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1 Introduction

1.1 Burgers Equation with a Simple Pole as Initial Data

The viscous Burgers equation and its inviscid limit appear in many textbooks on applied

mathematics as a fundamental model of nonlinear phenomenon. In his pioneering analysis of

Burgers equation, Hopf established the importance of singularity formation, weak solutions,

and a vanishing viscosity limit as basic themes in the analysis of nonlinear partial differen-

tial equations [17]. When considering the modern theory of hyperbolic conservation laws, it

is almost miraculous to see the ideas that have sprung from so simple a beginning.1) It is

tempting to believe that we know the whole story, but there seem to be many new vistas ahead

as conservation laws continue to arise in unexpected ways in apparently unrelated areas of

mathematics.

Let me illustrate this point with a question. What is the right solution to the initial value

problem

∂tg + g∂xg = 0, x ∈ R, t > 0, (1)

g(x, 0) =
1

x
? (2)

∗Received November 7, 2011. This material is based upon work supported by the National Science Foun-

dation under grants DMS 07-04842 (CAREER) and EFRI–10-22730.
1)There are no miracles in science, and as Feynman writes about the gyroscope, ‘it is a wonderful thing– but

it is not a miracle’ [13]. I hope the reader will forgive my poetic license. Lax calls Hopf’s work ‘epoch-making’

in his commentary in [26], an exuberant endorsement in its own right.
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The issue here is the singular initial data which is integrable neither at zero nor at infinity.

As a consequence, we cannot naively use the Cole-Hopf solution formula to define an entropy

solution for this initial value problem.

1.2 A Self-similar Solution and Wigner’s Semicircle Law

This problem is not an isolated curiosity. It appears in various guises as a limit problem in

algebra, combinatorics and probability theory. In operator theory and random matrix theory,

the appropriate solution to (1)–(2) is the self-similar solution with diffusive scaling

g(t, z) =
1√
t
g∗(z

√
t), (3)

where g∗ is given explicitly in a slit plane

g∗(z) =
1

2

(
z −

√
z2 − 4

)
, z ∈ C\[−2, 2]. (4)

g∗ is a Pick function [10]. It is the Cauchy transform of a probability measure μ∗ supported in

the interval [−2, 2]

g∗(z) =

∫ 2

−2

1

z − x μ∗(dx), z ∈ C\[−2, 2]. (5)

In fact, μ∗ is Wigner’s celebrated semicircle law with density

μ∗(dx) =
1

2π

√
4− x2 dx, x ∈ [−2, 2]. (6)

g∗ may be extended to the slit x ∈ [−2, 2] by computing its principal value. This is simply the

average g∗(x) = (g∗(x+) + g∗(x−))/2 where the subscripts denote the limits taken from above

and below in C\[−2, 2]. We then find

g(x, t) =
x

2t
, x ∈ [−2

√
t, 2
√
t]. (7)

Equations (3), (4) and (7) complete the prescription of g(x, t) for x ∈ R and t > 0. The factor

of 2 in equation (7) is crucial: it shows that g not an entropy solution to Burgers equation for

x ∈ R, t > 0 although it does define a solution to the initial value problem (1)–(2) analytic in

a moving domain C\[−2
√
t, 2
√
t].

That g is not an entropy solution may appear disconcerting at first sight. But this appears

less arbitrary when one realizes that the solution (3) is the limit as n→∞ of a sequence gn(t, z)

that satisfy the stochastic partial differential equation

∂tgn + gn∂zgn =
1

n

(
1

β
− 1

2

)
∂2

zgn +

√
2

βn3

n∑
k=1

Ḃk

(z − xk)2
, z ∈ C+, t > 0. (8)

Here n is a positive integer, β = 1, 2 or 4, and Bk, k = 1, · · · , n are standard, independent,

Brownian motions. It is not obvious at all that this stochastic partial differential equation is

well-posed, particularly since the viscous term vanishes when β = 2 and has the wrong sign for

β = 4. But this will follow naturally from the discussion below.

1.3 Some Context

Wigner’s semicircle law is of the first importance in the theory of random matrices and it

is to to my mind surprising and delightful that Burgers equation should reappear here. This
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connection is just one of several fascinating links between Burgers equation and some basic

probabilistic models. Many of these links are known to experts, but they are not as well known

to the working applied mathematician as they should be, especially since they constitute a

beautiful class of exact solutions with wide appeal. I stumbled upon these links in connection

with the problem of Burgers turbulence (as explained in Section 5 below) and was a little

dismayed to realize when I dug into the literature that my calculations were “well-known”.

Of course, what is well-known in one community is seldom well-known in another, and my

intention here is to explain a few such links in a simple and transparent manner. To this end, I

highlight the main calculations avoiding all technicalities. In keeping with the informal tone of

this article, the references are representative, not exhaustive.(But all assertions can be proved

rigorously with a little work and reference to [3, 16, 19] when needed. More complete references

can be found in [23, 25]). I hope the exposition will be of value to applied mathematicians with

an interest in differential equations, integrable systems, probability theory and kinetic theory

as an introduction to the fascinating interplay between these areas.

The rest of the article is organized as follows. Section 2 and Section 3 provide an overview

of the role of Burgers equation in random matrix theory. We begin with Brownian motion

in the space of n × n self-adjoint random matrices and show how it naturally leads to the

approximation (8) and the initial value problem (1)–(2) in the limit n → ∞. Random matrix

theory leads to kinetic theory and growth processes in Section 4. Finally, we turn to a particular

statistical theory of turbulence–the motivation for both Burgers and Hopf– and connect this to

random matrix theory and growth processes. We conclude with some speculation about what

appear to be deep connections between a family of integrable systems and probability theory

in Section 5.

1.4 Dedication

The article is dedicated to Constantine Dafermos in admiration and respect. He has been

an exemplary teacher and colleague. More than ten years ago, as a graduate student I looked

to Costas to clear the fog of my confusion. Today I look back and see that nothing has changed.

It is a pleasure to dedicate this article to him on the occasion of his 70th birthday.

2 Brownian Motion of Self-adjoint Matrices

2.1 Dyson’s Brownian Motion

We first introduce Brownian motion in the space of self-adjoint n×n matrices. A standard

Brownian motion B(t), t ≥ 0 is a Gaussian process with continuous paths and independent

increments normalized so that E(B2
t ) = t. It may be used to construct Brownian motion in the

space of self-adjoint matrices. Here the term self-adjoint is used to encompass real symmetric,

complex Hermitian, and quaternion self-dual matrices. We consider real symmetric (β = 1) and

complex Hermitian (β = 2) matrices M(t) whose entries Mjk are Brownian motions normalized

as follows:

Mjk(t) =
1√
β

(
B1

jk(t) + i(β − 1)B2
jk(t)

)
1 ≤ j < k ≤ n, (9)

Mjj(t) =

√
2

β
Bj(t), 1 ≤ j ≤ n. (10)
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Here Bl
jk and Bj are standard, independent Brownian motions. The asymmetry between di-

agonal and off-diagonal terms is introduced in order that the distribution of M(t) is unitarily

invariant. Since the Mjk are independent Gaussian random variables, their joint density is a

product, and the normalization above ensures it is of the form cnt
−n(n+1)/4 exp(−βTr(M∗M)).

The distribution is therefore invariant under the natural transformation M 	→ Q∗MQ for an

orthogonal (β = 1) or unitary (β = 2) matrix Q. We have not defined the case β = 4 of self-dual

quaternion matrices for simplicity. At the snapshot t = 1, these stochastic processes correspond

to the fundamental ensembles of random matrix theory: the Gaussian Orthogonal Ensemble

(GOE), Gaussian Unitary Ensemble (GUE), and Gaussian Symplectic Ensemble (GSE) [22].

While the entries of M(t) are independent, its eigenvalues λk(t), 1 ≤ k ≤ n are not. Yet,

Dyson showed that the eigenvalues satisfy the stochastic differential equation [11]

dλk =
∑
j �=k

dt

λk − λj
+

√
2

β
dBk, 1 ≤ k ≤ n, (11)

where Bk, 1 ≤ k ≤ n are independent Brownian motions. That is, the eigenvalues behave like

repulsive unit charges on the line perturbed by independent white noise! More generally, we

may consider Brownian motion N(t) that starts at a fixed self-adjoint matrix N0

N(t) = N0 +M(t), (12)

where M is as above. The eigenvalues of N(t) continue to satisfy (11) but now with initial

conditions λj(0) that are the eigenvalues of N0.

2.2 Itô’s Formula and Dyson’s Equation

We first derive Dyson’s equation (11) as an interesting application of Itô’s formula. Here

is a quick summary of Itô’s formula [21]: If B is a one-dimensional Brownian motion and

f : R → C a twice differentiable function, we replace the usual chain rule for the composition

f(B(t)) with

df(B) = f ′(B)dB +
1

2
f ′′(B)(dB)2, (dB)2 = dt. (13)

The extension to an N -dimensional Brownian motion B(t) = (B1(t), · · · , BN (t)) is natural. If

f : RN → C is twice differentiable, Itô’s formula is

df(B) = Df(B)dB +
1

2
D2f(B)[dB, dB]. (14)

The first term is computed as usual, and the second term is given by

D2f(B)[dB, dB] =

N∑
j,k=1

∂j∂kf(B)dBjdBk, dBjdBk = δjkdt, (15)

with δjk = 1 if j = k and 0 otherwise. The rule dBjdBk = δjkdt is based on the quadratic

variation and independence of each Bk.

We will derive Dyson’s equation (11) by choosing f to be log det(zI−M) in Itô’s formula.

Here we fix z in the upper half plane C+. Since the eigenvalues are real, det(zI −M) never

vanishes in C+ and log det(zI −M) is well defined. To apply Itô’s formula we must compute
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the first and second derivatives of the determinant of a matrix. One way to do this is to expand

the determinant. For small A ∈ Mn×n we use the definition of the determinant to obtain

det(I −A) = 1− Tr(A) +
1

2

n∑
j,k=1

det

⎛
⎝Ajj Ajk

Akj Akk

⎞
⎠ + · · · . (16)

Let us apply this expansion to det(zI −M). Let R = (zI −M)−1 and A = RdM . We write

zI − (M + dM) = (zI −M)(I −A) and use (16) to obtain

det(zI − (M + dM))

= det(zI −M)

⎛
⎝1− Tr(A) +

1

2

n∑
j,k=1

det

⎛
⎝Ajj Ajk

Akj Akk

⎞
⎠ + · · ·

⎞
⎠ . (17)

If M is a diagonal matrix with entries λ1, · · · , λn, then R is also diagonal with entries (z −
λ1)

−1, · · · , (z − λn)−1. In this case,

Tr(A) = Tr(RdM) =

n∑
j=1

dMjj

z − λj
=

√
2

β

n∑
j=1

dBj

z − λj
. (18)

Similarly, by the definition of Mjk in (9) we find

det

⎛
⎝Ajj Ajk

Akj Akk

⎞
⎠ =

dMjjdMkk − dMjkdMkj

(z − λj)(z − λk)
= − (1 − δjk)dt

(z − λj)(z − λk)
. (19)

The general calculation can be reduced to this one by the unitary invariance of the law of M(t).

We factorize M = QΛQ∗ with Λ = diag(λ1, · · · , λn) and Q unitary. The matrix dM in (18)

and (19) is then replaced with QdMQ∗ which has the same law. In order to derive (11), we

first note that

d(log det(zI −M)) = −
n∑

j=1

dλj

z − λj
. (20)

We combine this observation with (14), (17), (18) and (19) to obtain

n∑
j=1

dλj

z − λj
=

1

2

n∑
j=1

∑
k �=j

dt

(z − λj)(z − λk)
+

√
2

β

n∑
j=1

dBj

z − λj
. (21)

We now let z → λk for each k to obtain (11).

3 Burgers Equation in the Spectral Plane

3.1 The Cauchy Transform of the Empirical Distribution

The empirical spectral measure of N (n) is defined to be the probability distribution with

atoms of mass 1/n at each eigenvalue of N (n) (the superscript is introduced to make the size

of the matrices explicit). The empirical spectral measure is random and it is natural to seek a

law of large numbers after suitable rescaling as n → ∞. We can guess the form of the scaling
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as follows. Suppose x = λ/c, where c is a scale parameter to be determined. We use (11) to

obtain

dxk =
1

c2

∑
j �=k

dt

xk − xj
+

√
2

c2β
dBk, 1 ≤ k ≤ n. (22)

The choice c2 = n makes the first term a functional of the empirical spectral measure. It also

ensures that the stochastic forcing vanishes as n → ∞. Therefore, we rescale λ = x
√
n and

define ν
(n)
t to be the empirical spectral measure of the rescaled matrices n−1/2N (n)(t).

Some care is needed though. As n → ∞ the eigenvalues are bunched closer together and

we must expect a singularity in the first term in (22). As in many probability limit theorems,

a suitable integral transform clarifies the analysis. Here it is the Cauchy (or Cauchy-Stieltjes)

transform

gn(t, z) =

∫
R

1

z − x ν
(n)
t (dx) =

1

n

n∑
j=1

1

z − xj
, z ∈ C+. (23)

We show below that gn satisfies the stochastic partial differential equation (8). The initial

condition gn(0, z) for (8) is the Cauchy transform of ν
(n)
0 , the empirical spectral measure of the

random matrix n−1/2N
(n)
0 . In the simplest situation N0 = 0 and ν

(n)
0 is a unit atom at the

origin with Cauchy transform

gn(z, 0) =
1

z
. (24)

In particular, as n→∞, we see that the limit g of gn formally satisfies the initial value problem

(1)–(2)

∂tg + g∂xg = 0, x ∈ R, t > 0, g(x, 0) =
1

x
.

More generally, we must assume that the spectra of the initial matrices n−1/2N
(n)
0 converge to

a probability measure ν0 with compact support. In this case, gn(z, t) is the spectral measure

of n−1/2N (n)(t), and as n→∞, gn converges to the solution of (1) with initial condition

g(z, 0) =

∫
R

1

z − x ν0(dx). (25)

Well-posedness of (8) with initial condition (25) follows from well-posedness of Dyson’s stochas-

tic differential equation (11). Precise statements and a rigorous proof of convergence in the

framework of large deviations theory may be found in [16]. For our purposes, we simply high-

light how (8) can be derived using Itô’s formula and a clever identity from [19].

3.2 Itô’s Formula and the Cauchy Transform

We first derive (8) using Itô’s formula. By Itô’s formula

dgn =

n∑
k=1

∂gn

∂xk
dxk +

1

2

n∑
j,k=1

∂2gn

∂xj∂xk
dxjdxk (26)

The second term simplifies to

1

2n

n∑
k=1

2dx2
k

(z − xk)3
=

1

βn2

n∑
k=1

2dt

(z − xk)3
=

1

βn
∂2

zgndt, (27)
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where we evaluate dx2
k using (22) with c2 = n and the rules dB2

k = dt and dt2 = dBkdt = 0.

The first term in (26) is given by the chain rule and is

1

n

n∑
k=1

1

(z − xk)2

(
1

n

∑
j �=k

dt

xk − xj
+

√
2

βn
dBk

)
. (28)

The stochastic forcing term is as in (8). Therefore, we focus on the deterministic part. Here

we use the interesting identity

1

n2

n∑
k=1

∑
j �=k

1

(z − xk)2(xk − xj)
=

1

n2

n∑
k=1

∑
j �=k

1

(z − xk)2(z − xj)
. (29)

The proof is elementary. A couple of lines of algebra yields

1

(z − xk)2(xk − xj)
=

1

(z − xk)2(z − xj)
− 1

(xk − xj)2

(
1

z − xk
− 1

z − xj

)
,

and the second term vanishes when we sum over j and k. Finally, we note that the right hand

side of (29) can be expressed in terms of gn as

−gn∂zgn − 1

2n
∂2

zgn. (30)

We combine (26), (27) and (30) to obtain (8).

3.3 The Semicircle Law Again

Let us now solve the initial value problem (1). Since the initial data has no intrinsic

scale, it is natural to expect a self-similar solution g(z, t) = l1(t)f(z/l2(t)). In order to guess

the time-dependent scale factors we reason as follows. First, for any t ≥ 0, g is the Cauchy

transform of the probability distribution function μt (we write μt instead of νt since this initial

condition is special). Therefore, g(z, t) ∼ z−1 as z → ∞. Thus, l1(t) = 1/l2(t) and we may

write g(z, t) = l(t)−1g∗(z/l(t)). Next, the scale factor l(t) reflects the length of the support of

μt. This length may be determined by focusing on the largest eigenvalue. Dyson’s calculation

tells us that the largest eigenvalue is repelled by all of the eigenvalues to the left, and we expect

based on (11) that l̇ = O(l−1). Therefore, l = O(
√
t).

We thus define the similarity variable ξ = z/
√
t and substitute the ansatz g(z, t) =

g∗(ξ)/
√
t in (1). This ansatz is ‘diffusive’. That is, it is what one would use for the heat

equation on the line. It is very unusual in the context of Burgers equation. The point of the

discussion above is to explain why it is the right guess here. A routine calculation then yields

d

dξ

(
g2
∗ − ξg∗

)
= 0. (31)

Thus, g2
∗ − ξg∗ is a constant. We can choose this constant to be 1– every other choice can be

recovered by scaling ξ. Thus our solution is given implicitly by g2
∗ − ξg∗ = 1 and explicitly by

(4). We now see that the self-similar solution is defined in the exterior of a growing slit in the

complex plane, and we have

g(t, z) =
1

2t

(
z −

√
z2 − 4t

)
, z ∈ C\[−2

√
t, 2
√
t]. (32)
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g is the Cauchy transform of the probability measure μt. This measure is

μt(dx) =
1

2πt

√
4t− x2 dx, x ∈ [−2

√
t, 2
√
t]. (33)

(It takes some work to invert the Cauchy transform, but not too much work to verify that this

is the inverse). μt is Wigner’s semicircle law with a scale parameter t.

4 Kinetic Theory and Growth Processes

4.1 Kerov’s Kinetic Equation

Our calculations so far have been eased by the Cauchy transform. There is a bijective

correspondence between Pick functions and certain positive measures and the pointwise con-

vergence of gn(t, z) to g(t, z) for fixed z in the upper-half plane is enough to guarantee the weak

convergence of the empirical measures ν
(n)
t to νt [10]. In addition, we have the representation

formula

g(z, t) =

∫
1

z − xνt(dx), z ∈ C+. (34)

Thus, as one may expect, (1) describes completely not just the evolution of g(t, )̇, but also

the evolution of a measure νt such that g(·, t) is its Cauchy transform. If g satisfies (1), what

evolution equation does ν satisfy?

An explicit description of the evolution of νt (as opposed to the implicit prescription of (1))

seems to have been first found by Kerov [19, §4.6.5]. For finite n, the eigenvalues repel one

another and are perturbed by noise as described by (22). In the scaling limit, the perturbative

noise is washed out, and ν satisfies a kinetic equation that may be written in the weak form

∂

∂t

∫
R

ϕ(x)νt(dx) =

∫
R

∫
R

ϕ′(x)− ϕ′(y)

x− y νt(dx)νt(dy). (35)

Here ϕ denotes a complex-valued test function that is continuous in x and decays sufficiently

fast at infinity. We choose ϕ(x) = 1/(z − x), z ∈ C+, to recover (1).

It is easier to solve (1) than (35), but the solutions are equivalent. The general solution to

(1) with initial condition (25) is of particular importance in the theory of free probability and

it is common to say that νt solves the with initial condition ν0 or that νt is given by the free

convolution of ν0 with the scaled semicircle law μt [28]. While it would take us too far afield to

describe these results, it is not that hard to describe the underlying motivation. The solution to

(1) with the general initial condition (25) describes the evolution of the limiting spectral measure

of the matrices n−1/2N (n)(t) when the spectral measure of the matrices n−1/2N
(n)
0 converges

to ν0 as n → ∞. To be concrete, suppose n−1/2N
(n)
0 are discretizations of a bounded linear

operator with spectrum ν0. In this case, the discretizations n−1/2N (n)(t) help us formulate a

notion of an operator-valued Brownian motion starting at N0. Roughly speaking, the semicircle

law μt plays a role analogous to the heat kernel and Burgers equation plays the role of the heat

equation in making these notions precise.

4.2 Plancherel Growth and its Scaling Limit

Kerov’s kinetic equation is also the limit of an important Markov process called Plancherel

growth. The full sweep of ideas involved can only be appreciated by a careful reading of his
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beautiful thesis [19], but here is a quick summary. Fix a positive integer n, and consider an

interlacing sequence of real numbers x1 < y1 < x2 < y2 · · · < yn−1 < xn. We consider a

1-Lipschitz function ω(x) that has minima at x1 < · · · < xn, maxima at y1 < · · · < yn−1 and is

asymptotic to |x−α| where α =
∑
xj−

∑
yj . Kerov and Vershik call such a function a diagram

and α its center. The graph of such a diagram is a sawtooth with slope ±1, upward corners at

xj and downward corners at yj. More generally, a diagram is a 1-Lipschitz function ω that (i)

oscillates within an interval [a, b]; (ii) and such that ω(x) = |x−α| for all x outside the interval

[a, b] for some α ∈ R that depends only on ω. D[a,b] denotes the set of such diagrams.

We now introduce a bijective correspondence between diagrams and probability measures.

We consider positive numbers pj , 1 ≤ j ≤ n such that
n∑

j=1

pj = 1 and xj as above. The

bijective correspondence between diagrams with n minima at xj and the probability measure

μ =
n∑

j=1

pjδxj
is given by the partial fractions expansion

n∑
j=1

pj

x− xj
=

n−1∏
i=1

(x− yi)

n∏
j=1

(x − xj)
. (36)

yj are determined once pk are prescribed and vice versa. This correspondence is of particular

importance in combinatorics and representation theory. Every permutation of n can be decom-

posed into increasing sequences, and the length of these sequences is conveniently represented

by a Young diagram. Tilt the Young tableaux by 45o and observe that its boundary is a di-

agram in the sense of Kerov and Vershik. The Young diagram of each partition of n + 1 can

be obtained from that of a partition of n by adding a block to it. This gives rise to a growth

process on diagrams. As n increases to n + 1 we form a new diagram from an old one by the

attachment of a unit square at a minimum.

In order to describe a Markov process we must prescribe the states of the process and the

transition rates between states. Plancherel growth is a discrete Markov process whose states

are Young diagram (ω1, ω2, · · · , ωn, · · ·). The transition probability between diagram ωn and

ωn+1 is given by μ: with probability pj a unit square is attached at xj . The importance of

this transition measure is that ωn is distributed according to the Plancherel measure on Young

diagram, which in turn is the push-forward of the uniform measure on the symmetric group Sn

onto its irreducible representations.

The connection to kinetic theory is as follows. (i) It is true (and certainly not obvious!)

that the above bijective correspondence between discrete diagrams and probability measures

can be extended to a bijective correspondence between D[a,b] and probability measures with

support [a, b]. (ii) Plancherel growth can be replaced by a discrete deterministic evolution

where a diagram grows rougher by the attachment of a square of size pk at each minima xk in

unit time. The continuum limit of this process is Kerov’s kinetic equation (35).

5 Scalar Conservation Laws with Random Data

5.1 Shock Clustering and Burgers Turbulence

The goal of the discussion so far has been to introduce the reader to the fact that Burgers
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equation plays an important role in random matrix theory and representation theory. Let us

now return to nonlinear science. Both Burgers and Hopf spent substantial parts of their careers

working on turbulence. Burgers worked on flow instabilities, (re)-introduced the equation that

bears his name, analyzed shock formation and the interaction of shocks, and initiated the study

of Burgers equation with random initial data. In addition to [17], Hopf introduced the idea

that the transition to turbulence occurs through the loss of stability of quasiperiodic solutions

to the Navier-Stokes equation in a sequence of Hopf(!)-bifurcations. He was also the first to

precisely formulate a statistical theory of turbulence as the flow of a probability measure on the

space of solutions to the Navier-Stokes equations [26]. While complete results on these problems

continue to elude us, these ideas form the foundation for statistical theories of turbulence. Von

Neumann’s 1950’s survey [29] is a wonderful historical document of these ideas in gestation.

See also [12] for a recent survey.

A modern formulation of Burgers’ model of turbulence is the following. What are the

statistics of the entropy solution to Burgers equation

∂tu+ ∂x

(
u2

2

)
= 0, x ∈ R, t > 0, (37)

when the initial data u(x, 0) = u0(x) is random? Two important cases of random initial data

are: (i) u0 is Brownian motion; (ii) u0 is white noise (the “derivative” of Brownian motion).

Both problems are exactly solvable! The solutions rely on closure theorems for the entropy

solution to (37) that assert that a class of stochastic processes is left invariant by the entropy

solution to (37). The main underlying insight here is that several classes of stochastic processes

are “rigid”. For example, Markov processes that are sufficiently regular (Feller processes) are

completely characterized by their generators. The characterization of Lévy processes by the

Lévy-Khintchine formula is an important special case of this general characterization.

For case (i) the relevant closure theorem is the following [4]: if u0(x), x > 0 is a one-sided

Lévy process in x with only downward jumps, then so is u(x, t) − u(0, t), x ≥ 0 for every

t > 0. Thus, the entropy solution to Burgers equation preserves the class of Lévy processes

with one-sided jumps. This theorem is quite unexpected: a priori the notion of Lévy processes

is probabilistic and has nothing to do with conservation laws, so it is surprising that it should

be compatible with the notion of an entropy solution as long as we impose the requirement that

the jumps are one-sided.

The closure theorem may be applied to solve explicitly for the statistics of u as follow. The

statistics of Lévy processes with only downward jumps are completely characterized by their

Laplace exponent ψ defined as follows:

ψ(q, t) =
1

x
log E

(
eq(u(x,t)−u(0,t)

)
, q ∈ C+, x > 0, t ≥ 0. (38)

Here q denotes a spectral variable. As a consequence of the closure theorem, the problem

of determining the evolution of shock statistics reduces to determining an equation for the

evolution of ψ. Astonishingly, the evolution of ψ is described by Burgers equation again, but

now in the spectral plane.

∂tψ + ψ∂qψ = 0, q ∈ C+, t > 0. (39)
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These remarkable calculations were first discovered by Carraro and Duchon [7] and made rig-

orous shortly thereafter by Bertoin [4]. The initial data ψ(q, 0) = ψ0(q) is given by the Laplace

exponent of u0. For example, when u0 is a Brownian motion, this is ψ0(q) = q2. Equation (39)

is easily solved in this case and we obtain the self-similar solution

ψ(q, t) =
1

t2
ψ∗(qt), ψ∗(q) = q +

1

2
−

√
q +

1

4
. (40)

Equation (39) also has a kinetic interpretation: the Laplace exponent ψ is determined through

the Lévy-Khintchine formula

ψ(q, t) =

∫ ∞

0

(eqs − 1 + qs) Λt(ds). (41)

Roughly speaking Λt(ds) denotes the number density of shocks of size s. The shocks evolve

through ballistic aggregation and this induces an evolution of Λt. This process is described by

a kinetic equation which may be rescaled to Smoluchowsk’s coagulation equation with additive

kernel. In analogy with Kerov’s kinetic equation (35) we write Smoluchowski’s equation in the

weak form

∂τ

∫ ∞

0

ϕ(s)λτ (ds) =
1

2

∫ ∞

0

∫ ∞

0

(ϕ(r + s)− ϕ(s) − ϕ(r)) (r + s)λτ (dr)λτ (ds). (42)

(here λτ is a rescaling of Λt, and τ denotes a time scale related to the total variation of u(x, t).

See [24, §2.5]).

We now turn to case (ii). The statistics of u were determined explicitly by Groeneboom [15]

and Frachebourg and Martin [14] following earlier work of Burgers [6]. We developed a different

perspective on this solution by establishing a closure theorem of greater generality suggested

by work of Chabanol and Duchon [8]. Our theorem applies to the entropy solution to a scalar

conservation law with a C1 convex flux f

∂tu+ ∂xf(u) = 0, x ∈ R, t > 0. (43)

Unlike Burgers equation, rarefactions waves are no longer straight lines for general f , and there-

fore cannot be sample paths of a Lévy process. However, the entropy condition is compatible

with the broader class of Markov processes. Here is the general closure theorem [25, §3]: assume

u0(x), x ∈ R is a Markov process with only downward jumps, then so is the entropy solution

u(x, t), x ∈ R, to (43).

If u(x, t), x ∈ R is a stationary Feller process whose sample paths have bounded variation

then its generator is an integro-differential operator

A(t)ϕ(u) = bt(u)ϕ′(u) +

∫ u

−∞

(ϕ(v)− ϕ(u))nt(u, dv). (44)

The characteristics of A(t) are the drift term bt and the jump measure nt(u, dv) and ϕ denotes

a C1
c test function. The closure theorem reduces the problem to determining an evolution

equation for the generator A. We showed in [25] that A satisfies the Lax equation

∂tA = [A,B]. (45)
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Here the operator B(t) is defined by its action on a test function ϕ as follows

B(t)ϕ(u) = −f ′(u)bt(u)ϕ′(u)−
∫ u

−∞

f(v)− f(u)

v − u (ϕ(v)− ϕ(u))nt(u, dv). (46)

Further, since A(t) is characterized by (bt, nt), the Lax equation (45) expands into evolutions

equations for bt and nt. These are a family of kinetic equations of Vlasov-Boltzmann type that

describe the statistics of the clustering of shocks (see [25, §1.4]). Equation (42) is a special case

of these kinetic equations.

The exact solution to Burgers equation with white noise is a stationary Markov process

whose generator A(t) has characteristics

bt(u) =
1

t
, nt(u, v) =

1

t1/3
n∗(ut

1/3, vt1/3). (47)

The jump density of the integral operator is given explicitly as follows:

n∗(u, v) =
J(v)

J(u)
K(u− v), u > v, n∗(u, v) = 0, u ≤ v. (48)

Here J and K are positive functions on the line and half-line respectively whose Laplace trans-

forms

j(q) =

∫ ∞

−∞

e−quJ(u)du, k(q) =

∫ ∞

0

e−qsK(s)ds, (49)

are given explicitly by

j(q) =
1

Ai(q)
, k(q) = −2

d2

dq2
log Ai(q). (50)

The formula for k(q) is strongly suggestive of determinantal formulas in the theory of integrable

systems, in particular Dyson’s formula for the Gelfand-Levitan-Marchenko equation [20].

5.2 Random Matrix Theory Revisited

Let us now connect Burgers turbulence and random matrix theory. Here are some features

common to both models.

1. Both yield Burgers equation in the spectral plane (equations (1) and (39) respectively).

2. Both g and ψ are characterized by positive measures νt and Λt respectively: g through

the Pick (or Herglotz) representation (34) and ψ through the Lévy-Khintchine formula (41).

3. These measures evolve through kinetic equations – Kerov’s kinetic equation for νt and

Smoluchowski’s coagulation equation for λτ .

4. These kinetic equations are scaling limits of fundamental stochastic process: Plancherel

growth and the additive coalescent respectively [2, 5, 19].

5. We have found a self-similar solution (3)–(4) to the initial value problem (1)–(2) and

the self-similar solution (40) to equation (39) with ψ0(q) = q2. These correspond to Wigner’s

semicircle law and the solution to Burgers equation with Brownian motion as initial velocity.

These solutions are related by a simple transformation in spectral variables.

g∗(z) =
ψ∗(q)

q
, z = 2 +

1

q
, or

g(z
√
t, t)√
t

=
ψ(q/t, t)

q/t
. (51)

Is this coincidence or something deeper? My view is that the common aspects of the

models suggest deep links between probability theory and integrable systems that remain to
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be explored. The methods of integrable systems have played a critical role in the description

of new limit laws in the theory of random matrices, particularly important results being the

work of the Kyoto school, followed by Tracy and Widom [18, 27]. Yet there still seems to be

room for new perspectives that provide an intrinsic probabilistic explanation for the utility of

methods from integrable systems in these models.

By an intrinsically probabilistic perspective we mean the following: we seek natural sym-

plectic structures on spaces of probability measures, completely integrable flows of probability

measures with respect to this symplectic structure, and symplectic transformations that link

different probabilistic models. The deformation of probability measures by the deterministic

transformation of sample paths is of fundamental importance in probability theory. For ex-

ample, the Girsanov theorem describes the Jacobian of the transformation of Wiener measure

under a deterministic shift of each sample path. Other important examples of path transfor-

mation such as Vervaat’s transformation arise in the theory of Lévy processes with one-sided

jumps and the study of random trees [5]. Observe now that the scalar conservation law (43)

induces a deformation of the law of u0 through a nonlinear transformation of each sample path.

Our recent work suggests that the Lax equation (45) is a completely integrable Hamiltonian

system with respect to a probabilistically natural symplectic structure [23]. Moreover, it is

intimately tied to several classical integrable systems such as geodesic flow on a Lie group with

a Manakov metric. This is still not fully understood: what we have shown in [23] is that a

natural discretization of (45) carries the natural symplectic structure of a coadjoint orbit of

a Lie group and that the discrete system can be linearized by the Adler-Kostant-Symes theo-

rem [1]. Nevertheless, these results strongly suggest that the path space of Markov processes

with bounded variation and downward jumps on the line carries a natural symplectic struc-

ture and deformations of the probability measure induced by the scalar conservation law (43)

commute for different f .

The coincidences enumerated above suggest to us quite strongly that the flow of probability

measures induced by the limit of Plancherel growth is also completely integrable. Moreover,

we expect that there is a symplectic transformation of probability measures that links Burgers

turbulence and Plancherel growth. Partial evidence is provided by the following: formally one

can introduce a symplectic structure for (1) using the inverse spectral theorem of Stieltjes.

Roughly, the Pick measure νt is in bijective correspondence with a Jacobi matrix, and the

space of Jacobi matrices carries a natural symplectic structure [9]. We conjecture that (i)

Kerov’s kinetic equation is Hamiltonian with this symplectic structure; (ii) the transformation

(51) is a particular case of a symplectic transformation that carries solutions of (35) to (42);

(iii) the underlying deformation of stochastic processes are itself related through symplectic

transformations. It remains to be seen if these conjectures are true.
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R Acad Sci Paris Sér I Math, 1994, 319: 855–858

[8] Chabanol M -L, Duchon J. Markovian solutions of inviscid Burgers equation. J Statist Phys, 2004, 114:

525–534

[9] Deift P. Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert approach, vol 3. New York

Univ Courant Inst, 1999

[10] Donoghue W. Monotone Matrix Functions and Analytic Continuation. Berlin, New York: Springer, 1974

[11] Dyson F J. A Brownian-motion model for the eigenvalues of a random matrix. Rev Modern Phys, 1962,

3: 1191–1198
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