dynamics and microstructure

Our work is but one example of a mathematical model for dynamics and mi-
crostructure. It is a coarse model, since we are only interested in the evolution of
bulk properties. However, as we have seen, the presence of microstructure even in
such a simple form leads to several interesting questions. We now summarize some
future directions, and some problems of modeling.

10.1. A probabilistic interpretation

The homogenized equations are not well posed and we must consider some
other interpretation. We have derived differential equations of the form

x(0) = g(x,0), x(0)=x9, xeR> 6eT? (85)

The space T? is a natural probability space with a probability measure given by
Lebesgue measure. We aim to solve (85) holding 0 fixed, thus obtaining a realization
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of a trajectory starting at xo. If g(x, 6) is continuous for fixed 6, then this can be
done by Peano’s theorem. However, g(x, 8) depends on the w-limit set of 6 for
the microscopic flow at x, and it is not continuous in general. This is not as bad
as it may seem, at least in regions of slip. In p~'{R\Q} g(x, 6) is continuous (see
Section 7). Furthermore, on open and dense subsets of S/, the basins of attraction
of the stable periodic orbits are open and dense in T2, therefore we expect g(x, 6) to
have only countably many discontinuities. Uniqueness cannot be obtained within
this framework since g is definitely not Lipschitz.

10.2. Comparison with differential inclusions

At points xo € R? where the microscopic flow has distinct invariant measures,
g(x, 0) takes distinct values. For example, if x¢ lies in a resonance zone S/, where
all periodic orbits are hyperbolic, we have the differential inclusion

iekm=(" 1 1t 1 (86)
L7

Near xp, each term in the set above is a Lipschitz function of x. It then follows from
a theorem of FiLiprov [20, Theorem 3] that the weaks* closure of solutions to the
inclusion (86) is the set of solutions to

x € conv(K (x)), 87)

the convex closure of K. Therefore, the weak* closure of solutions to the wig-
gly energy problem is strictly contained within the set of solutions obtained by
differential inclusions.

10.3. Separation of scales

While it is possible to extract interesting mathematical features for the limit, it
has limited efficacy for quantitative predictions. The heuristic idea that averaging
simplifies a problem fails here. There is no resolution of scales in the model, i.e.,
the fast and slow variables do not decouple, and in the limit fine number theoretic
properties such as the degree of rationality and irrationality determine the homoge-
nized limit. These properties cannot be resolved on a computer. There is also good
reason to expect that these conditions matter for d = 3. For large €2, or equivalently
small r, we can reduce the problem to a study of diffeomorpisms of T¢~!. HERMAN
has shown that higher dimensional analogues of Arnol’d tongues exist in such prob-
lems, i.e., a Cantor set of non-resonant points of large measure separating resonant
zones, and these depend on diophantine conditions [26]. We should also note that
apparently technical smoothness requirements have a qualitative influence on the
model. The most tractable approach seems to be to avoid periodic homogenization
altogether and work instead with statistical models of roughness.

This is almost a form of modeling chaos. Fine details that cannot be measured
experimentally exert a significant influence on the dynamics. Can microstructure
really have such an influence on dynamics? And if so, what is the best way to model
it? We take a hint from physics, and mention some examples where we believe these
questions are more than mathematical curiosities.
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10.4. Fine structure in martensitic phase transitions

The limiting behavior of our simple model is rough; however the roughness is
due to the change in rotation number, and not to jumps between metastable states.
In the experiments of Chu and James, the transition is driven by the sequential
splitting of martensite needles, and this gives rise to the stick-slip character of the
transition. In another set of experiments, VIVES et al. [43] studied the acoustic
emission generated during a thermal martensitic tranformation. In both sets of
experiments the phase transformation progresses as an avalanche of jumps between
metastable states. Each avalanche corresponds to the nucleation and motion of one
or more phase (or twin) boundaries and has an acoustic signature. Vives et al.
observed scaling behavior in the statistics of the amplitude and lifetime of these
avalanches. The number of avalanches N (A) with a specific amplitude A scales
like N ~ A=, o > 0. Similarly N ~ = where 7 is the lifetime of an avalanche.
The scaling behavior shows that the evolution of the phase fraction is a very rough
function of time. It would be extremely interesting to obtain a clear continuum
description of such phenomenon, and a rigorous explanation of the roughness of
the dynamics.

10.5. Random landscapes

Another class of phenomenological models called “landscape paradigms” has
been used by condensed-matter physicists to study disordered systems [21]. In
mathematical language, these are stochastic perturbations of gradient dynamical
systems with rough Lyapunov functions. For example, LEDOUSSAL & VINOKUR [32]
consider the following equation as a model for creep of flux lines in superconductors

x=-VV(x)+c+2TB.

Here B is white noise, i.e., the derivative of Brownian motion, 7 is the tempera-
ture, c is a constant forcing term, and V (x) is a spatially random field (“quenched
disorder”). They derive equations for the limiting velocity v as functions of 7" and
c, after averaging over the spatial disorder. Again, it would be very interesting to
obtain rigorous results for these systems.
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