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Abstract

Gradient systems with wiggly energies of the form

ẋ = −∇
(

F(x) + εA
(x

ε

))

, x ∈ Rd

and A : Td → R were proposed by Abeyaratne, Chu & James [2] to study
the kinetics of martensitic phase transitions. Their model may be recast in the
framework of the theory of averaging as a dynamical system on Rd × Td , with
the slow variable x ∈ Rd and fast variable θ ∈ Td . However, this problem lies
completely outside the classical theory of averaging, since the vertical flow on Td

is not ergodic for sets of positive measure, and we must interpret averages to mean
weak limits.

Weobtain rigorous averaging results for d = 2.WeuseSchwartz’s generaliza-
tion of the Poincaré-Bendixson theorem [37] to heuristically derive homogenized
equations for the weak limits. These equations depend on the ω-limit sets for the
vertical flow on fibres. When the vertical flow is structurally stable, we use the
persistence of hyperbolic structures to prove that these are the correct equations.
We combine these theorems with a study of two-parameter bifurcations of flows on
T2 to characterize the weak limits. Our results may be interpreted as follows. The
space R2 breaks into: (·1) a bounded open set surrounding {∇F−1(0)} where there
is only sticking, (·2) a transition region outside this set, where the dynamics is a
combination of sticking and slipping, and (·3) the rest of the plane, which contains
a countable number of resonance zones, with nonempty interior, and their nowhere
dense complement. Inside a resonance zone the direction of the weak limits is
given by the rotation number ρ ∈ Q. The Cantor set structure of the resonance
zones is described by well-known results of Arnol’d [7] and Herman [27] in the
theory of circle diffeomorphisms. Consequently, the homogenized equations vary
on all scales.We also study the linear transport equation associated with the wiggly
gradient flow, and show that its homogenization limit is not well posed.
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Smyshlyaev has studied this problem independently, and some of our results
are similar [39].

1. Introduction

1.1. Motivation

Let F : Rd → R generate the gradient dynamical system

ẋ = −∇F(x). (1)

Under natural conditions on F , namely that it is twice differentiable, and F(x) →
∞ as |x| → ∞, we know that almost all points x ∈ Rd are attracted to the wells of
F . This is the invariance principle of LaSalle and Barbašin & Krasovskiı̆ [31,
9].

Abeyaratne, Chu & James [2] have considered a remarkable modification
of (1) to explain their experiments. They observed hysteresis loops for the volume
fraction (i.e., d = 1) in a martensitic phase transformation, and discovered that
experimental observations were completely at odds with the solutions to (1) with
periodic forcing. To resolve this, they considered a periodic function A : R → R,
and the kinetic law with a wiggly energy

ẋ = −∇
(

F(x) + εA
(x

ε

))

. (2)

The physical insight underlying the modification is that the macroscopic dynamics
may depend essentially onmicrostructural events like getting stuck in localminima.
The goal is to derive an averaged equation for the macroscopic variable, x, that
includes the effect of the microstructure, A. This was done by a weak convergence
argument in [2], and the authors found excellent qualitative agreement between
the macroscopic kinetic law and experimental measurements over a wide loading
range.

Thepresent article is amathematical studyofwiggly gradient systems ford = 2,
especially the rigorous derivation of averaged or homogenized equations. It is im-
portant to mention that Smyshlyaev has studied this problem independently from
a slightly different point of view, and there is some overlap in our conclusions [39].

We were motivated by some problems in mechanics with wiggly energies in
addition to the experiments on martensites. Let us review these, and then com-
ment on the physical meaning of multidimensional problems.Abeyaratne [1] has
derived the following examples based on Frenkel-Kontorova models: flow rules
for plasticity based on motion of dislocations, and the adsorption of a gas onto a
periodic substrate. Weiss & Elmer’s [44] generalization of the Tomlinson model
for dry friction is based on a wiggly energy (see also [30]). Truskinovsky &
Zanzotto [41] have studied metastability in Ericksen’s bar with a wiggly en-
ergy (though their model is quite different from the phenomenological model of
Abeyaratne et al. [2]).

Amulti-dimensional wiggly energy does not correspond directly to any of these
models.A plausible physical model in higher dimensions would be the evolution of
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a vector-valued order parameter. In two dimensions, we can think of the evolution
of averages of a two-dimensional magnetic fieldm : % → S1 on some domain %.
Then the mean magnetization x =

∫

%m/|%| ∈ B(0, 1), and it could be interesting
to study the reorientation of x under forcing. The evolution depends on fine details
such as the domain and wall structure in the sample. But at a crude level, we
may suppose that the detailed microstucture of the sample is modeled by some
generic wiggly perturbation. This system has the feature that both components of
x are comparable and correlated. However, we have not compared our analysis
with any experiments on such systems yet. There have also been several articles
in the condensed-matter physics literature on “landscape paradigms” (for example,
the review [21]) that treat similar phenomenological models with less immediate
physical interpretation. An amusing mental picture is to think of a light particle
sliding down a rough slope. The particle takes a jerky path downhill, possibly
getting stuck along the way.

There is also mathematical motivation to study this problem. The theory of
averaging has a long history in dynamical systems, especially the results of the
Soviet school, from the work of Bogoliubov, Krylov and Mitropolsky for single
phase systems, to the definitive theorems of Anosov, Arnol’d and Neishtadt for
multi-phase systems. We suggest the encylopaedic monongraph [8] as a review on
averaging, and [33] for complete proofs. The averaging results that we derive are
of a completely different nature, largely because of the differences in the source of
the problem. The classical theory of averaging relates to perturbations of integrable
Hamiltonian systems, and hypotheses of ergodicity or non-resonance play a crucial
role. For gradient flows, as in wiggly energies, the hypothesis of ergodicity fails.
Our response is to use weak limits to mean averages. In this sense our work is closer
in spirit to homogenization of partial differential equations (see, e.g., Section 9),
and one of the central questions (and the only one we tackle) is the derivation of
averaged equations. Even this turns out to be surprisingly complicated, and the
averaged equations are continuous, but not Lipshitz. In a different, but related vein,
Bornemann has recently shown that weak convergence methods can be used to
provide a unified view of some results in the classical theory of averaging [11].

1.2. The underlying bifurcation problem

We are interested in deriving a differential equation for a weak limit x0(t) with
initial condition x0(0) = x0 ∈ R2. For d ! 2 the dynamics are remarkably rich in
the generic case. This is because of an underlying bifurcation problem that deter-
mines the weak limits. The macroscopic scale acts as a bifurcation parameter, and
as we move to different points in Rd there is an underlying toral flow that changes
topologically. Bifurcations in the microscopic flow are seen macroscopically as the
change in motion between slip, stick, and an intermittent combination of the two.

The connection is via the following blow-up transformation. For ε > 0 let

αε = x0
ε

mod Zd .
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Fig. 1. (a) All orbits are periodic, x0 > 1. (b) Birth of a semi-stable rest point in a saddle-
node bifurcation for x0 = 1. (c) Semi-stable rest point splits into a stable and unstable rest
point, −1 < x0 < 1. (d), (e), (f) The scenario unfolds in reverse.

We identify αε with a point in [0, 1)d , and call it the phase of x0/ε. The blow-up is

z = x − x0
ε

+ αε. (3)

Since a is Zd -periodic we have

a
(x

ε

)

= a
(x − x0

ε
+ αε

)

= a(z).

Equation (2) may be rewritten in new coordinates as

εż = f (x0 + ε(z − αε)) + a(z).

Rescale time by setting τ = t/ε. Then

dz

dτ
= f (x0 + ε(z − αε)) + a(z), z ∈ Rd , (4)

and in the limit ε = 0 we obtain the microscopic vector field

dz

dτ
= f (x0) + a(z). (5)

This is a vector field on the torus. The term x0 is a parameter in (5), and the
microscopic flow bifurcates as x0 varies.

Let us illustrate this with a one-dimensional example. For simplicity suppose
that F(x) = x2/2, so that f (x) = −x ranges from∞ to−∞, and a(z) = sin 2πz.
The qualitative change in themicroscopic phase portrait is seen in Fig. 1.According
to the macroscopic kinetic law derived in [2] and Section 4.2, the regions on the
macroscale where all microscopic orbits are periodic ((a) and (f) in Fig. 1), are
identical to the region where ẋ0 '= 0, and the regions where all orbits are trapped
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between rest points ((b)–(e) in Fig. 1), are identical to the region where ẋ0 = 0.
Thus we may distinguish between stick or slip on the macroscale by looking at the
orbits on the microscale. The correspondence is quantitative: the effective equation
is ẋ0 = 2π/T (x)where T (x) is the (signed) period of oscillation, and T (x) = ±∞
when there is a rest point.

The interplay between two scales causes a fascinating bifurcation scenario. In
most bifurcation problems, there is a control parameter λ, and variations in λ causes
changes in the topological structure of the flow for the vector field ẋ = f (x, λ). In
this problem, all possible bifurcation scenarios are contained within one problem,
since the bifurcation parameter is the macroscale.

1.3. Outline of results

Our analysis is based on classifying the microscopic flows, and using this infor-
mation on the macroscale. This approach works for d = 2 because of topological
restrictions. For example, we can combine several powerful results from the theory
of circle maps, with simple geometric arguments (persistence of hyperbolic orbits)
to derive homogenized equations.We outline our results here, and defer the precise
statements of the theorems to later sections.

We show formally in Section 4 that there is a natural differential equation or
inclusion for the weak limits for d = 2, which is valid for almost all points x ∈ R2,
and eachA ∈ Cr(T2), r > 3. This is based on the generalized Poincaré-Bendixson
theorem on compact two-manifolds of Schwartz [37].

It is far harder to rigorously justify these equations. What we prove is that in
certain (large) regions of phase space the derivation of Section 4 is correct. We call
these the regions of sticking and slipping (see Section 5 and Section 6). The region
of sticking is an open neighborhood of the critical points of F . Here we prove that
ẋ0 = 0 (Theorem 2), hence the name “sticking”. The region of slipping is where
{‖∂xi F‖ > ‖∂xi a‖∞ for some i = 1, 2} and the formal calculation of Section 4 is
restricted to

ẋ0 ∈
{

1
T (x, θ)

(

1
ρ(x)

)}

θ∈T2
. (6)

The direction of ẋ0 is given by the rotation number ρ, and the magnitude by an
appropriate time period of themicroscopic flow.We are able to prove this rigorously
for x0 a.e. in the case when ρ ∈ Q (Theorems 3 and 4).We typically expect that the
setwhere this assumption holds (a resonance zone) is a closed subsetwith nonempty
interior that extends to ∞. We have not proved that (6) holds for ρ ∈ R\Q. This
remains the most important open problem, and a proof of this fact would result in a
highly nontrivial improvement in the regularity of the weak limits following from
a deep linearization theorem of Herman [27] on circle maps.

It is not obvious that the inclusion (6) is continuous at ρ ∈ R\Q. We consider
this question in Section 7. We prove a new result on weak continuity of invariant
measures of circle maps that is of independent interest (Theorem 5), and obtain
continuity as a corollary.
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In Section 8we give precisemeaning to our statements about “typical” behavior,
by studying generic bifurcations in the microscopic flows forC∞ wiggles. Here we
use the celebrated theorems of Arnol’d [6] and Herman [27,26] on circle maps,
along with some analysis of generic bifurcations to demonstrate the full Cantor set
structure that is present for typical wiggly energies (see Lemma 17 andTheorem 6).

We interpret our theorems as follows. The macroscopic phase space breaks
into three regions: (·1) a bounded open set surrounding {∇F−1(0)} where there
is only sticking, (·2) a transition region outside this set, where the dynamics is a
combination of sticking and slipping, and (·3) the rest of the plane, which contains
a countable number of closed domains called resonance zones, with nonempty
interior, and their nowhere dense complement. Inside a resonance zone the limiting
vector field has constant direction given by the rotation number of the microscopic
flow. The direction varies continuously across the boundary of a resonance zone
but not smoothly. A typical initial condition starting far outside {∇F−1(0)} would
eventually be attracted to the sticky region surrounding {∇F−1(0)}. However, the
path it takes downhill is rough on all scales in the sense that the direction changes
like a Cantor function. For example, in the physical context of a magnetization, the
transformation would be observed to progress as a jump between states in which
the two components are locked in a particular ratio. This idea is illustrated with an
example in the next section.

Finally, we contrast our approach with previous work on homogenization of
transport equations in Section 9. This section is largely independent of the rest
of the article. However, it is an important digression since it identifies the need
for a more careful analysis, and suggests some limitations of the homogenization
method. We conclude in Section 10 with comments about models for dynamical
systems that show rough behavior in time, and examples from physics that we
believe make a mathematical study of such problems unavoidable.

Let us comment briefly on the assumptions we make. It suffices to assume that
F isC2. The assumptions onA are a lotmore delicate. The smoothness assumptions
are made in order to invoke either Sard’s theorem, Schwartz’s Poincaré-Bendixson
theorem, or the linearization theorems of Herman. In all three cases, these theorems
are sharp, and the requirement is not technical. In addition we make two global
assumptions on the flow of z′ = −∇A. Of these the Morse-Smale requirement is
natural and generic (Assumption 1), but the second one is not (Assumption 2) and is
undoubtedly technical. The reader uncomfortable with these comments, may safely
assume throughout that A is C∞ and belongs to an open subset of C∞ defined by
the functions with four non-degenerate critical points.

2. Description of an example

Let us now illustrate our results with an example (the details of this computation
can be found in [35]):

F(x) = 1
2

(

λ1|x1|2 + λ2|x2|2
)

, 0 '= λ1 '= λ2 '= 0.
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Fig. 2. The critical points and invariant manifolds of the saddle points for (8).

2.1. The wiggly perturbation

The choice of wiggly potentialA is governed by the requirements of genericity
and simplicity.A simple scalar function on the a torus embedded inR3 is the height
function; however, it generates a flowwith a saddle connection. This is non-generic,
therefore we tilt the torus to obtain the potential (see [35])

A(y, z) = (R + r cos z) sin y cosβ + r sin z sin β. (7)

The gradient vector field, −∇A, is

y′ = a(y, z) = −(R + r cos z) cos y cosβ, (8)
z′ = b(y, z) = r (cosβ sin y sin z − sin β cos z) .

The equilibria of (8) in [0, 2π)2 are the four points
(

π

2
, β

)

,

(

π

2
, π + β

)

,

(

3π
2

, 2π − β
)

,

(

3π
2

, π − β
)

.

These points and the invariant manifolds of the saddle points are shown in Fig. 2.
In our calculation we have fixed R = 2, r = 1 and β = π/3.

2.2. Computation of ρ

Figure 3 shows the Cantor singular nature of ρ on the vertical line %1 = 4
(r sin β = 1/2 in this picture). The pictures appear in order of increasing mag-
nification. We can easily observe plateaus at “simple” rational values such as
0, 1, 1/2, 2 . . . . The width of the plateaus decreases rapidly with the order of the
resonance, and they are soon invisible. Figure 4 shows the variation of ρ in a portion
of the % plane. In this picture the resonance zones for ρ = 1 and ρ = 2 can be
clearly distinguished, but the resolution is not good enough to distinguish other
resonance zones.
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Fig. 3. The variation of ρ on the vertical line %1 = 4. R = 2, r = 1, and β = π/3 in this
computation.
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Fig. 4. Grey scale plot of a numerical computation of ρ with R = 2, r = 1, and β = π/3.
The broad swathe is the region ρ = 1. The region ρ = 2 intersects the boundary at%2 ≈ 4.
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2.3. Characterization of weak limits

Figure 5 is a schematic picture of the weak limits. This is not a phase portrait
since the time parametrization is typically not unique on one of the trajectories. The
potential A satisfies Assumption 2, and it follows from Theorem 2 that there is an
open region about the origin where the weak limits satisfy ẋ = 0. We do not know
this region precisely, but we do know that it is open. The region ρ−1{0} is com-
posed of the horizontal strips {|%1| > (R + r) cosβ, |%2| " r sin β}. The region
ρ−1{±∞} is the vertical strip {|%1| " (R + r) cosβ, |%2| > r sin β}. Outside the
cross formed by these regions we have a countable number of resonance regions,
Sp/q , with nonempty interior. In accordance with Theorem 3 and Lemma 17(iv), the
direction of weak limits in this region is given by ρ = p/q, i.e., we have rectilinear
motion in each strip. The trajectories can take only a finite number of speeds in this
region given by Theorem 4. The intersection point of the boundaries of ρ = 0 and
ρ = ±∞ at the points (λ1x1, λ2x2) ≡ (%1, %2) = (±(R + r) cosβ, ±r sin β) are
highly singular. For definiteness, consider the point in the fourth quadrant. On any
horizontal segment to the left of the ρ = ∞ boundary, ρ increases sharply till it
is ∞. Similarly, on any vertical segment below the ρ = 0 boundary, ρ decreases
until it is zero. Therefore, in any open neighborhood of this point, the range of ρ is

Fig. 5. Weak limits for ẋ = −∇F(x)−∇A(x
ε ). The shaded region in the center corresponds

to the “sticky” neighborhood of x = 0. Also shown are the resonance bands for ρ =
{0, ±∞, ±1, ±2}. Within these bands the weak limits are straight lines with slope ρ.
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(0,∞). We expect an infinite number of tongues, one for each p/q ∈ Q
⋂

(0,∞),
which taper in towards the point ρ−1{0} ∩ ρ−1{∞}.

We have drawn only a few resonance bands, but the reader may fill in a number
of increasingly thinner bands in between these ad infinitum for other rationals. It is
natural to extrapolate the picture to the region ρ−1{R\Q}. However, we emphasize
that the theorems we prove utilize in an essential way the hyperbolicity of the
microscopic flow, and this assumption is violated when ρ is irrational. We have
also omitted to describe the dynamics in the region surrounding the region of
sticking, but where |%1| " ‖a‖∞ or |%2| " ‖b‖∞. The ω-limit sets are typically
either equilibria or periodic orbits in this region. Therefore, we expect that the weak
limits are either stick, or slip, with the probability of the occurrence being governed
by the sizes of the basins of attractions of equlibria and periodic orbits.

In conclusion,we see that theCantor sets arising in the bifurcation of circlemaps
play an essential role in the homogenization. In addition to the convexification of the
energy observed in one dimension, [2], in two dimensions we see the prevalence of
preferred directions in the vicinity of equilibria. These correspond to the resonances
of low order.

3. Weak convergence and averaging

3.1. Notation

Let us first fix our notation: Td is defined as Rd/Zd ; m denotes Lebesgue
measure on Rd and Haar measure on Td . There is a natural covering map , :
Rd → Td . If we let [x] denote the integer part of x, then ,(x) is identified with
the point x − [x] ∈ [0, 1)d . For d = 1, we use the notation S1 instead of T. For
any integer r ! 0,Cr(Td) denotes the space of r-times continuously differentiable
functions, f : Td → R which may be identified with the class of Cr functions
from Rd to R that are 1-periodic in each coordinate. When r is not an integer, say
r = [r] + β, then Cr(Td) is the space of C[r] functions, with Hölder continuous
derivative: |D[r](y) − D[r](x)| " C|x − y|β . We shall use the Sobolev space
W 1,∞([0, T ], Rd) which can be identified with the space of Lipschitz functions
from [0, T ] → Rd . Finally, Dr(S1) ⊂ Cr(S1) denotes the space of orientation
preserving Cr diffeomorphisms of the circle.

3.2. Compactness in W 1,∞

The problemmay be stated as follows.We consider aCr potentialA : Td → R

and the kinetic law (2). The energies

Gε(x) = F(x) + εA
(x

ε

)

(9)

converge weakly toF inW 1,∞
loc . ButG

ε does not converge strongly in this topology,
since ‖∇Gε(x) − ∇F(x)‖∞ = ‖∇A‖∞ > 0.
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If we fix x0 ∈ Rd , and consider a set of solutions {xε(t)}, 0 < ε " ε0, to
equation (2) with limε↓0 xε(0) = x0, then

sup
ε
sup
t!0

|xε(t)| < ∞

since (2) is a gradient system, and the set {x|F(x) " n} is compact for all n. Since
xε(t) are restricted to a compact set, we also have uniform bounds on the speed,

sup
ε
sup
t!0

|ẋε(t)| < ∞.

Thus the set of trajectories {xε} is uniformly bounded inW 1,∞(R+; Rd), and there
exists a subsequence so that xεn

∗
⇀ x0 inW 1,∞(R+; Rd). This means that, for any

0 < T < ∞,

(·1) xεn(t) → x0(t) uniformly on [0, T ];
(·2) ẋεn(t)

∗
⇀ ẋ0(t) in L∞([0, T ]).

The hypothesis that underlies this work is that all observable trajectories, are weak
limits of solutions to (2). Thus the problem is to classify the weak limits, and to
derive an averaged dynamical system, if it exists. Notice that there may be many
weak limits through an initial point x0. However, in one dimension the weak limit
is unique. The existence of a unique weak limit is essential for the derivation of
macroscopic kinetic laws. In higher dimensions there may be several distinct weak
limits depending on the initial condition. Thus we cannot derive a deterministic
macroscopic equation.

3.3. The method of averaging

We may recast (2) in a form suitable for averaging as follows. Define a phase
variable

θ = x

ε
mod 1. (10)

The phase changes rapidly on the time scale, t . If we switch to the fast time scale
τ = t/ε, we may rewrite (2) as the system

θ ′ = f (x) + a(θ), (11)
x′ = ε(f (x) + a(θ)), (12)

where f = −∇F , a = −∇A, and ′ = d/dτ . The phase space for this system is
the fibre bundle Td × Rd : θ ∈ Td is the fibre variable, and x ∈ Rd is a point in the
base space. In the limit ε = 0, the slow variable x is fixed, and the flow is said to
be vertical.

The following standard multiple-scales argument (see e.g. [33]) suggests the
form that the limiting equations must take. We make the ansatz

xε(t, τ ) = x0(t) + εx(1)(t, τ ) + · · · (13)

θε(t, τ ) = θ0(τ ) + εθ(1)(t, τ ) + · · · .
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The goal is to compute x0(t). Let the initial conditions be (θ, x). Substituting the
ansatz (13) in (11), and equating powers of ε we obtain the following equations for
θ0 and x0:

dθ0

dτ
= f (x0(t)) + a(θ0), (14)

and
dx0

dt
+ ∂x(1)

∂τ
= f (x0(t)) + a(θ0(τ )). (15)

Let θ0(τ ; θ, x) denote the solution to (14) with initial condition (θ, x), i.e., the
vertical flow on the fibre at x. Integrating (15) with respect to τ , we find that

x(1)(t, τ ) − x(1)(t, 0) = τ

(

−dx0

dt
+ f (x0(t)) + 1

τ

∫ τ

0
a(θ0(s); θ, x0(t)) ds

)

.

In order to avoid secular terms in the expansion, the term on the right-hand side
must be zero. This suggests that the limiting equation for x0(t) is

dx

dt
= f (x) + lim

τ→∞
1
τ

∫ τ

0
a(θ0(s); θ, x) ds. (16)

That is, the long-time behavior of the vertical flow on the fibres determines the
homogenized equation. In order to obtain rigorous results we need to determine
the limit in (16) (if it exists), and then prove that (16) is the right description of
the average. The first question is considered in Section 4 where we derive averaged
equations for d = 1, 2.A partial validation of these equations is in Sections 5 and 6.

The long-time limit is studied in ergodic theory and the method of Bogoliubov
andKrylov (see [38, Lecture 2]) tells us that there is an invariant probabilitymeasure
µx so that with probability 1

lim
τ→∞

1
τ

∫ τ

0
a(θ0(s; θ, x)) ds =

∫

Td
a(θ)dµx(θ).

It is clear that there is a unique averaged equation only if the long-time limit in (16)
exists, and is independent of the initial phase θ . The vertical flow is ergodic if µx

is unique. Ergodicity was precisely linked to averaging by Anosov [5]. Under the
hypothesis that the ε = 0 flow is ergodic on almost every fibre, Anosov showed,
roughly speaking, that xε(t) is close to x0(t), except for a set of initial conditions
of small measure.

Equation (11) is an example of a system for which the limiting flow on fibres
is not ergodic for sets in the base space with positive measure. For example, when
d = 2 the flow is not ergodic on an open and dense subset of the base space
R2. However, the existence of averages, in the sense of weak limits, is little more
than an assertion of compactness, and is independent of assumptions of ergodicity.
The cost of such generality is that the problem appears intractable for d > 2 for
two reasons. Firstly, it is hard to characterize the invariant measures µx in higher
dimensions. Secondly, it is harder to prove that (16) gives the correct averages in
higher dimensions. Before considering these finer questions, we prove some basic
results that rely only on a priori estimates and are independent of d.
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3.4. A priori estimates

A natural question is whether the limiting behavior is gradient-like.
Abeyaratne, Chu & James [2] found that the macroscopic kinetic law was a
gradient flow: all points flow downhill into a flat valley of equilibria. In this section
we use a priori estimates to show that there is a trapping region.

Suppose thatx0(t) is aweak limit.Then for an appropriate subsequence {εn}∞n=1,
we have xεn(t)

∗
⇀ x0(t). For any t1, t2 ∈ [0,∞) the differential equation (2) yields

F(xεn(t2)) − F(xεn(t1)) =
∫ t2

t1

∇F(xεn(s)) · dxεn(s)

ds

= −
∫ t2

t1

|f (xεn(s))|2 ds

−
∫ t2

t1

f (xεn(s)) · a

(

xεn(s)

εn

)

ds.

Since weak convergence in W [1,∞) implies that xεn(t) → x0(t) uniformly on
compact sets, and F is C2, we have

F(x0(t2)) − F(x0(t1))

= −
∫ t2

t1

|f (x0(s))|2 ds − lim
n→∞

∫ t2

t1

f (xεn(s)) · a
(xεn(s)

εn

)

ds. (17)

The existence of the limit is part of the conclusion. There is another way we could
calculate the change in energy. From (2) and (9)

Gεn(xεn(t2)) − Gεn(xεn(t1)) = −
∫ t2

t1

|∇Gεn(xεn(s))|2 ds

= −
∫ t2

t1

|f (xεn(s))|2 ds

− 2
∫ t2

t1

f (xεn(s)) · a
(xεn(s)

εn

)

ds

−
∫ t2

t1

∣

∣

∣
a
(xεn(s)

εn

)
∣

∣

∣

2
ds.

Letting n → ∞ we find that

F(x0(t2)) − F(x0(t1)) = −
∫ t2

t1

|f (x0(s))|2 ds (18)

− 2 lim
n→∞

∫ t2

t1

f (xεn(s)) · a
(xεn(s)

εn

)

ds

− lim
n→∞

∫ t2

t1

∣

∣

∣
a
(xεn(s)

εn

)
∣

∣

∣

2
ds.
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The existence of the second limit follows from the existence of the first. Comparing
(17) and (18) we see that

F(x0(t2)) − F(x0(t1)) = −
∫ t2

t1

|f (x0(s))|2ds + lim
n→∞

∫ t2

t1

∣

∣

∣
a
(xεn(s)

εn

)
∣

∣

∣

2
ds.

(19)

Since ‖a‖∞ < ∞, there is a subsequence, {εnk }∞k=1, and an associated Young
measure, νt , such that

lim
k→∞

∫ t2

t1

∣

∣

∣
a

(

xεnk (s)

εnk

)
∣

∣

∣

∣

2
ds =

∫ t2

t1

∫

Rd
|λ|2dνt (λ) dt =

∫ t2

t1

var(νt ) dt.

But since the limit in (19) exists, we see that all Young measures associated with
subsequences of εn have the same second moment (t a.e.). Furthermore, the con-
tribution of the wiggles is always nonzero, unless the Young measures are Dirac
masses. But x0(t) is differentiable almost everywhere. Hence

dF(x0(t))

dt
= −|∇F(x0(t))|2 + var(νt ), t a.e. (20)

Hence all weak limits enter wells around∇F−1{0}, and these wells may have width
that is at most ‖a‖∞. The time taken to enter this trapping region is uniform on
bounded sets since (20) provides a lower bound for the speed at which weak limits
cross the contour lines of F . On the other hand, these a priori estimates do not
provide any information about the averaged vector field, or the trajectories. This
requires a more careful analysis, and we only have answers for d = 1 and d = 2.

4. Averaged equations for d = 1, 2

In this section d = 1 or d = 2. We derive averaged equations by calculating
the limits

〈a(θ, x)〉± def= lim
τ→±∞

1
τ

∫ τ

0
a(θ0(s; θ, x)) ds. (21)

We expect the limits to depend only on the α- and ω-limit sets of θ and we may
obtain different limits at ±∞. We begin with the following examples.

4.1. Examples

4.1.1. Critical points. Suppose ω(θ) = θ∗, a critical point. Then

lim
τ→∞

1
τ

∫ τ

0
a(θ0(s; θ, x)) ds = 〈a(θ, x)〉+ = a(θ∗). (22)

Similarly, if α(θ) = θ∗∗, then 〈a(θ, x)〉− = a(θ∗∗). But a(θ∗) = a(θ∗∗) = −f (x).
It follows that the averaged vector field (16) is

dx0

dt
= f (x) + a(θ∗) = 0. (23)
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4.1.2. Periodic orbits. Supposeω(θ) is a periodic oribit γ s : R → Td , with period
T > 0. In this case, a calculation similar to the one above shows that

〈a(θ, x)〉+ = 1
T

∫ T

0
a(γ s(s)) ds. (24)

Clearly, if α(θ) is a different periodic orbit, say γ u : R → Td , then typically,
〈a(θ, x)〉+ '= 〈a(θ, x)〉−.
4.1.3. Ergodic flows. Suppose α(θ) = ω(θ) = Td . Then the smallest minimal set
is the entire fibre. In this case, the invariant probability measure, µx , obtained from
the Bogoliubov-Krylov construction is unique, and the flow is ergodic with respect
to this measure. The long-time limits 〈a(θ, x)〉± exist for θ µx a.e., and are equal
by the Birkhoff-Khinchine ergodic theorem [38].

4.2. Averaged equations for d = 1

There are only two possibilities. If there is at least one critical point, then ω(θ)

is a critical point for each θ ∈ S1. If there are no critical points, then ω(θ) is S1 for
each θ . In the first case, the averaged equation is (23). In the second case, we can
simplify (24) as follows. We invert (14) to obtain

dτ

dθ
= 1

f (x) + a(θ)
,

so that the (signed) time period is

T (x) =
∫ 2π

0

dθ

f (x) + a(θ)
.

Thus, the long-time average of a may be written as

〈a(θ)〉 = 1
T

∫ T

0
a(θ0(s; θ, x)) ds = 1

T

∫ 2π

0

a(ψ)

f (x) + a(ψ)
dψ

= 2π
T

− f (x)

T

∫ 2π

0

dψ

f (x) + a(ψ)
dψ = 2π

T (x)
− f (x).

Therefore, the averaged equation (16) is

dx

dt
= 2π

T (x)
, (25)

with the understanding that T (x) = ±∞ if there is a critical point. Of course, this is
what we expect intuitively. Equations (23) and (25) are the macroscopic equations
in one dimension that were derived in [2] by different methods.
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4.3. Averaged equations for d = 2

In two dimensions the range of possible asymptotic behavior (for sufficiently
smooth vector fields) is limited by Schwartz’s generalization of the Poincaré-
Bendixson theorem. We use the following version (the theorem is more general
and applies to any compact two dimensional manifold).

Theorem 1 (Schwartz [37]). Suppose that ϕs, s ∈ R is a C2 flow on T2, and M

is a minimal set for ϕs . Then M must be one of the following:

(·1) A singleton consisting of a critical point.
(·2) A periodic orbit.
(·3) All of T2.

The smoothness requirement is sharp. Denjoy showed that such an assertion is
false for C1 vector fields [16], and Herman has shown that for every β ∈ (0, 1),
there is a Denjoy counterexample that is C2−β [27].

We use Theorem 1 to characterize typical ω-limit sets. The vertical flow on a
fibre satisfies an equation of the form

θ̇ = %+ a(θ), θ ∈ T2, % ∈ R2. (26)

Equation (26) corresponds to the gradient system in R2,

ż = −∇V%(z)
def= −∇ (A(z) −% · z) . (27)

We denote the flow of (26) by ϕs and the flow of (27) by ϕ̃s . The flows of (26) and
(27) are related by ,(ϕ̃t (z)) = ϕt (,(z)). The reason we consider the flow in R2

is that V% is a Lyapunov function for (27) but not for (26). The following lemma is
needed to classify the limit sets. The proof is standard, and may be found in [35].

Lemma 1. Let A ∈ Cr(Rd), r > 2d − 1. Then for % ∈ Rd in a residual set of full
measure:

(a) All critical points of V% are non-degenerate, and hence there are at most count-
ably many of these.

(b) If z1 and z2 are distinct critical points, then V%(z1) '= V%(z2).

The smoothness hypothesis r > 2d−1 is needed in an application of Sard’s theorem
to prove Lemma 1(b). We need Lemma 1(b) for the following Proposition.

Proposition 1. Let% lie in the residual set of full measure of Lemma 1 and consider
the flow generated by (26). Then for any θ ∈ T2, the limit set ω(θ) is one of the
following:

(·1) A critical point.
(·2) A periodic orbit.
(·3) All of T2.

Proof. Suppose that ω(θ) '= T2. We show that we have (·1) or (·2). the limit set
ω(θ) is closed, invariant and nonempty. Hence, by Zorn’s lemma, it must contain
a minimal set. Applying Theorem 1, we see that either
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Case 1: ω(θ) ⊃ γ , a periodic orbit, or
Case 2: ω(θ) ⊃ {θ∗}, a critical point.
In Case 1, Schwartz showed that ω(θ) = γ [37, Corollary, p. 457]. Thus, the
proposition reduces to proving that ω(θ) = {θ∗}, and in order to show this we use
the gradient structure.

Suppose that ω(θ)\{θ∗} is nonempty. There are again two cases to consider.
Case 2(a): ω(θ)\{θ∗} contains a minimal set.
Case 2(b): ω(θ)\{θ∗} contains no minimal set.

Case 2(a): By Theorem 1 and Case 1 above, this means that there is a critical
point θ∗∗ '= θ∗ in ω(θ). Thus, there are real sequences sn, tn → ∞, such that
ϕsn(θ) → θ∗, and ϕtn(θ) → θ∗∗. Lifting the flow from T2 intoR2 we find an initial
point z ∈ ,−1{θ}, and distint critical points z∗ and z∗∗ such that ϕ̃sn(z) → z∗ and
ϕ̃tn (z) → z∗∗. The function V% is a Lyapunov function for the flow ϕ̃t . In particular,
it is monotonically decreasing and we find

lim
t→∞ V (ϕ̃t (z)) = lim

n→∞ V (ϕ̃sn(z)) = V (z∗).

Similarly, we find limt→∞ V (ϕ̃t (z)) = V (z∗∗). Thus, V (z∗) = V (z∗∗) which
contradicts Lemma 1.

Case 2(b): In this case we claim that ω(θ) contains an orbit homoclinic to θ∗.
Let ψ ∈ ω(θ)\{θ∗}. Then α(ψ) ⊂ ω(θ) is nonempty, closed, and invariant. But
the only closed invariant subsets of ω(θ) are {θ∗} and ω(θ). Thus, θ∗ ∈ α(ψ), and
there is a sequence sn → −∞ such that ϕsn(ψ) → θ∗. Similarly, θ∗ ∈ ω(ψ), and
there is a sequence tn → ∞ such that ϕtn(ψ) → θ∗. But we know that {θ∗} is a
non-degenerate critical point, so it is either a saddle, sink or a source. It cannot be
either a source or a sink because both α(ψ) and ω(ψ) are θ∗. Thus, θ∗ is a saddle
point, and ϕsn(ψ) ∈ Wu

loc(θ∗), ϕtn(ψ) ∈ Ws
loc(θ∗), for large n. Since there are no

other critical points in ω(θ), the orbit through ψ , denoted γ , is homoclinic to θ∗.
We again draw a contradiction using the Lyapunov function V% and the flow ϕ̃.

There are two cases to consider. Let z ∈ ,−1{θ}.
Case (i): ,−1{γ } ⊂ ω(z) contains a homoclinic orbit in the plane.
Case (ii): ,−1{γ } ⊂ ω(z) contains a heteroclinic orbit in the plane.

In Case (i) let z1 be a point in the orbit homoclinic to z∗. Then we have the contra-
diction

V (z∗) = lim
t→−∞

V (ϕ̃t (z1)) < V (z1) < lim
t→+∞

V (ϕ̃t (z1)) = V (z∗).

In Case (ii), there are two distinct critical points z∗ and z∗∗ and sequences sn, tn →
∞ such that ϕ̃sn(z) → z∗ and ϕ̃sn(z) → z∗∗. Since, V (ϕ̃t (z)) is a decreasing
function, and V (z∗) '= V (z∗∗) this gives the contradiction of Case 2(a). 34

Proposition 1 allows us to compute the limit 〈a(θ, x)〉± for every θ . This is
stronger than the µx-a.e. existence guaranteed by the Bogoliubov-Krylov con-
struction. A few immediate consequences of this are:



210 Govind Menon

1. There are typically asmany limits 〈a(θ, x)〉±, as there are distinct α- andω-limit
sets. In the special circumstance where all limit sets are critical points, we obtain
a unique limiting equation.

2. The averaging process has introduced an “arrow of time”. For example, if the
flow decomposes into one attracting periodic orbit, γ s , one repelling periodic
orbit, γ u, and their basins of attraction and repulsion, then 〈a(θ, x)〉+ is constant
on the basin of attraction of γ s (a set of full measure), and depends only on a|γ s .
On the other hand, 〈a(θ, x)〉− is constant on the basin of repulsion of γ u, and
is generically distinct from 〈a(θ, x)〉+.

Remark 1. The additional smoothness hypothesis of the proposition is not needed
when |f (x)| > ‖a‖∞. In this case we can reduce the problem to a study of circle
maps as long as there is a well-defined flow (e.g., if f is Lipschitz). Furstenberg
showed that the ergodic average for every θ ∈ S1 exists for any homeomorphsim
of S1 [22], and therefore for the flow of (26).

5. Persistence of gradient structure and sticking

In this section we characterize the weak limits in the vicinity of∇F−1{0} under
some assumptions on the nature of the wiggles.

Theorem 2. Suppose x∗ ∈ ∇F−1{0}, and that A ∈ C2(T2) satisfies Properties 1
and 2. Then there exists r > 0 so that the homogenized equation in B(x∗, r) is
ẋ0 = 0.

Theorem 2 says that all the weak limits are constant near the critical points
of F . Of our assumptions, one is generic (Property 1), and the other is technical
(Property 2).

The proof relies on showing that if the lifts of microscopic orbits into Rd are
bounded, then all orbits stick on the macroscale. Indeed, if we know that these
bounds persist for some ε > 0, i.e., if we have

sup
τ

|zε(τ ) − zε(0)| " C for 0 < ε < ε0, (28)

then since the blow-up transformation and change of time scale are invertible for
ε > 0, we must have

sup
t

|xε(t) − xε(0)| " Cε for 0 < ε < ε0. (29)

Thus, if xε(0) converges to x0, we see that there is a unique weak limit through x0,
namely x0(t) = x0. Hence we see sticking on the macroscale. In fact, it is sufficient
to obtain weaker estimates on the drift of trajectories in the microscale (for example
an upper estimate of the form Cε−ν, 0 < ν < 1) to obtain the same conclusion.
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5.1. Generic properties

The next step relies on a geometric analysis of a singular perturbation problem
for vector fields inRd . Our arguments require structural stability of themicroscopic
flow in the vicinity of x∗. This is ensured by the generic hypothesis

Property 1. The flow for the vector field a(θ) = −∇θA(θ) is Morse-Smale.

Recall that for A in an open and dense set of C2(T2), the flow of

θ̇ = a(θ) = −∇A(θ) (30)

has the following properties.

(·1) There are at least four, and at most finitely many critical points. These are all
non-degenerate, and are either sources, denoted {Ak}mk=1, sinks, {Bk}nk=1, or
saddle points, {Ck}m+n

k=1 .
(·2) Each saddle point, C, has a one-dimensional stable manifold, W s(C) and a

one-dimensional unstable manifoldW u(C).
(·3) There are no saddle connections, i.e., theω-limit set of any point on the unstable

manifold, W u(C) is a sink, and the α-limit set of any point on W s(C) is a
source.

(·4) The unstable (or stable) manifold W u(C) (resp., W s(C)) consists of two dis-
joint C1 curves imbedded in the torus.

Also,m, n ! 1 since the maximum and minimum ofA are generically distinct. The
number of saddle points must equalm+n by the Poincaré-Hopf index theorem [24,
p. 134] (·3) is a consequence of Peixoto’s theorem [23, Section 1.9] and (·4) is seen
as follows. In a neighborhood of C,W u(C) is given as the graph of a C1 map over
the unstable subspace of the linearization at C. Hence, we can distinguish between
a “left” and “right” branch of W u(C) in the vicinity of C. Let Dl lie in the left
branch, and Dr on the right branch. Then W u(C) = γ (Dl)

⋃

γ (Dr), where γ (P )

denotes the trajectory through the point P .
The ω-limit set of Dl is a sink, denoted by B. The closure of W u(C) includes

the endpoints B and C and it is a simple curve in the torus, for it can be written as
the image of a continuous map γ̃ : [−1, 1] → T2 as follows. Let h : [−1, 1] →
[−∞,∞] be defined by

h(s) = s

1− |s| ,

and let γ̃ (−1) = C, γ̃ (1) = B, and

γ̃ (s) = ϕh(s)(D1), s ∈ (−1, 1),

where ϕt , t ∈ R denotes the flow generated by (30). The orbit γ̃ is C1 on (−1, 1),
and continuous at the endpoints.

Since the stable and unstable manifolds are simple curves, we shall say that a
saddlepoint C is connected to a source A (or a sink B) if one branch of the stable
(resp., unstable) manifolds of C terminates at A (resp., B).
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5.2. Construction of barriers

At present, we are able to prove (28) only under the following Property on the
flow of (30).

Property 2. There is at least one saddle point, say C ∈ T2, with the property that it
connects to exactly one sourceA and one sink B. That is, bothW s(C)

⋃{C} ⋃{A}
andW u(C)

⋃{C} ⋃{B} form closed loops (see Fig. 6).

Notice that the simplest generic gradient fields on the torus have four critical points:
one source, one sink and two saddles, and satisfy this hypothesis.

B

A

C

Fig. 6. Property 2.

We need to lift the properties of the gradient field on the torus into R2. For
any point P ∈ T2 we use indexed lower-case letters to denote its inverse images
,−1{P } = {pn}n∈Z2 ∈ R2 . Notice that every point cn ∈ ,−1{C} is connected to
one or two points in ,−1{A} because C is connected to A. In fact,

Lemma 2. Each saddle point cn ∈ ,−1{C} is connected to two distinct sources in
,−1{A}, and two distint sinks in ,−1{B}

Proof. It is sufficient to prove the lemma for sources. Suppose both branches of the
stable manifold of c were connected to the same source a. Then we would obtain a
closed loop in the plane shown in Fig. 7. One branch of the unstable manifold of c
must point into the loop, and thus there is a point b ∈ ,−1{B} that lies inside the
loop. By Property 2, lifts into R2 of both branches ofW u(C) connect to b. One of
these (sayW r(c)) is shown in Fig. 7. The other branch,W l(c), cannot connect to b

without intersecting the loop aca. Thus, there is another point, say c2 ∈ ,−1{C}
that connects to b. The saddle point c2 cannot lie within the loop, for the vector field
is periodic, and thus a translate of the loop aca passing through c2 would intersect
aca. If c2 lies outside the loop then the connection between b and c2 intersects the
loop aca. In either case we obtain a contradiction. 34
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c

b

a

Fig. 7. Impossibility of closed loops in the plane.

Suppose c connects to two distinct sources a1 and a2. Then, 0 '= a1 − a2 =
k ∈ Z2. Translating the arc a1ca2 by nk for all integers n, we obtain a curve 2s that
separates the plane. Similarly, considering the arc b1cb2 obtained from the sinks b1
and b2 connected to c, we obtain a second curve, 2u. We call 2u and 2s barriers.
The barriers 2u and 2s intersect transversely at c, and nowhere else. Considering
integer translates of 2s and 2u we obtain a mesh of invariant cells in the plane
separated by the barriers {2s

n, 2
u
n}n∈Z. The size of each cell depends only on the

vector field a.

5.3. Perturbations of the microscopic flow

Now consider the microscopic flow

θ̇ = f (x) + a(θ), θ ∈ T2. (31)

Lemma 3. Suppose f (x∗) = 0. There is an r > 0 such that for |x − x∗| < r ,

(a) there is a C1 family of non-degenerate critical points A(x), B(x) and C(x) in
T2 of the same type as A, B and C respectively, and

(b) both branches of W s(C(x)) (and W u(C(x))) terminate at A(x) (resp., B(x)).
(c) The barriers {2sn, 2un} continue to a family {2sn(x), 2un(x)}. The variation is

continuous and limx→x∗ dist(2sn(x), 2sn) = 0, uniformly in n.

The proof is almost the same (but simpler) than that of Lemma 5 below and is
omitted (details may be found in [35]). It should be noted that in Lemma 3 (c),
the variation in x may not be C1 (for example, see [19]). Lemma 3 allows us to
decompose R2 into a periodic mesh of invariant cells separated by barriers. This is
shown in Fig. 8. We denote the diameter of the largest cell by D(x0).
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a
c

b

Fig. 8. Barriers 2u (solid line) and 2s (dashed line) in the plane.

5.4. Persistence for ε > 0

In order to prove the uniform estimate (28) we prove that the barriers continue
for small ε > 0, and the size of the invariant cells is uniformly bounded.

To obtain an effective equation at x0 it is sufficient to consider the weak limits
in an arbitrarily small neighborhood of x0. Let χ : R → R be the C∞ cut-off
function

χ(s) =















1, 0 " s " 1

exp
(

1− s

2− s

)

, 1 < s < 2

0, 2 " s < ∞
(32)

χ(s) = χ(−s), −∞ < s < 0.

It can be shown that max(χ ′(s)) < 2. For any δ > 0, define the cut-off function
χδ : R2 → R

χδ(y, z) = χ
(y

δ

)

χ
(z

δ

)

, (33)

and consider the modified vector field in R2

z′ = f (x0 + ε(z − αε)χδ(εz)) + a(z)
def= f ε(x0, z) + a(z). (34)

The modified vector field agrees with (4) in the region ε|z| < δ, that is |x−x0| < δ.
It is also uniformly close to the microscopic vector field (5) over the entire plane.
Precisely,
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Lemma 4. The difference between the two vector fields is

(a) supz∈R2 |f ε(x0, z) − f (x0)| " C(ε + δ),
(b) supz∈R2 |Dzf

ε(x0, z)| " Cε.

The constant C depends only the Lipschitz constant of f in anO(δ) neighborhood
of x0.

Proof. Let Lip(f ) = max|x−x0|"4δ |Df (x)|. From (34)

|f ε(x0, z) − f (x0)| " Lip(f )ε|z − αε|χδ(εz)
" Lip(f )

(

ε|αε| +max
z
ε|z|χδ(εz)

)

"
√
2Lip(f )(ε + 2δ).

We used (32) and (33) in the last step. This proves (a). The gradient is estimated
using the chain rule.

|Dzf
ε(x0, z)|

= |Df (x0 + ε(z − αε)χδ(εz))
(

εχδ(εz) + ε(z − αε) ⊗ Dzχδ(εz)
)

|
" Lip(f )(ε + εmax

z
|(z − αε) ⊗ Dzχδ(εz)|) " C(x0, δ)ε. 34

The singular scaling in space prevents us from obtaining a better estimate in
Lemma 4(a). In particular, the modified vector field is not O(ε) close in the C0

norm, and it is necessary to use the cut-off functions to control the difference.
We now show that the barriers persist for small ε > 0. To simplify notation we

suppress the superscripts u, s and the dependence on x0.

Lemma 5. Let r be chosen as in Lemma 3 and suppose |x0 − x∗| < r . Let η > 0
be given. Then there exist δ(x0) and ε0(x0, δ) such that for ε ∈ [0, ε0] there is a
family of barriers, {2εn}n∈Z, for the flow of equation (34) and

sup
n
sup
ε
dist(2εn, 2n) " η.

Proof. It is sufficient to prove the persistence of an “unstable” barrier2un: the proof
for 2sn is identical. We prove persistence of the barriers by proving persistence of
the individual unstable manifoldsW u(ck) uniformly in k ∈ Z2.

Choose 0 < ρ " η so that B(bk, ρ) is strictly absorbing for all k. This is
possible, since in the limit ε = 0 all the sinks, bk , have the same linearization.
Then by the implicit function theorem and Lemma 4, for small δ > 0 and ε0 > 0,
each of these critical points persists for ε > 0, and the continuation bεk ∈ B(bk, ρ).
Similarly, the saddle points ck continue to cεk ∈ B(ck, ρ).

The periodicity of the limit also ensures that δ and ε may be chosen so that all
the local stable and unstable manifolds of bk and ck persist. In particular, B(bk, ρ)

remains a strictly absorbing ball and dist(W u(ck), W
u(cεk)) " C(δ + ε) within

B(ck, ρ). This follows from the persistence theorems of Fenichel [19].
A branch of the unstable manifold of c is shown in Fig. 9. Reducing ρ if

necessary, W u(c) is transverse to the circles S(c, ρ) and S(b, ρ). Thus, we can



216 Govind Menon

m

g

e

m’
b

b’

c

c’

Fig. 9. Persistence of a branch ofW s(c).

define a Poincaré mapP 0 : (e, g) → S(b, ρ) that maps an arc (e, g), with midpoint
m = Wu(c)

⋂

S(c, ρ), to S(b, ρ). For small δ and ε0, this continues to a Poincaré
map P ε. In particular, the map P ε takes mε = Wu(cε)

⋂

S(c, ρ) to S(a, ρ). The
time of flight between (e, g) and S(a, ρ) is finite, thus the trajectories ofm andmε

can be made closer than η. Furthermore, since all the ck are integer translates of c,
and the vector fields (34) and (5) are uniformly close, δ and ε0 > 0 can be chosen
independent of k, so that the analogous map P ε

k is defined on all integer translates
of the arc (e, g).

Combining the above steps we see that the stable manifolds persist and

dist(cl(W u(ck)), cl(W u(cεk))) " η. 34

Proof of Theorem 2. Let xε(t)
∗
⇀ x0(t) with x0(0) = x0 ∈ B(x∗, r). For any

δ > 0, there is a T and ε0 such that xε(t) ∈ B(x0, δ) for t ∈ [−T , T ], ε ∈ [0, ε0].
Thus, xε(t) solves the modified equation (34) within B(x0, δ). Let η = 1/4. We
use Lemma 5 to see that for suitable δ, ε0 > 0 the barriers persist, and the size of
the largest invariant cell is not greater thanD(x0) + 1. Thus we obtain the uniform
estimate (28). 34

6. Persistence of periodic orbits

In this section we derive macroscopic equations when at least one component
of f (x0) − a(θ) does not change sign. In this case we can study the problem using
circle diffeomorphisms. Our results of this section may be summarized as follows.
We derive the homogenized equation

ẋ(θ) = 1
T (x, θ)

(

1
ρ(x)

)

, (35)

whereρ is the rotation number of themicroscopic flow (defined below), andT (x, θ)

depends delicately onwhether ρ is rational or irrational. If ρ ∈ Q,ω(θ) is a periodic
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orbit and T (x, θ) depends on the time period ofω(θ) (see Theorem 4). If ρ ∈ R\Q,
T (x, θ) is an ergodic average that is independent of θ .

Under the assumption that x0 lies in a resonance band Sp/q = ρ−1{p/q} we
can prove this rigorously, with a minimal smoothness assumption. Let us state the
theorems at the outset.

Theorem 3. Suppose that A ∈ C2(T2), ρ(x0) is rational, and there is at least one
hyperbolic periodic orbit for the flow of (40) in T2. Then there exists δ > 0 and
T (δ) > 0 such that

v0(t) − v0
u0(t) − u0

= ρ

for all t ∈ [−T , T ], and any weak limit x0(t) = (u0(t), v0(t)) with x0(0) = x0.

The second theorem needs a slightly stronger hyperbolicity assumption, which is

Theorem 4. Suppose that A ∈ C2(T2), ρ(x0) is rational, and all periodic orbits
for the flow of (40) in T2are hyperbolic.

(a) If ω((θ0, ψ0)) = {γ s
k }, then

lim
t→0+

u0(t) − u0
t

= q

T s
k

. (36)

(b) If α((θ0, ψ0)) = {γ u
k }, then

lim
t→0−

u0(t) − u0
t

= q

T u
k

. (37)

Conditions (a) and (b) above are statements about the basin of attraction of the
microscopic flow: γ sk , (γ uk ) are stable (unstable) periodic orbits and T sk , T

u
k their

time periods. This theorem is the two-dimensional analogue of (25).We prove later
that the hypotheses of the theorem are satisfied for x0 ∈ Sp/q a.e. under the further
assumption that A ∈ C∞ (Remark 4).

Note that we have not proved (35) when ρ is irrational. This question remains
open.

6.1. Preliminaries

We will need to distinguish between the coordinates in this section, and the
notation is unfortunately cumbersome. At a first reading one may suppose for
simplicity that xε(0) = x0(0), for this simplifies most computations significantly.

The variable x denotes a point in R2 and (u, v) its components. The blow-up
transformation about x0 = (u0, v0) is written as

(y, z) = (u, v) − (u0, v0)

ε
+ (αε, βε), (38)
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where (αε, βε) = (u0, v0)/ε mod 1. The equations of motion are written as

y′ = f (x0 + ε((y, z) − (αε, βε))) + a(y, z), (39)
z′ = g(x0 + ε((y, z) − (αε, βε))) + b(y, z).

In the limit ε = 0 we have the microscopic vector field

y′ = f (x0) + a(y, z), (40)
z′ = g(x0) + b(y, z).

In the rest of this section we assume for concreteness that f (x0) > ‖a‖∞. Thus,
y′ > 0, and there are no critical points. Since y is increasing, the trajectories of
(39) are solutions to

dz

dy
= g(x0) + b(y, z)

f (x0) + a(y, z)
. (41)

We shall denote a solution to (41)with initial condition z(y0)=z0, byZ(y; (y0, z0)).
The graph {(y, Z(y; (y0, z0)))}y∈R is a trajectory of (40). Since y′ > 0 each trajec-
tory intersects the z-axis transversely at a single point, and it is sufficient to study
trajectories with y0 = 0. In this case, we simplify notation and write

Z(y; (0, z0)) = Zz0(y).

The solution Z is constrained by the periodicity. Suppose n = (ny, nz) ∈ Z2 and

(y1, z1) = (y0, z0) + (ny, nz).

Then

Z(y; (y1, z1)) = Z(y − ny; (y0, z0)) + nz. (42)

6.2. The rotation number

The properties of the homogenized vector field are strongly dependent on the
rotation number for the microscopic flow. Our results rely heavily on work by
Denjoy [16],Arnol’d [6], Brunovsky [13] andHerman [27]. In this section we
use only basic properties of the rotation number, but in the later sections the role
of the stronger theorems will be clear.

There is a huge literature on circle maps because of their mathematical appeal
and ubiquity in applications. Herman’s beautiful thesis is an authoritative source
on the subject of circle diffeomorphisms [27]. The first chapter ofDe Melo& van
Strien [15] provides a different perspective and notes on recent developments.
Yoccoz’s article is an extremely concise and elegant survey of the state of the art
(ca. 1989) [45].

Our approach and definitions are specific to the problem at hand. Following
Arnol’d [6] we define

Definition 1. The rotation number ρ = limy→∞
Zz0 (y)

y .
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The number ρ is well defined and is independent of z0 [7]. We may also consider
the Poincaré map, P , from {y = 0} to {y = 1} and an equivalent definition of the
rotation number is

ρ = lim
n→∞

P n(z) − z

n
.

It is more common to consider ρ0 = ρ mod 1 as the rotation number when studying
circle maps. We use Definition 1 since it has the natural interpretation of the slope
of the averaged vector field as in (35).

The rotation number ρ is a rational number if and only if (5) has a periodic
orbit. Suppose ρ = p/q, with gcd(p, q) = 1 (henceforth, we always assume this).
Then there is a periodic orbit Zz0 such that

Zz0(y + q) = Zz0(y) + p.

In this case we say that the flow is resonant. The following theorem character-
izes the direction of the weak limits in a resonant region, under an assumption of
hyperbolicity. The proof of this theorem relies on a construction of barriers as in
Theorem 2. In this case, the barriers are constructed using the hyperbolic periodic
orbit.

6.3. Modified equations

We choose δ > 0 as follows. We have assumed that f (x0) > ‖a‖∞. Hence,
f (x) > ‖a‖∞ for x ∈ B(x0, δ) if δ > 0 is small. Suppose xε(t)

∗
⇀ x0(t) and

x0(0) = x0. The speeds |ẋε(t)| are uniformly bounded. Hence, for any δ > 0 there
is a time T (δ) and ε0(δ) > 0 such that xε(t) ∈ B(x0, δ) for each t ∈ [−T , T ], and
ε ∈ [0, ε0]. As in Section 5 we use the modified vector field (34). In all that follows
we suppose that |t | < T (δ) so that all conclusions hold for the unmodified system.
We first introduce simpler notation. Let

f ε(y, z) = f (x0 + ε((y, z) − (αε, βε))χδ(ε(y, z))). (43)

The function gε(y, z) is defined similarly. If δ is small enough,

sup
y,z

|f ε(y, z) − f (x0)| " 1
2 (f (x0) − ‖a‖∞) . (44)

Hence,

f ε(y, z) − ‖a‖∞ ! f (x0) − ‖a‖∞ − |f ε(y, z) − f (x0)|
! 1

2 (f (x0) − ‖a‖∞) > 0.

It follows that

L|t2 − t1| " |uε(t2) − uε(t1)| " M|t2 − t1| (45)
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with

L = 1
2 (f (x0) − ‖a‖∞) (46)

M = 1
2 (3f (x0) + ‖a‖∞).

Thus, uε, and hence yε, increase monotonically with time, and the trajectories of
(34) also solve

dz

dy
= gε(y, z) + b(y, z)

f ε(y, z) + a(y, z)
. (47)

The solution to (47) through (yε(0), zε(0)) is denoted by Zε(y; (yε(0), zε(0))). In
the limit ε = 0 we drop the superscript for Z.

6.4. Proofs

Let xε(t) = (uε(t), vε(t)) converge weakly to x0(t). We use the same time
parametrization for microscopic coordinates, i.e., we write

(yε(t), zε(t)) = (uε(t), vε(t)) − (u0, v0)

ε
+ (αε, βε).

The change of scale is singular. Thus, though xε(0) → x0, the rescaled version
(yε(0), zε(0)) may diverge. The following lemma is used often to quell this minor
annoyance.

Lemma 6. Let t ∈ [−T , T ], t '= 0. Then

(a) limε→0 |yε(t)| = ∞,
(b) limε→0

zε(0)
yε(t) = 0,

(c) limε→0
yε(0)
yε(t) = 0.

Proof. We have |uε(t) − uε(0)| ! L|t | by (45). Therefore,

|yε(t)| =
∣

∣

∣

∣

(uε(t) − u0)

ε
+ αε

∣

∣

∣

∣

! |uε(t) − u0|
ε

− 1

! |uε(t) − uε(0)| − |uε(0) − u0|
ε

− 1

! 1
ε

(

L|t | −
∣

∣uε(0) − u0
∣

∣

)

− 1.

But |uε(0) − u0| → 0, and we have (a). To obtain (b), write
∣

∣

∣

∣

zε(0)
yε(t)

∣

∣

∣

∣

=
∣

∣

∣

∣

vε(0) − v0 + εβε

uε(t) − u0 + εαε

∣

∣

∣

∣

" |vε(0) − v0| + ε

L|t | − |uε(0) − u0| − ε
.

Since xε(0) → x0, we obtain (b). The proof of (c) is similar, and is omitted. 34
The next lemma is the crucial uniform estimate that we need to prove Theorem 3. It
says that we can estimate the solutions of (47) in terms of solutions to the periodic
limit (41).
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Lemma 7. Assume the hypotheses of Theorem 3. Then there exists an η0 > 0 such
that for each η ∈ (0, η0) we can find ε0(η) such that

sup
ε∈[0,ε0(η)]

sup
y∈R

|Zε(y; (y0, z0)) − Z(y; (y0, z0))| " 1+ 4η

uniformly in the initial conditions (y0, z0).

Proof. Let γ denote a hyperbolic periodic orbit in T2. Without loss of generality,
suppose that γ is attracting. The images ,−1{γ } are a family of curves in R2 that
are integer translates of one another. Let 2 be a curve in ,−1{γ } which passes
through [0, 1)2. We can write 2 as the graph of a C1 map ϕ : R → R. Then by
(42), ϕ(y + q) = ϕ(y) + p. For any η > 0 define the strip

S(ϕ, η) =
{

(y, z) ∈ R2
∣

∣

∣
|z − ϕ(y)| " η.

}

.

Since γ is hyperbolic, there is an η0 > 0, such that for each η ∈ (0, η0) the strip
of width η about γ is strictly absorbing and the vector field (5) is transverse to the
boundary ∂S(ϕ, η) (see Fig. 10). Precisely, let v(y, z) denote the vector field (5)
at (y, z) ∈ R2, and n±(y) denote the outward normal vectors to ∂S(ϕ, η) at the
points (y, ϕ(y) ± η). Then, it follows from the periodicity of (5) that

inf
y∈R,m∈Z

n±(y) · v(y, ϕ(y) ± η + m) " c(η) < 0,

where c(η) is some negative constant.
By Lemma 4, the vector field (47), denoted by vε, is O(ε + δ) close to (41) in

the C1 topology. Thus, there exist δ > 0 and ε0(δ, η) > 0 such that for ε ∈ [0, ε0],
we have

inf
y∈R,m∈Z

n±(y) · vε(y, ϕ(y) ± η + m) " c(η)

2
< 0.

Fig. 10. The absorbing strip of width η about 2.
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This shows that the strips S(ϕ, η) + m, m ∈ Z remain positively invariant. Thus,
for 0 " ε " ε0, R2 is separated by positively invariant strips of width 2η that are a
unit distance apart in the z-direction. This implies the lemma. 34
Proof of Theorem 3. Choose δ > 0 so that (44) and Lemma 7 are true, and define
T (δ) as in Section 6.3. Since xε(t) → x0(t) uniformly on [−T , T ],

lim
ε→0

vε(t) − v0
uε(t) − u0

= v0(t) − v0
u0(t) − u0

.

But by equation (38) and Lemma 6, the left-hand side is

lim
ε→0

zε(t) − βε
yε(t) − αε = lim

ε→0

zε(t)

yε(t)
.

We rewrite zε(t) using (41) and apply Lemma 7 to obtain

zε(t) = Zε(yε(t); (yε(0), zε(0))) = Z(yε(t); (yε(t), zε(0))) + O(1).

By Lemma 6(a), we see that it suffices to evaluate

lim
ε→0

Z(yε(t); (yε(0), zε(0)))
yε(t)

.

We exploit the periodicity of Z as follows. Let [(y, z)] ∈ Z2 denote the integer part
of (y, z). Let (θε, ψε) = (yε(0), zε(0)) − [(yε(0), zε(0))]. Then, by (42)

Z(y; yε(0), zε(0)) = Z(y − [yε(0)]; (θε, ψε)) + [zε(0)].

Applying Lemma 6 again, we see that

lim
ε→0

Z(yε(t); (yε(0), zε(0)))
yε(t)

= lim
ε→0

Z(yε(t) − [yε(0)]; (θε, ψε))

yε(t) − [yε(0)] .

Furthermore, (θε, ψε) ∈ [0, 1)2 so that

sup
y

|Z(y, (θε, ψε)) − Z(y; (0, 0))| " 2

uniformly in ε. Thus, by Lemma 6 the limit is

lim
ε→0

Z(yε(t) − [yε(0)]; (0, 0))
yε(t) − [yε(0)] = lim

y→∞
Z(y; (0, 0))

y
= ρ. 34
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6.5. Calculation of the limiting speed

Theorem 3 tells us ẋ0 is in the direction (1, ρ)t . Therefore, in order to compute
its magnitude, |ẋ0|, it is sufficient to evaluate u̇0. We make the further assumption
that all periodic orbits of themicroscopic floware hyperbolic.Then there are an even
number of periodic orbits on T2 which we denote by {γ s1 , . . . , γ sm, γ u1 , . . . , γ um}.
The superscripts “s” and “u” mean “stable” and “unstable” respectively.

We assume that δ and T (δ) are chosen as in Section 6.3. For 0 < ε " ε0(δ),
we may solve (47) for z as a function of y, and invert the blow-up transformation
(38) to obtain

u̇ = f (u, vε(u)) + a

(

u

ε
,
vε(u)

ε

)

, (48)

where

vε(u) = v0 − εβε + εZε(yε(u); (yε(0), zε(0))), (49)

with

yε(u) = u − u0
ε

+ αε, and (50)

(yε(0), zε(0)) = (uε(0), vε(0)) − (u0, v0)

ε
+ (αε, βε). (51)

Equation (48) can be inverted to obtain

∫ uε(t)

uε(0)

du

f (u, vε(u)) + a(u/ε, vε(u)/ε)
= t.

We take the limit ε ↓ 0 on the left-hand side, and use the uniform convergence of
uε(t) to u0(t) to obtain

lim
ε→0

∫ u0(t)

u0

du

f (u, vε(u)) + a(u/ε, vε(u)/ε)
= t. (52)

We shall compute the limit on the left-hand side using the microscopic flow. The
following sequence of lemmas progressively simplifies the calculation.

Lemma 8. The following inequatlity holds:

lim sup
ε→0

∣

∣

∣

∣

∫ u0(t)

u0

du

f (u, vε(u)) + a(u/ε, vε(u))

−
∫ u0(t)

u0

du

f (x0) + a(u/ε, vε(u))

∣

∣

∣

∣

" Ct2.
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Proof. Since f and uε are Lipschitz

|f (xε(s)) − f (x0)| " |f (xε(s)) − f (xε(0))| + |f (xε(0)) − f (x0)|
" Lip(f )(M|s| + |xε(0) − x0|),

by (45). The denominators in the integrands are bounded away from zero because
f (x) − ‖a‖∞ > 0 in B(x0, δ). Thus it is enough to estimate the difference

∫ u0(t)

u0

|f (u, vε(u)) − f (x0)| du " M

∫ |t |

0
|f (u(s), vε(u(s))) − f (x0)| ds

" Lip(f )M

∫ |t |

0
(Ms + |xε(0) − x0|) ds

" MLip(f )

(

Mt2

2
+ |t ||xε(0) − x0|

)

.

The linear term in |t | vanishes in the limit ε ↓ 0. 34

The phase of the initial conditions plays an important role in evaluating the
limit. As earlier, write

(yε(0), zε(0)) − [(yε(0), zε(0))] = (θε, ψε) ∈ [0, 1]2.

Thus, there exists a convergent subsequence (θεk , ψεk ) → (θ0, ψ0) ∈ [0, 1]2. The
limit in (52) exists for all ε, so it may be computed by evaluating a subsequential
limit. There are three distinct cases to consider:

(·1) (θ0, ψ0) lies on an attracting periodic orbit, γ sk , 1 " k " m;
(·2) (θ0, ψ0) lies on a repelling periodic orbit, γ uk , 1 " k " m;
(·3) (θ0, ψ0) lies in T2/{γ sk , γ uk }k=1,... ,m.

We begin with an analysis of the case when (θ0, ψ0) lies in the domain of attraction
of an attracting periodic orbit γ sk . The following lemmas have obvious analogues
for γ uk that we do not state explicitly (but see Theorem 4).

Lemma 9. Suppose ω((θ0, ψ0)) = {γ sk } and u ! u0. Let η ∈ [0, η0] be as in
Lemma 7. Then

lim sup
ε→0

∣

∣

∣
a
(u

ε
,
vε(u)

ε

)

− a(yε(u), ϕsk(y
ε(u)))

∣

∣

∣
" Lip(a)η.

Proof. Consider the flow in R2. The point (θ0, ψ0) ∈ [0, 1]2 is absorbed into the
η-strip about 2s ∈ ,−1{γ s

k }. Thus, there is a constant C(θ0, ψ0) such that

dist(Z(y; (θ0, ψ0)),,−1{γ sk }) " η for y ! C.

Since (θε, ψε) → (θ0, ψ0) we can choose ε0 > 0 so that for ε ∈ [0, ε0]

dist(Z(y; (θε, ψε)),,−1{γ sk }) " η for y ! 2C.
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This estimate is equivalent to

dist(Z(y − [yε(0)]; (yε(0), zε(0))),,−1{γ sk }) " η for y − [yε(0)] ! 2C

by the periodicity of Z (see (42)). We can say that the “time” y − [yε(0)] taken
to enter an absorbing strip is uniform over the initial conditions (yε(0), zε(0)).
By Gronwall’s inequality, solutions to (41) and (47) are O(ε + δ) close. Thus, for
small δ(η) > 0 and ε0(η, δ) > 0 the “time” taken for solutions of (47) to enter the
absorbing strip is not greater than 4C. Thus, we have the uniform estimate

dist(Zε(y − [yε(0)]; (yε(0), zε(0))),,−1{γ sk }) " η for y − [yε(0)] ! 4C.

(53)

By (50), (u, v)/ε = (yε(u), Zε(yε(u); (yε(0), zε(0)))) mod Z. Thus,

a

(

u

ε
,
vε(u)

ε

)

= a(yε(u), Zε(yε(u); (yε(0), zε(0))))

= a(yε − [yε(0)], Zε(yε(u) − [yε(0)]; (yε(0), zε(0)))).

Since u > u0, Lemma 6 asserts that yε(u) − [yε(0)] → ∞. The Lemma now
follows from (53). 34

Lemma 10. Assume the hypotheses of Lemma 9. Then

lim sup
ε→0

∣

∣

∣

∣

∫ u0(t)

u0

du

f (x0)+
−

∫ u0(t)

u0

du

f (x0) + a(yε(u), ϕs
k(y

ε(u)))

∣

∣

∣

∣

" Cηt.

Proof. By Lemma 9,

lim sup
ε→0

∣

∣

∣

∣

1
f (x0) + a(u/ε, vε(u)/ε)

− 1
f (x0) + a(yε(u), ϕs

k(y
ε(u)))

∣

∣

∣

∣

" Lip(a)η

(f (x0) − ‖a‖∞)2
. (54)

It remains to interchange the integral and the limit, and this is justified as follows.
Let 0 " gε " 1 be a sequence of measurable functions on [0, 1]. Applying Fatou’s
lemma to the functions 1− gε ! 0, we see that

1−
∫

lim sup
ε→0

gε dx =
∫

lim inf
ε→0

(1− gε) dx

" lim inf
ε→0

∫

(1− gε) dx = 1− lim sup
ε→0

∫

gε dx.

Therefore,

lim sup
ε→0

∫

gεdx "
∫

lim sup
ε→0

gεdx. (55)
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Combining (54) and (55) we see that the difference in the integrals is not greater
than

Lip(a)η

(f (x0) − ‖a‖∞)2
|u0(t) − u0| " MLip(a)ηt

(f (x0) − ‖a‖∞)2
. 34

We have thus reduced the problem to a computation with the microscopic flow.
Recall that the rotation number is p/q, graph(ϕsk) is a component of,

−1{γ sk }, and
ϕsk(y + q) = ϕsk(y) + p.

Lemma 11. Let T sk be the time period of γ
s
k . Then

lim
ε→0

∫ u0(t)

u0

du

f (x0) + a(yε(u), ϕsk(y
ε(u)))

= T sk
q

(u0(t) − u0). (56)

Proof. The time T sk is the time taken by y to increase from 0 to q. Therefore,

T s
k =

∫ q

0

dy

f (x0) + a(y, ϕsk(y))
. (57)

Change coordinates using (38). Then

∫ u0(t)

u0

du

f (x0) + a(yε(u), ϕsk(y
ε(u)))

=
∫

u0(t)−u0
ε +αε

0

ε dy

f (x0) + a(y, ϕsk(y))

= T sk
q

(u0(t) − u0) + O(ε).

34
Lemmas 8, 9 and 10 enable us to compute the speed u̇0.

Proof of Theorem 4. It is sufficient to prove (a). Let t > 0. By Lemma 8, and
Lemma 10, we have the estimate

lim sup
ε→0

∣

∣

∣

∣

∫ u0(t)

u0

du

f (x0) + a(yε(u), ϕsk(y
ε(u)))

−
∫ u0(t)

u0

du

f (u, vε(u)) + a(u/ε, vε(u))

∣

∣

∣

∣

" C(ηt + t2). (58)

But the limits of both integrals have been computed explicitly in equations (52) and
(36). Thus, (58) can be rewritten as

∣

∣

∣

∣

T sk
q

u0(t) − u0
t

− 1
∣

∣

∣

∣

" η + Ct.

Letting t → 0, we find
∣

∣

∣

∣

∣

lim sup
t→0+

u0(t) − u0
t

− lim inf
t→0+

u0(t) − u0
t

∣

∣

∣

∣

∣

" q

T sk
η.
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The left-hand side is independent of η. Hence, u0(t) is differentiable from above
with limit q/T sk . 34

The point x0 has been chosen so that all periodic oribits for the microscopic
vector field (5) are hyperbolic. If δ is sufficiently small, {γ sk , γ uk }, 1 " k " m

and {T sk , T uk } continue for x ∈ B(x0, δ) in a C1 manner to the periodic orbits
{γ sk (x), γ uk (x)} with periods {T sk (x), T uk (x)}. The function x0(t) is differentiable
a.e. by Rademacher’s theorem. Thus, for a.e. t ∈ [−T (δ), T (δ)] the upper and
lower derivatives ẋ0± are equal and the derivative

ẋ0(t) ∈
(

q

p

) {

1
T s

k (x0(t))
,

1
T u

k (x0(t))

}

1"k"m

. (59)

6.6. Irrational rotation number

If ρ ∈ R\Q, and a is C2 the microscopic flow is ergodic. In this case, there
are no underlying hyperbolic periodic orbits, and we cannot use these techniques
to obtain a homogenized vector field. However, it is natural to proceed by analogy
and compute the limiting equation (35). We may rewrite T (θ) as

T (θ) = lim
u→∞

1
u

∫ u

0

du

f (x0) + a(u, Z(u; θ)) , (60)

a form that generalizes naturally to irrational ρ. When the flow is ergodic the limit
above exists for all θ and is constant.

7. Weak continuity of invariant measures

In this section we show that the “vector field” (35) is continuous at points x0
where ρ(x0) ∈ R\Q. This follows from the following theorem on weak continuity
of the invariant measures for C2 circle maps with irrational rotation number.

Theorem 5. Let Pt : S1 → S1, t ∈ [0, 1], be a one-parameter family of orienta-
tion-preserving circle homeomorphisms such that

(a) P = P0 ∈ C2 and ρ(P ) ∈ R\Q,
(b) limt→0 ‖Pt − P ‖C0 = 0.

Let µt be probability measures invariant under Pt . Then the measures µt converge
weakly toµ (writtenµt ⇀ µ), whereµ is the unique probability measure invariant
under P .

Remark 2. The maps Pt need not be C2, and the measures µt need not be unique.

By continuity of the limiting vector field we mean the following.
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Corollary 1. Suppose ρ(x0) ∈ R\Q and A, F ∈ C3. Then

lim
x→x0

1
T (x, θ)

(

1
ρ(x)

)

= 1
T (x0)

(

1
ρ(x0)

)

uniformly in θ ∈ T2.

Weak convergence of measures is characterised by any of the following equivalent
definitions (see [10, Section 2]):

(·1) limt→0
∫

S1 f dµt =
∫

S1 f dµ, for any f ∈ C(S1);
(·2) µ(F) ! lim supt→0 µt(F ) for all closed F ;
(·3) µ(G) " lim inf t→0 µt(G) for all open G;
(·4) µ(B) = limt→0 µt(B) for Borel sets B with µ(∂B) = 0.

The problem may be reduced to the study of irrational rotations as follows.A Borel
measure, ν, and a homeomorphism, h, together induce a measure h∗ν defined on
any Borel set B by

h∗ν(B) = ν(h(B)).

It is easy to check that µt ⇀ µ is equivalent to h∗µt ⇀ h∗µ. Since P is C2,
it follows from Denjoy’s theorem that P is topologically conjugate to the ergodic
translation Rρ : x 7→ x + ρ. That is, there is a homeomorphism h of S1 so that
h ◦ P ◦ h−1 = Rρ . Thus, to establish Theorem 5 it is sufficient to suppose that
P = Rρ .

Since µt(S
1) = 1, the family of measures µt is weakly compact and tight,

so that there exists a subsequence (also denoted µt ) that converges weakly to a
probability measure µ∗. We must prove that µ∗ is µ, and because the invariant
measure is unique, it suffices to show that µ∗ is invariant under P . The proof
follows from the following estimate.

Proposition 2. For any l > 0 let

ηl = sup
I
lim sup

t→0
µt(I ), (61)

where the suprememum is taken over all closed intervals I ⊂ S1 with m(I) " l.
Then

lim
l→0

ηl = 0. (62)

The proof of Proposition 2 requires some estimates, andwe return to it in amoment.
Theorem 5 is obtained from it as follows.

Proof of Theorem 5. Firstly, it is an immediate consequence of Proposition 2
that µ∗ is non-atomic. Therefore, property (·4) of weak convergence implies that
µ∗(G) = limt→0 µt(G) for any open interval G. Hence,

µ∗(G) = lim
t→0

µt(G) = lim
t→0

µt(Pt (G))

" lim sup
t→0

[µt(P (G)) + µt(Pt (G)\P(G))] .
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Since µ∗(P (G)) = limt→0 µt(P (G)), we see that

µ∗(G) " µ∗(P (G)) + lim sup
t→0

µt(Pt (G)\P(G)).

Now, it follows from Proposition 2 that the second term is zero, so that we have
µ∗(G) " µ∗(P (G)). Repeating the argument with Pt replaced by P−1

t , we find
that µ∗(G) " µ∗(P−1(G)) or µ∗(P (G)) " µ∗(G). Thus, µ∗(P (G)) = µ∗(G)

for all open intervalsG, and hence for all open setsG. Taking complements of open
sets, we find µ∗(P (K)) = µ∗(K) for all closed sets K .

Let η > 0. Any Borel set B may be approximated by open and closed sets so
that K ⊂ B ⊂ G, and

µ∗(G) − η " µ∗(B) " µ∗(K) + η.

Clearly, µ∗(P (K)) " µ∗(P (B)) " µ∗(P (G)). Combining these estimates, we
have

−η " µ∗(B) − µ∗(P (B)) " η.

This shows that µ∗ is an invariant measure for P . 34

7.1. Proof of Proposition 2

In the following lemmas we fix a rational number c/d and a closed interval
I = [a, a + c/d]. The strategy of the proof is to estimate lim supt→0 µt(I ) using
the invariance of µt and the known limit P0 = Rρ . Since we are interested in the
limit m(I) → 0, we shall suppose that c/d < ρ.

Definition 2. For (x, t) ∈ I × [0, 1] we define the first return time under the map
Pt by

Nt(x) = inf
k!1

{P k
t (x) ∈ I }.

Lemma 12. The return time Nt(x) is jointly lower semicontinuous in x and t .

Proof. Evidently, Nt(x) '= −∞. If Nt(x) is finite, then by definition P k
t (x) ∈

S1\I for 1 " k " Nt(x) − 1, and therefore for y near x, and s near t , we
have P k

s (y) ∈ S1\I for 1 " k " Nt(x) − 1. Thus, Nt(x) " Ns(y), and hence
Nt(x) " lim infy→x,s→t Ns(y). Finally, suppose Nt(x) = +∞, but
lim infy→x,s→t Ns(y) = N̄ < ∞. Then there exists a sequence yn → x and sn → t

such that Nsn(yn) = N̄ . By the definition of Nt this means that P N̄
sn

(yn) ∈ I . But
then, limn→∞ P N̄

sn
(yn) = P N̄

t (x) ∈ I , so thatNt(x) " N̄ < ∞. This contradiction
shows that lim infy→x,s→r Ns(y) = ∞. 34

Corollary 2. There exists xt ∈ I so that Mt
def= infx∈I Nt (x) = Nt(xt ).

The following lemma is a consequence of the monotonicity of circle maps.



230 Govind Menon

Lemma 13. For t = 0, the minimum M0 is attained on a closed interval J ⊂ I

with nonempty interior. Furthermore, M0 is independent of a, and it depends only
on the length of I .

Proof. Observe that M0 must be finite, since P = Rρ is an ergodic transla-
tion. Therefore, P M0(I ) is a closed interval with P M0(I )

⋂

I '= φ. Furthermore,
P k(a) '= a or a + c/d for any k. Thus, P M0(I )

⋂

I is a closed interval with
nonempty interior. Then J is the interval I

⋂

P−M0(I ). The second assertion is
clear: Rρ is spatially uniform. 34

Lemma 14. There exists t0 ∈ [0, 1] such that Mt = M0 for 0 " t " t0.

Proof. By the definition of M0, we have P k
0 (I )

⋂

I = φ for 0 " k " M0 − 1.
Therefore, for small t0 we must have P k

t (I )
⋂

I = φ, t ∈ [0, t0], 0 " k " M0−1 .
It follows that for any y ∈ I , we haveNt(y) ! M0, and henceMt = infy∈I Nt (y) !
M0.

Let J = [x1, x2] be as in Lemma 13. Let J ′ = [y1, y2]with x1 < y1 < y2 < x2.
Then for small t we haveP

M0
t (J ′) ⊂ I , thereforeNt(y) " M0 for y ∈ J ′. It follows

thatMt = infy Nt (y) " M0. 34

Lemma 15. The following inequality holds:

lim sup
t→0

µt(I ) " 1
M0

.

Proof. Let t ∈ (0, t0] so thatMt = M0. Since µt is an invariant measure, there is
xt such that

µt(I ) = lim
n→∞

1
n

n−1
∑

k=0
χI (P

k
t (xt )),

whereχI is the characteristic function for the interval I . Let {b1b2 . . . bn . . . } denote
the binary string {χI (P

k
t (xt ))}. If bi = 1 then bi+j = 0 for 1 " j " Mt , by the

definitions of the first return time, andMt . Therefore, if we evaluate the limit along
a subsequence of the form n = pMt we have

µt(I ) = lim
p→∞

1
pMt

pMt−1
∑

k=0
χI (P

k
t (xt )) " 1

Mt
= 1

M0

for 0 < t " t0. 34

Lemma 16. Let In be a sequence of closed intervals with lengthm(In) = cn/dn →
0. Then M0(In) → ∞.

Proof. Suppose there are intervals In such that supn M0(In) < ∞. Passing to a
subsequence we may suppose that M0(In) = M < ∞ for all n. Furthermore,
since M0(I ) depends only on the length of I we may translate all the intervals
In so that they are nested, i.e., In+1 ⊂ In for all n. By Lemma 13 we know that
Jn = P M(In)

⋂

In is a nonempty compact interval and Jn+1 ⊂ Jn for all n, so that
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⋂∞
n=1 Jn '= φ. Since, the intervals In are shrinking, this intersection is a singleton,

say {p} and {p} = ⋂∞
n=1 In = ⋂∞

n=1 P M(In) = {P M(p)}, so that we have a
periodic orbit. This contradicts ρ ∈ R\Q. 34

We have proved Proposition 2 when m(I) = c/d ∈ Q. Let m(I) be irrational.
Then we choose a sequence of intervals [ak, ak + ck/dk] ⊃ I , with

⋂∞
k=1[ak, ak +

ck, dk] = I , and apply Lemma 15. This completes the proof of Proposition 2.

Remark 3.We have not considered the question of higher regularity of the con-
vergence. For example, suppose Pt is a Lipschitz path in C0(S1) at 0, that is
‖P0 − Pt‖∞ " C|t |. An equivalent definition of the rotation number is (see [45])

ρ(P0) =
∫

S1
(P0(θ) − θ) dµ0 ≡ 〈P0 − Id, µ0〉.

Brunovsky has shown that |ρ(Pt ) − ρ(P0)| " ‖Pt − P0‖∞ when P0 is an ir-
rational rotation [13]. Therefore, |〈P0, µ0〉 − 〈P0, µt 〉| " 2‖P0 − Pt‖∞ " C|t |,
so certain functionals of the invariant measure certainly have higher regularity.
It is also amusing to use Theorem 5 and this definition to show that the rotation
number is continuous at x0. Since Pt → P0 in C0(S1) and µt ⇀ µ0, by the well-
known combination of weak and strong convergence 〈Pt , µt 〉 → 〈P0, µ0〉. Thus,
ρ(Pt ) → ρ(P0).

7.2. Proof of Corollary 1

Proof. We extend Theorem 5 to flows as follows. Fix x0 ∈ R2 and consider the C2

vector field, (y′, z′) = (f, g)(x0)+ (a, b), on the torus with y′ > 0 as in Section 6.
For any α ∈ [0, 1) we have a Poincaré map Pα : {y = α} → {y = α + 1}. Notice
that Pα are diffeomorphic and have the same rotation number ρ ∈ R\Q.

Let g : T2 → R be a continuous function. For any θ ∈ [0, 1)2 the limit
limu→∞ 1

u

∫ u
0 g(s, Z(s; θ))ds exists. For brevity of notation we drop the depen-

dence on θ . Then, the limit can be rewritten using the periodicity of g as

lim
n→∞

1
n

∫ 1

0

n−1
∑

k=0
g(α, P k

α (Z(α)) dα =
∫ 1

0

∫ 1

0
g(α, β) dµα(β) dα, (63)

where µα is the unique invariant probability measure for Pα . Thus the invariant
measure on the torus factors into Lebesgue measure ×µα .

Let xn → x0. It is clear that the corresponding Poincaré maps Pα(xn) → Pα .
Therefore, by Theorem 5, any corresponding invariant measures µα,n ⇀ µα . A
continuous function on the torus can be written as the limit of a sum of products
of the form g(α, β) = g1(α)g2(β). For any product of this type we have, by the
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dominated convergence theorem,
∫ 1

0

∫ 1

0
g1(α)g2(β) dµ(β) dα =

∫ 1

0
g1(α)

∫ 1

0
g2(β) dµ(β) dα

=
∫ 1

0
g1(α)

(

lim
n→∞

∫ 1

0
g2(β) dµα,n(β)

)

dα

= lim
n→∞

∫ 1

0
g1(α)g2(β) dµα,n(β) dα.

Therefore, the invariantmeasures for the flow convergeweakly. In particular, choos-
ing g(α, β) = 1/(f (x0)+ a(α, β))we see that the time periods T (xn, θ) converge
to T (x0), and since ρ(xn) → ρ(x0), the homogenized vector field (35) is continu-
ous at irrationals. 34

8. The bifurcation problem

For generic A ∈ Cr(T2), r ! 3, what can we say about the bifurcations of the
vector field

θ ′ = %− ∇A(θ) = %+ a(θ) (64)

as % ∈ R2 varies? This may be considered the simplest problem, since F(x) =
|x|2/2 is, in some sense, the simplest macroscopic energy. The condition r ! 3 is
imposed to discount Denjoy’s counterexample [16]. It is clear from the previous
sections that the qualitative nature of the microscopic flow strongly influences
the macroscopic dynamics. Thus, knowledge of the bifurcation diagram is but a
preliminary step in the determination of the weak limits and the study of a two-
parameter bifurcation problem arises naturally. Our results here are incomplete
since the problem of generic bifurcations in two-parameter circle maps is not fully
understood. In fact, even the basic problem of generic properties of one-parameter
circle maps is not completely understood. Brunovsky studied this problem in
1974 [13], but there was a subtle gap in his proof pointed out twenty years later
by de Melo & Pugh [14]. Nevertheless, by combining known results and some
heuristic arguments, we can obtain a good idea of the complexity of the averaged
equations.

8.1. Bifurcation of circle maps

In the notation of Section 6 we restrict attention to the case where y′ = %1 +
a(y, z) > 0. We only study ρ(%) in the open region U = {% ∈ R2|%1 > ‖a‖∞}.
This analysis extends immediately to the other case. It is more convenient to work
with the Poincaré maps P : R × U → R, where P = P(·, %) is the Poincaré map
from {y = 0} to {y = 1} of the flow for (64).

Let us recall some well-known definitions and results [6,13,27]. A continuous
one-parameter family of circle maps, Pt , t ∈ [0, 1] is said to be increasing if for
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each x ∈ R, Pt1(x) > Pt2(x) when t1 > t2. Decreasing paths are defined in a
similar manner. Notice that for fixed%1, the family P(· , %) is an increasing family
in %2.

Lemma 17. Fix %1 and consider the increasing family P(%1,·). Then,

(i) ρ is a continuous and increasing function of %2 with range R;
(ii) ρ−1{α} is a singleton for all α ∈ R\Q.
(iii) Let Jp/q(%1) = {%2|ρ(%) = p/q}. Then Jp/q(%1) has nonempty interior if

and only if P q
% '= Rp, where Rp : x 7→ x + p.

(iv) If %2 ∈ Int(Jp/q(%1)), then there is at least one hyperbolic cycle of periodic
points.

Proofs can be found in [6,13,27]. All of the properties are direct consequences of
the monotonicity of circle maps. These results hold for any vector field a. We are
specifically interested in a = −∇A, and results that hold for generic A : T2 → R.
Since, it is easier to study one-parameter families, we begin with the following
proposition.

Proposition 3. Fix %1 > ‖a‖∞. Then for A in a residual subset of Cr(T2),
r ! 3, all the intervals Jp/q(%1), p/q ∈ Q have nonempty interior.

Proof. Let p/q ∈ Q. We show that Op/q = {A ∈ Cr(T2)|Int(Jp/q(%1)) '= φ} is
open and dense. The set Op/q is clearly open. Let A be chosen so that Jp/q(%1) is
a singleton. Let P0 denote the corresponding Poincaré map. Then P

q
0 (x) = x + p

for all x by Lemma 17 above. Thus every point lies on a periodic orbit. To prove
the Proposition it suffices to construct Aε ∈ Cr(T2) that is O(ε) close to A, has
rotation p/q, and whose Poincaré map does not satisfy P

q
ε (x) = x + p for all x.

We shall accomplish this by a perturbation that destroys at least one periodic orbit,
but not all.

Let γ0 be a periodic orbit for A. In general, γ0 is only a Cr−1 curve. However,
we may choose a C∞ curve γ that is arbitrarily close to γ0 in the Cr−1 topology.
Further, we may choose a C∞ coordinate system, (t, n), in a small neighborhood
of γ where (t, n) denote the tangential and normal components respectively. Let
χ : T2 → R be a C∞ cut-off function that is 1 in the strip of width δ about γ , and
0 outside the strip of width 2δ. Let ψ : T2 → R be defined in a 2δ neighborhood
of γ by ψ(t, n) = n, and extended continuously to the rest of the torus. Then
Aε = A + εψχ is Cr for sufficiently small δ > 0, and ‖Aε − A‖Cr " ε‖ψχ‖Cr .
Furthermore, ∇Aε · n(θ) = ε for all θ ∈ γ . It follows that ∇Aε · n0(θ) > ε/2 for
all θ ∈ γ0 (here n0 denotes the normal to γ0), if γ is chosen sufficiently close to
γ0. In particular this means that P

q
ε (x) > x +p, where x denotes the starting point

γ0
⋂{y = 0}, and we have destroyed the periodic orbit γ0. On the other hand, for

small δ the perturbation is localized, and all periodic orbits ofA outside the support
of ψ persist. Thus, the rotation number is unchanged by this perturbation. Finally,
by Lemma 17 (iii), the intervals J εp/q have nonempty interior, and Aε ∈ Op/q . 34

Corollary 3. The conclusions of Proposition 3 remain valid for%1 in a countable,
dense subset of (|a|∞,∞).
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Thus, ρ is typically a singular function on vertical slices. However, we can control
the regularity of ρ with an extra degree of smoothness. Suppose that A ∈ C4(T2),
ie. P% ∈ C3. Then

(a) ρ(%1, ·) is absolutely continuous;
(b) ρ−1(R\Q) has positive measure.
(c) For %2 in a set of full measure we have one of the following. Either ρ ∈ Q,

or ρ ∈ R\Q and satisfies the diophantine condition: for every β > 0 there is a
Cβ such that

∣

∣

∣

∣

ρ − p

q

∣

∣

∣

∣

! Cβ

q2+β
.

Consequently, by the theorems of Herman and Yoccoz, the map P% is C2−β

conjugate to a rotation.

Properties (a) and (b) are results ofHerman [26]; (c) is due toTsujii [42].Applying
(c) to every vertical slice, and using Fubini’s theorem, we see that for almost all
% ∈ U the microscopic flow has a periodic orbit, or is smoothly linearizable. Let
us now obtain finer information on the structure of resonance zone boundaries.

8.2. Transversality conditions

In this section we only work with C∞ functions. Fix 0 < p/q ∈ Q. We define
Sp/q , the resonance zone of order p/q, to be the set ρ−1{p/q} ⊂ U . The zone Sp/q

is closed, and% ∈ Sp/q if and only if there exists x ∈ R such that P q(x) = x + p;
e Sp/q is the natural projection onto U of the set

Vp/q = {(x,%) ∈ R1 × U |P q(x) − (x + p) = 0},

and we write Sp/q = π2 ◦ Vp/q . The boundaries of the resonance zones are degen-
erate critical points, so consider the following subset of Vp/q :

Wp/q = {(x,%) ∈ Vp/q |DP
q
%(z) − 1 = 0}.

Theorem 6. (a) For every A ∈ C∞(T2), Vp/q is a two-dimensional C∞ submani-
fold of R1 × U .

(b) For A in a residual subset of C∞(T2),Wp/q is a one-dimensional submanifold
of R1 × U .

Remark 4. Of particular interest are the boundaries of the resonance zones. The
projection of the manifoldWp/q intoU are smooth curves that may meet at isolated
cusps. Away from the cusps we have saddle-node bifurcations. Moreover, this also
shows that for x ∈ Sp/q a.e. the hypotheses of Theorem 3 and Theorem 4 are
satisfied for A ∈ C∞.
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Proof. The proof uses basic transversality theory. Part (a) is a simple consequence
of the regular value theorem [28, Theorem 3.2, p. 22], whereas Part (b) follows
from an infinite dimensional version of the parametrized transversality theorem [28,
Theorem 2.7, p. 79]. In both cases, we write Vp/q and Wp/q as zero-level sets of
suitable C∞ maps, and it suffices to show that zero is a regular value.

The maps are as follows. Let g : R × U :→ R1 by g(x,%) = P q(x,%, A) −
(x + p). Then Vp/q = g−1{0}. To prove (b) we consider the map G : R × U ×
C∞(T2) → R2 given byG(x,%, A) = (P q(x,%, A)−(x+p), D1P

q(x,%, A)−
1). We show that G is transverse to (0, 0). In this case, the parametrized transver-
sality theorem allows us to conclude that for a residual set of A ∈ C∞(T2), the
restricted map GA : R × U → R2 is transverse to zero. This will prove (b).

Let Z(y; x,%, A), (or Zx(y) for brevity) denote the solution to

dz

dy
= %2 + b(y, z)

%1 + a(y, z)
, z(0) = x. (65)

Then P q(x,%, A) = Zx(q). We use the following notation. D1G is the derivative
with respect to x, D2G and D3G are the derivatives with respect to %1 and %2
respectively, and D4G is the derivative with respect to A.

We calculate the derivatives using the equation of variations. First, the derivative
with respect to x is given by

dDxZx

dy
= ∂z

(

%2 + b(y, z)

%1 + a(y, z)

)
∣

∣

∣

∣

z=Zx(y)

DxZx
def= h(y)DxZx. (66)

Let H(y) =
∫ y
0 h(s)ds. Then DxZx(y) = eH(y)DxZx(0) = eH(y). In particular,

D1g = eH(q) − 1.
We next calculate the derivative D2g. Differentiating (65) with respect to

%i, i = 1, 2 we obtain the equation of variations,

dD%i Zx

dy
= h(y)D%i Zx + hi(y), i = 1, 2, (67)

where

h1(y) = − (%2 + b(y, Zx(y)))

(%1 + a(y, Zx(y)))2
, h2(y) = 1

%1 + a(y, Zx(y))
. (68)

Solving (67) we find that

D2G =
∫ q

0
eH(q)−H(y)h1(y)dy, D3G =

∫ q

0
eH(q)−H(y)h2(y)dy. (69)

In particular, we have D2g < 0 and D3g > 0. This proves (a).
Notice that we did not need the freedom in A for (a). To prove (b) we will need

to vary A. We show that the derivative DG, written explicitly as

DG =
(

D1G D2G D3G D4G
D2
1G D2D1G D3D1G D4D1G

)

,
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has (0, 0) as a regular value. Notice that for (x,%, A) ∈ G−1{(0, 0)} we have
D1G = 0, D2G, D3G '= 0. Thus in order to prove the result it suffices to show that
there is a direction η ∈ C∞(T2) such that 〈D4G, η〉 = 0 and 〈D1D4G, η〉 '= 0. The
derivativeD4G(x,%, A) is a bounded linear operatorwhose action on η ∈ C∞(T2)
is denoted by the duality pairing 〈· , ·〉. It satisfies the equation of variations

d〈DAZx, η〉
dy

= h〈DAZx, η〉 + h1∂yη + h2∂zη, (70)

with the solution

〈DAZx(y), η〉 =
∫ y

0
eH(y)−H(y′) (

h1∂yη + h2∂zη
)

dy′. (71)

We will choose a function η so that∇η = 0 on (y, Zx(y)). In this case, the solution
to (71) is 〈DAZx(y), η〉 ≡ 0 which implies 〈D4G, η〉 = 0. A similar calculation
for the second derivative 〈DxDAZx, η〉 gives the equation of variations

d〈DxDAZx, η〉
dy

= h〈DxDAZx, η〉 + 〈DAZx, η〉DxhDxZx

+ (Dxh1∂yη + Dxh2∂zη) + (h1Dx∂yη + h2Dx∂zη).

If we choose η as earlier, this simplifies to

d〈DxDAZx, η〉
dy

= h〈DxDAZx, η〉 + (h1Dx∂yη + h2Dx∂zη), (72)

with the solution

〈DxDAZx, η〉(y) =
∫ y

0
eH(y)−H(y′)(h1Dx∂yη + h2Dx∂zη)dy′. (73)

It remains to construct η. The preimage of Zx in T2 is a periodic orbit, say γ .
Choose a C∞ coordinate system (t, n), and a cut-off function ψ in the vicinity of
γ as in Proposition 3, and define

η = 1
2ψn.2.

Then ∇η = 0 on γ , and the only nonzero second derivative of η is ∂2nη ≡ 1 on γ .
The bracketed term in (73) is as follows. First

Dx∂yη(y, Zx(y; x,%, A) = ∂2yzη(y, Zx(y))DxZx(y, Zx(y)) = eH(y)∂2yzη.

Similarly,Dx∂zη = eH(y)∂2z η. The derivatives ∂2yzη and ∂2z η are obtained by chang-
ing basis from (t, n) to (y, z) and using ∂2nη = 1. Using the explicit expressions for
h1 and h2 and the fact that t is parallel to the vector field on γ we find, after some
calculation, that

〈DxDAZx, η〉(y) = eH(y)

∫ y

0
(%1 + a(y, Zx(y

′)))dy′.

In particular D1D4G = 〈DxDAZx, η〉(q) > 0. 34
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8.3. Behavior at ∞

In the limit when %i 9 1, the bifurcation problem can be understood more
completely, as it reduces to the bifurcation of two parameter circle maps of the kind
studied by Arnol’d [6].

We take the limit %1 → ∞ along the line %2/%1 = α. Equation (65) can be
rewritten as

dz

dy
=
α + b(y, z)

%1

1+ a(y, z)

%1

= α + 1
%1

b − αa

1+ a

%1

.

Let η = 1
%1
. The Poincaré map associated with this differential equation is

Pα,η(x) = Rα(x) + ψ(x, η) = x + α + ηψ(x, η), (74)

whereψ is 1-periodic in x. In the limit η = 0, Pα,η is the rigid rotationRα . Arnol’d
studied (74) for analytic ψ . For typical ψ we have the following properties. For
small η > 0, the set {α|ρ(α, η) ∈ Q} consists of a countable number of nontrivial
closed intervals. However, for α in a nowhere dense set of almost full measure,
the rotation number is irrational. Theorem 2 of [6] states that for irrational α
satisfying the diophantine condition |α − p/q| ! K|q|−3, there exists an analytic
curve α(η) so that ρ(Pα(η),η) = α for small η. These curves separate the resonant
regions. The width of the resonant zones shrinks rapidly to zero as η → 0, and
they have picturesque names such as horns [25], tongues [6] or wedges [23]. The
assumptions of analyticity are not necessary, and forψ ∈ C1, the boundaries of the
resonance zones are Lipschitz [27]. Hall showed that the irrational curves α(η)

and the resonance zone boundaries are differentiable at η = 0 [25].
The above limit is important for the following reason. Consider the homoge-

nization of

ẋ = −x + ra
(x

ε

)

, x ∈ R2, ∇A = a : T2 → R2. (75)

We may assume that ‖a‖∞ = 1. The parameter r is a measure of the amplitude of
the wiggles, and we term it the roughness. We are interested in the limit r → 0.All
the homogenization problems for r > 0 are equivalent to the case r = 1. Indeed
let x = ry, so that

ẏ = −y + a
( y

rε

)

,

and for fixed r , the homogenized limit ε → 0 is the same as (75) with r = 1.
Therefore, for small r > 0, most of the macroscopic phase space R2 is filled with
Arnol’d tongues and their complements.
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8.4. Variation of ρ on Lipschitz paths

Let h : [0, 1] → Dr(S1), r ! 3 be a C1 path in the space of orientation-
preserving circle diffeomorphishms. Associated with h we can define the map
ρ : t 7→ ρ(h(t)). Herman showed that if ρ(0) '= ρ(1), and ρ is of bounded
variation, then ρ is absolutely continuous. The proof requires the full strength of
Herman’s linearization theorems.

A careful examination of Herman’s proof shows that it is sufficient for the paths
to be uniformly Lipschitz (see [26, Section 4, Section 6]), as the C1 hypothesis is
only used to derive a uniform Lipschitz estimate. The theorem may then be applied
to any weak limit x0(t), for these define Lipschitz paths in Dr(S1) in a natural
way. Therefore, if ρ(x0(t)) is of bounded variation, it follows that it changes in an
absolutely continuous manner on a weak limit x0(t). But ρ(t) is itself the direction
of the tangent ẋ0(t), and this gives us a highly nontrivial improvement of the
regularity of x0(t). This “proof” is incomplete, since we have not proved that (35)
holds when ρ(t) ∈ R\Q or that ρ(x0(t)) is BV.

8.5. Bifurcations of equilibria

There are some simplifications in the bifurcation analysis for equilibria. Let y∗
be an equilibrium. The linearization of (64) at y∗ is

v′ = Da(y∗)v. (76)

Anecessary condition for a local bifurcation of y∗ is thatDa(y∗) be non-degenerate.
But Da(y∗) = −D2A(y∗), the Hessian matrix of A at y∗. The Hessian matrix is
symmetric and its eigenvalues λi, i = 1, 2 must be real. Let γi = {y ∈ T2|λi(y) =
0}. For generic a we can choose γi to be continuous curves that are smooth except
when they intersect each other. For a local bifurcation of equilibria to occur, they
must lie on the curvesγi . Let us call theγi , curves of degeneracy. If a rest pointy∗ lies
on a curve of degeneracy, then a bifurcation must occur as we vary%. This property
allows us to determine curves in the %-plane that correspond to bifurcations. Let

2i = {% ∈ R2|% = −a(y) for some y ∈ γi}.

Thus 2i is the negative of the range of a on the curve of degeneracy. Typically,
we expect that 2i are themselves continuous closed curves. The curves 2i cannot
intersect B(0, r), for if % ∈ B(0, r) then all rest points are non-degenerate. We
can use a homotopy argument to prove that 2i must surround the origin. Suppose
this were not true. Then we could draw a line from the origin to infinity, say
t%, 0 " t < ∞, that does not intersect any of the 2i . Let n0 be the number of
zeros of a(y). Then the set Z = {t ∈ [0,∞)|a(y) + t% has n0 zeros} is closed.
But Z is also open. This is because t% never hits 2i , ensuring that all zeros of
a + t% have non-degenerate linearization. Thus they can be uniquely continued
for a neigbhorhood (t − η, t + η) and are the only zeros in this neighborhood.
Thus, Z = [0,∞) which contradicts our earlier conclusion that all zeros vanish as
|%| → ∞.
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9. Transport equations

The wiggly energy problem admits a formulation in terms of a linear PDE
(partial differential equation) with oscillating coefficients. We might reasonably
expect that homogenization methods should play some role in this problem. In this
section we show that these methods do not provide sufficiently fine information.

9.1. Homogenized transport equation

Consider the linear transport equation

uεt +
(

f (x) + a
(x

ε

))

· ∇xu
ε = 0. (77)

The characteristics of (77) are the solutions to (2), thus the study of the two equations
is equivalent.

Homogenization for linear transport equationswith incompressible vector fields
has been studied rigorously by several authors [4,12,17,29] (similar resultswere an-
ticipated in [34]).E’s results are the strongest [17], and in this sectionwe shall repeat
his argument, with the obvious modifications, to derive a homogenized equation.
His argument is an application of Tartar’s oscillatory test function method [40]
coupled with a compactness theorem of Nguetseng [36]. Nguetseng’s theorem
formalizes the heuristic notion that uε depends on two scales, x and x

ε .A later paper
byAllaire contains an excellent exposition of this theorem with simplified proofs
and generalizations [3]. We need the following version.

Theorem 7 (Nguetseng [36], Allaire [3]). Let supε ‖uε‖L∞(R+×Rd ) " C < ∞.
Then there exists a subsequence (also denoted ε) and a function U : R+ × Rd ×
Td → R with

‖U‖L∞(R+×Rd×Td ) " C,

such that

lim
ε↓0

∫

R+

∫

Rd
uε(t, x)ψ

(

t, x,
x

ε

)

dx dt =
∫

R+

∫

Rd

∫

Td
U(t, x, θ)ψ(t, x, θ)dθ dx dt

for all ψ ∈ C∞
0 (R+ × Rd × Td). In this case uε is said to two-scale converge to

its two-scale limit, U .

Note that uε
∗
⇀

∫

Td U(t, x, θ) dθ in L∞(R+ × Rd). Thus the two-scale limit has
at least as much information as the weak limit.

Unlike previous studies, in our problem the oscillatory vector field a(θ) is not
divergence free. In fact, since a = −∇A, if ∇ · a = 0 , then 7A = 0. But by
Liouville’s theorem all harmonic, periodic functions are constant and a is trivial
if it is divergence free. This is a serious problem, and we show that the evolution
equations for U are ill posed.
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Fix a set of initial conditions uε0(x) that is uniformly bounded in L∞(Rd).
The solutions to (77) are given by uε(t, x) = u0(X

ε
−t (x)), where Xε

t is the flow
generated by (2). Thus,

sup
ε

‖uε(t, x)‖L∞(R+×Rd ) < ∞.

The boundedness criterion of Theorem 7 is satisfied, hence there exists a subse-
quence εn ↓ 0 and an associated two-scale limit U(t, x, θ).

Let φε ∈ C∞
0 (R+ × Rd). A weak solution of (77) solves

∫

R+

∫

Rd
uε(t, x)

[

φεt + ∇x ·
(

φε
(

f (x) + a
(x

ε

)))

]

dtdx

+
∫

Rd
uε0(x)φε(0, x) dx = 0. (78)

Letψ ∈ C∞
0 (R+×Rd×Td) andputφε = εψ(t, x, x/ε), i.e.,φε is a low-amplitude,

rapidly oscillating function. Substituting in (78), we find

ε

∫

R+

∫

Rd
uε(t, x)

[

ψt + ∇xψ ·
(

f (x) + a
(x

ε

))

+ ψ∇x · f (x)

]

dx dt (79)

+ ε

∫

Rd
uε0(x)ψ

(

0, x,
x

ε

)

dx

+
∫

R+

∫

Rd
uε(t, x)

[

(

f (x) + a
(x

ε

))

· ∇θψ + ∇θ · a(x/ε)ψ

]

dx dt = 0.

The terms on the first two lines are O(ε). Letting ε ↓ 0 and using Theorem 7 we
have

∫

R+

∫

Rd

∫

Td
U(t, x, θ)∇θ · [ψ(t, x, θ)(f (x) + a(θ))]dθ dx dt = 0. (80)

And since ψ ∈ C∞
0 (R+ × Rd × Td) was arbitrary, this means that U(t, x, θ) is a

weak solution to

(f (x) + a(θ)) · ∇θU = 0, θ ∈ Td . (81)

Equation (81) identifies the behavior of U on the microscale. And U is a solution
if and only if it is constant on the characteristics of (81). The characteristics are
solutions to the ordinary differential equations

dθ

dτ
= f (x) + a(θ), θ ∈ Td . (82)

and we recover the vertical flow on the torus given by (14).
We also need equations to describe the evolution of U on the macroscale. To

this end, let ψ solve the adjoint equation of (81)

∇θ · [(f (x) + a(θ))ψ] = 0, θ ∈ Td , (83)
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and let φε(t, x) = ψ(t, x, x/ε) in (79). Then the O(1) term in (79) is zero, so that
we may divide by ε and take the limit to obtain

∫

R+

∫

Rd

∫

Td
U(t, x, θ)[ψt + ∇x · ((f (x) + a(θ))ψ)]dθ dx dt

+
∫

Rd

∫

Td
U(0, x, y)ψ(0, x, y)dθ dx = 0. (84)

9.2. Ill-posed limit

E proved that equations (81), (83), and (84), along with an ergodic hypothesis
are sufficient to determine the evolution of the two-scale limit for incompressible
vector fields [17]. We will show that this does not hold if the wiggly energy A

satisfies the generic hypothesis, Property 1 of Section 5.
Hou and Xin [29], assume ergodicity of the flow generated by a to solve

the linear PDE (81) when d = 2. The following theorem is in this vein. But it is
stronger since it relies on generic hypotheses. For incompressible vector fields there
is no difference between the solvability of equations (81) and (83). The situation is
different for gradient dynamics.

Theorem 8. Let x be fixed so that the flow of

dθ

dτ
= f (x) + a(θ), θ ∈ Td

is gradient-like, and the ω-limit set of any point θ0 is a non-degenerate critical
point. Then

(a) Any continuous solution of (81) is independent of θ .
(b) Any continuous solution of (83) satisfies ψ(x, θ) = 0 for all θ .

Remark 5. Theorem 8(b) is obvious when d = 1. In this case (83) reduces to

d

dθ
((f (x) + a(θ))ψ) = 0,

so that (f (x) + a(θ))ψ is only a function of x. This is incompatible with the
boundedness of ψ if f (x) + a(θ) = 0 for some θ . The content of Theorem 8 is
that under some global hypothesis on the microscopic flow, solutions to (83) must
blow up in higher dimensions too.

Proof. The number of critical pointsmust be finite, andwe denote the stable critical
points by {θ1, . . . , θn}. The union of the basins of attraction of {θ1, . . . , θn} is
open and dense in Td . Let θ0 lie in the basin of attraction of θj , and let θ(τ )
denote the solution to the ODE (82) with initial condition θ0. We use the method
of characteristics to solve (83) for ψ (see [18]):

ψ(x, θ(τ )) = exp
(

−
∫ τ

0
∇ · a(θ(s)) ds

)

ψ(x, θ0).
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But θj is a non-degenerate sink, so that ∇θ · a(θj ) " −2β < 0 for some positive
number β. So wemay choose a trapping ballB(θj , rj ) about θj in which∇θ ·a(θ) "
−β. The time, T , that θ(τ ) takes to enter this ball is finite. For all τ ! T we have

|ψ(x, θ(τ ))| ! exp
(

−
∫ T

0
∇ · a(θ(s)) ds

)

|ψ(x, θ0)|eβ(τ−T ).

The term ψ(x, θ(τ )) → ψ(x, θj ) as τ → ∞ because ψ is continuous. Hence,
ψ(x, θj ) is finite if and only if ψ(x, θ0) = 0. Therefore, ψ(x, θ) vanishes for θ in
the basin of attraction of θj . Since θj was arbitrary, we have proved that ψ(x, ·)
vanishes on a dense set. Thus ψ(x, θ) = 0 for all θ . This proves (b).

The proof of (a) is similar. Let U solve (81). The method of characteristics
implies thatU(x, θj ) = U(x, θ0) on the basin of attraction of θj . ThusU(x, θ) takes
only a finite number of values on a dense set and its range is discrete. Connectedness
requires that U(x, θ) is independent of θ . 34
Corollary 4. Suppose f (x∗) = 0. There is an r > 0 such that if ψ is a smooth
solution to (83), then ψ(t, x, θ) = 0 for |x − x∗| < r .

Proof. Since a(θ) is Morse-Smale, the flows of the vector fields a(θ) and f (x) +
a(θ) are topologically conjugate for sufficiently small |f (x)| . Thus, the hypotheses
of Theorem 8 are satisfied for sufficiently small r > 0. 34

We now construct a nontrivial solution to the evolution equations with zero
initial data. Let η : [0,∞) → R be C∞ with η(0) = 0. Choose r > 0 as in
Corollary 4 and ζ ∈ C∞

0 (Rd) that is supported within B(x0, r/2). Finally, let
U(t, x, θ) = η(t)ζ(x). By construction, supp(U) has empty intersection with the
support of any ψ that solves (83). We may then verify that (81), (83), and (84) are
true. This shows that the homogenized transport equation does not have a unique
solution.

10. Dynamics and microstructure

Our work is but one example of a mathematical model for dynamics and mi-
crostructure. It is a coarse model, since we are only interested in the evolution of
bulk properties. However, as we have seen, the presence of microstructure even in
such a simple form leads to several interesting questions.We now summarize some
future directions, and some problems of modeling.

10.1. A probabilistic interpretation

The homogenized equations are not well posed and we must consider some
other interpretation. We have derived differential equations of the form

ẋ(θ) = g(x, θ), x(0) = x0, x ∈ R2 θ ∈ T2. (85)

The space T2 is a natural probability space with a probability measure given by
Lebesguemeasure.We aim to solve (85) holding θ fixed, thus obtaining a realization
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of a trajectory starting at x0. If g(x, θ) is continuous for fixed θ , then this can be
done by Peano’s theorem. However, g(x, θ) depends on the ω-limit set of θ for
the microscopic flow at x, and it is not continuous in general. This is not as bad
as it may seem, at least in regions of slip. In ρ−1{R\Q} g(x, θ) is continuous (see
Section 7). Furthermore, on open and dense subsets of Sp/q the basins of attraction
of the stable periodic orbits are open and dense inT2, therefore we expect g(x, θ) to
have only countably many discontinuities. Uniqueness cannot be obtained within
this framework since g is definitely not Lipschitz.

10.2. Comparison with differential inclusions

At points x0 ∈ R2 where the microscopic flow has distinct invariant measures,
g(x, θ) takes distinct values. For example, if x0 lies in a resonance zone Sp/q where
all periodic orbits are hyperbolic, we have the differential inclusion

ẋ ∈ K(x) =
(

1
ρ

) {

1
T s
1

, . . . ,
1

T s
m

,
1

T u
1

, . . .
1

T u
m

}

. (86)

Near x0, each term in the set above is a Lipschitz function of x. It then follows from
a theorem of Filippov [20, Theorem 3] that the weak∗ closure of solutions to the
inclusion (86) is the set of solutions to

ẋ ∈ conv(K(x)), (87)

the convex closure of K . Therefore, the weak∗ closure of solutions to the wig-
gly energy problem is strictly contained within the set of solutions obtained by
differential inclusions.

10.3. Separation of scales

While it is possible to extract interesting mathematical features for the limit, it
has limited efficacy for quantitative predictions. The heuristic idea that averaging
simplifies a problem fails here. There is no resolution of scales in the model, i.e.,
the fast and slow variables do not decouple, and in the limit fine number theoretic
properties such as the degree of rationality and irrationality determine the homoge-
nized limit. These properties cannot be resolved on a computer. There is also good
reason to expect that these conditions matter for d ! 3. For large%, or equivalently
small r , we can reduce the problem to a study of diffeomorpisms ofTd−1.Herman
has shown that higher dimensional analogues ofArnol’d tongues exist in such prob-
lems, i.e., a Cantor set of non-resonant points of large measure separating resonant
zones, and these depend on diophantine conditions [26]. We should also note that
apparently technical smoothness requirements have a qualitative influence on the
model. The most tractable approach seems to be to avoid periodic homogenization
altogether and work instead with statistical models of roughness.

This is almost a form of modeling chaos. Fine details that cannot be measured
experimentally exert a significant influence on the dynamics. Can microstructure
really have such an influence on dynamics?And if so, what is the best way to model
it?We take a hint from physics, andmention some examples where we believe these
questions are more than mathematical curiosities.
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10.4. Fine structure in martensitic phase transitions

The limiting behavior of our simple model is rough; however the roughness is
due to the change in rotation number, and not to jumps between metastable states.
In the experiments of Chu and James, the transition is driven by the sequential
splitting of martensite needles, and this gives rise to the stick-slip character of the
transition. In another set of experiments, Vives et al. [43] studied the acoustic
emission generated during a thermal martensitic tranformation. In both sets of
experiments the phase transformation progresses as an avalanche of jumps between
metastable states. Each avalanche corresponds to the nucleation and motion of one
or more phase (or twin) boundaries and has an acoustic signature. Vives et al.
observed scaling behavior in the statistics of the amplitude and lifetime of these
avalanches. The number of avalanches N(A) with a specific amplitude A scales
likeN ∼ A−α, α > 0. SimilarlyN ∼ τ−β where τ is the lifetime of an avalanche.
The scaling behavior shows that the evolution of the phase fraction is a very rough
function of time. It would be extremely interesting to obtain a clear continuum
description of such phenomenon, and a rigorous explanation of the roughness of
the dynamics.

10.5. Random landscapes

Another class of phenomenological models called “landscape paradigms” has
been used by condensed-matter physicists to study disordered systems [21]. In
mathematical language, these are stochastic perturbations of gradient dynamical
systemswith roughLyapunov functions. For example,LeDoussal&Vinokur [32]
consider the following equation as amodel for creep of flux lines in superconductors

ẋ = −∇V (x) + c +
√
2T Ḃ.

Here Ḃ is white noise, i.e., the derivative of Brownian motion, T is the tempera-
ture, c is a constant forcing term, and V (x) is a spatially random field (“quenched
disorder”). They derive equations for the limiting velocity v as functions of T and
c, after averaging over the spatial disorder. Again, it would be very interesting to
obtain rigorous results for these systems.
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J. de Math. Pures et Appl. 11 (1932), 333–375.

17. W. E, Homogenization of linear and nonlinear transport equations, Comm. Pure. Appl.
Math. 45 (1994), 301–326.

18. L. C. Evans, Partial differential equations, American Mathematical Society, Provi-
dence, RI, 1998.

19. N. Fenichel, Persistence and smoothness of invariantmanifolds for flows IndianaUniv.
Math. J. 21 (1971), 193–226.

20. A. F. Filippov, Classical solutions of differential equations with multivalued right-hand
side, SIAM. J. Control 5 (1967), 609–621. English translation.

21. H. Frauenfelder, A. R. Bishop, A. Garcia, A. Perelson, P. Schuster, D. Sher-
rington&P. J. Swart, eds.,Landscape paradigms in physics and biology,Amsterdam,
1997, North-Holland Publishing Co. Concepts, structures and dynamics, Phys. D 107
(1997), no. 2–4.

22. H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83
(1961), 573–601.

23. J. Guckenheimer & P. J. Holmes, Nonlinear oscillations, dynamical systems, and
bifurcations of vector fields , Applied mathematical sciences, Springer-Verlag, New
York, 1983.

24. V. Guillemin & A. Pollack, Differential topology, Prentice-Hall, New Jersey, 1974.
25. G. R. Hall, Resonance zones in two-parameter families of circle homeomorphisms,

SIAM J. Math. Anal. 15 (1984), 1075–1081.



246 Govind Menon

26. M. R. Herman,Mesure de Lebesgue et nombre de rotation, 1977, pp. 271–293. Lecture
Notes in Math., Vol. 597.
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