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The authors present evidence for universality in numerical computa-
tions with random data. Given a (possibly stochastic) numerical
algorithm with random input data, the time (or number of iterations)
to convergence (within a given tolerance) is a random variable, called
the halting time. Two-component universality is observed for the
fluctuations of the halting time—i.e., the histogram for the halting
times, centered by the sample average and scaled by the sample
variance, collapses to a universal curve, independent of the input
data distribution, as the dimension increases. Thus, up to two
components—the sample average and the sample variance—the sta-
tistics for the halting time are universally prescribed. The case studies
include six standard numerical algorithms as well as a model of neural
computation and decision-making. A link to relevant software is pro-
vided for readers who would like to do computations of their own.
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In earlier work (2), P.A.D. and G.M. (together with C. Pfrang)
considered the problem of computing the eigenvalues of a real

n × n random symmetric matrix M = (Mij). The authors con-
sidered matrices chosen from different ensembles E using a va-
riety of different algorithms A (2). Let Sn denote the space of
real n × n symmetric matrices. Standard eigenvalue algo-
rithms involve iterations of isospectral maps φ = φA: Sn → Sn,
spec(φA(M)) = spec(M) for M ∈ Sn. If M ∈ Sn is given, one
considers the sequence of matrices Mk+1 = φ(Mk), k ≥ 0, with
M0 = M. Clearly, spec(Mk+1) = spec(Mk) = . . . = spec(M), and
under appropriate conditions Mk=φðkÞ

A ðMÞ converges to a di-
agonal matrix, Λ = diag(λ1,. . .,λn). Necessarily, the λi’s are the
desired eigenvalues of M.
In ref. 2, the authors discovered the following phenomenon:

For a given accuracy e, a given matrix size n (e small, n large, in
an appropriate scaling range), and a given algorithm A, the
fluctuations in the time to compute the eigenvalues to accuracy e
with the given algorithm A, were universal, independent of the
choice of ensemble E. More precisely, Pfrang et al. (2) consid-
ered fluctuations in the deflation time T (the notion of deflation
time is generalized to the notion of halting time in subsequent
calculations). Recall that if an n × n matrix has block form

M =
�
M11 M12
M21 M22

�
;

where M11 is k × k and M22 is (n − k) × (n − k) for some 1 ≤ k ≤
n − 1, then one says that the block diagonal matrix M̂ =
diagðM11;M22Þ is obtained from M by deflation. If kM12k =
kM21k ≤ e, then the eigenvalues {λi} of M differ from the
eigenvalues fλ̂ig of M̂ by OðeÞ. Let T = Te,n,A,E(M) be the time
(= number of steps = number of iterations of φA) it takes to
deflate a random matrix M, chosen from an ensemble E, to order
e, using algorithm A, i.e., T is the smallest time such that for some

k, 1 ≤ k ≤ n−1,
����φðTÞ

A ðMÞ�12
���= ����φðTÞ

A ðMÞ�21
���≤ e.

As explained in ref. 2, T is a useful measure of the time re-
quired to compute the eigenvalues of M: generically, at worst,
OðnÞ deflations are needed to compute the eigenvalues of M,

and at best, Oðlog  nÞ. The fluctuations τe,n,A,E(M) of T are de-
fined by

τe;n;A;EðMÞ=Te;n;A;EðMÞ− �
Te;n;A;E

�
σe;n;A;E

; [1]

where 〈Te,n,A,E〉 is the sample average of Te,n,A,E(M) taken over
matricesM from E, and σ2e;n;A;E is the sample variance. For a given
E, a typical sample size in ref. 2 was of order 5,000–10,000 matri-
ces M, and the output of the calculations in ref. 2 was recorded in
the form of a histogram for τe,n,A,E.
Most of the calculations in ref. 2 concerned three eigenvalue

algorithms: the QR algorithm, the QR algorithm with shifts (the
version of QR used in practice), and the Toda algorithm. The
QR algorithm is based on the factorization of a(n invertible)
matrix M as M = QR, where Q is orthogonal and R is upper tri-
angular with Rii > 0. Given M ∈ Sn, with M = QR, M′ = φA(M) =
φQR(M) ≡ RQ. Clearly,M′ =QTMQ ∈ Sn and spec(M′) = spec(M).
Practical implementation of the QR algorithm requires the use of
a shift, i.e., the QR algorithm with shifts (3). As shown in ref. 2,
shifting does not affect universality. The Toda algorithm involves
the solution M(t) of the Toda equation dM

dt = ½BðMÞ;M�=
BðMÞM −M   BðMÞ, where BðMÞ=M+ −MT

+ , M+ is the upper
triangular part ofM, andM(t = 0) =M. For all t > 0, spec(M(t)) =
spec(M), and as t→ ∞, we again haveM(t) → Λ = diag(λ1,. . .,λn),
where {λi} are the eigenvalues of M. For the convenience of the
reader, in Fig. 1 we reproduce, in particular, histograms for τe,n,A,E,
from ref. 2 for the QR algorithm (A = QR) with two different
ensembles and varying values of n and e.
From Fig. 1, we see that eigenvalue computation with the QR

algorithm exhibits two-component universality, i.e., the fluctuations
τe,n,A,E obey a universal law for all ensembles E under consider-
ation. The same is true for all three algorithms considered in ref. 2.
The laws are different, however, for different algorithms A.
In this paper, the work in ref. 2 has been extended in various

ways as follows. All matrix ensembles are described in Definition
of Matrix Ensembles.

The Jacobi Algorithm
In the first set of computations, the authors consider the eigenvalue
problem for random matrices M ∈ Sn using the Jacobi algorithm
(4): forM ∈ Sn, choose i < j such that

		Mij
		≥max1≤i′<j′≤n

		Mi′j′
		, and
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let G(ij) ≡ G(ij)(θ) be the corresponding Givens rotation matrix:
GðijÞ

i′j′ = δi′j′, for i′, j′ ≠ i, j, and

"
GðijÞ

ii GðijÞ
ij

GðijÞ
ji GðijÞ

jj

#
=


cosðθÞ sinðθÞ
−sinðθÞ cosðθÞ

�
;
�
GðijÞ

T
GðijÞ = I:

Here, θ = θ(M) is chosen so that ððGðijÞÞTMGðijÞÞij = 0 and then
φJacobiðMÞ≡ ðGðijÞÞTMGðijÞ. Clearly, M′ = φJacobi(M) ∈ Sn and
spec(M′) = spec(M) and again (4), Mk =φðkÞ

JacobiðMÞ→Λ=
diagðλ1; . . . ; λnÞ. The Jacobi algorithm has a very different char-
acter from QR/Toda-type algorithms, which are intimately con-
nected to completely integrable Hamiltonian systems (ref. 5 and
references therein).† Deflation, which is a useful measure for
eigenvalue computation times for QR/Toda-type algorithms, is
not useful for the Jacobi algorithm. In place of Te,n,A,E, we record
the halting time ke,n,A,E: the number of iterations it takes for the
Jacobi algorithm to reduce the Frobenius norm of the off-diago-
nal elements to be less than a given e.‡ Histograms are produced
for an appropriate analog of τe,n,A,E:

τe;n;A;EðMÞ= ke;n;A;EðMÞ− �
ke;n;A;E

�
σe;n;A;E

: [2]

Computations for A = Jacobi are given in Fig. 2. Again, two-
component universality is evident.

Ensembles with Dependent Entries
In all of the above cases, including the calculations for the Jacobi
algorithm, the matrices M are real and the entries Mij are in-
dependent, subject only to the symmetry requirement Mij = Mji.
In the second set of computations in this paper, the authors
consider n × n Hermitian matrices M = M* taken from various
unitary ensembles (7) with probability distributions proportional
to e−ntrV(M)dM, where V: R → R grows sufficiently rapidly as
jxj → ∞, and dM is Lebesgue measure on the algebraically in-
dependent entriesMij =Re Mij +

ffiffiffiffiffiffi
−1

p
  Im Mij of M. Unless V(x) is

proportional to x2, the entries of M for such ensembles are depen-
dent, and it is a nontrivial matter to sample the matrices. A novel
technique for sampling such unitary ensembles was introduced

−2 0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Normalized Deflation Time
Fr

eq
ue

nc
y

−2 0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Normalized Deflation Time

Fr
eq

ue
nc

y

−2 0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Normalized Deflation Time

Fr
eq

ue
nc

y

Fig. 1. The observation of two-component universal-
ity for τe,n,A,E when A = QR. Overlaid histograms dem-
onstrate the collapse of the histogram of τe,n,A,E to
a single curve. See Definition of Matrix Ensembles
for the definitions of our choices for E. (Upper Left)
E = GOE, and 40 histograms for τe,e,A,E, are plotted one
on top of the other for e = 10−k, k = 2, 4, 6, 8, and
n = 10, 30, . . .,190. The histograms are created with
∼10,000 samples. Upper Right contains same in-
formation as Upper Left, but for E = BE. (Lower) All
40 + 40 histograms are overlaid, and universality is
evident: The data appears to follow a universal law
for the fluctuations. Figure reprinted with permission
from ref. 1.
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Fig. 2. The observation of two-component universality for τe,n,A,E when A =
Jacobi, E = GOE, BE and e=

ffiffiffi
n

p
  10−10. (Left) Two histograms, one on top of

the other, for GOE and BE, when n = 30. (Right) Same information for n = 90.
All histograms are produced with 16,000 samples. We see two-component
universality emerge for n sufficiently large: the histograms follow a universal
(independent of E) law.

†The Jacobi algorithm is well-suited to parallel computation, and also has other advan-
tages over QR in the context of modern, large-scale computation (5).

‡This criterion is sufficient to conclude that one element on the diagonal of the trans-
formed matrix is within en−1/2 of an exact eigenvalue of the original matrix.
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recently (8) by S.O. and T.T., together with N. R. Rao, taking
advantage of the representation of the eigenvalues of M as a
determinantal point process whose kernel is given in terms of
orthogonal polynomials (9). Using this sampling technique, the
authors of the present paper have considered the QR algorithm
for various unitary ensembles.§ Histograms for the halting (= de-
flation) time fluctuations τe,n,A,E, A = QR, are given in Fig. 3 and,
again, two-component universality is evident.

The Conjugate Gradient Algorithm
In a third set of computations in this paper, the authors start to
address the question of whether two-component universality is
just a feature of eigenvalue computation, or is present more
generally in numerical computation. In particular, the authors
consider the solution of the linear system of equations Wx = b,
where W is real and positive definite, using the conjugate gra-
dient (CG) method. The method is iterative (see ref. 10 and also
Remark 1 below), and at iteration k of the algorithm, an ap-
proximate solution xk of Wx = b is found and the residual rk =
Wxk − b is computed. For any given e > 0, the method is halted
when krkk2 < e, and the halting time ke(W, b) recorded.{ The
authors consider n × n matrices W chosen from two different
positive definite ensembles E (see Definition of Matrix Ensembles)
and vectors b = (bj) chosen independently with iid entries {bj}.
Given e (small) and n (large), and (W, b) ∈ E, the authors record
the halting time ke,n,A,E, A = CG, and compute the fluctuations
τe,n,A,E(W, b). The histograms for τe,n,A,E are given in Fig. 4 and,
again, two-component universality is evident.

The Generalized Minimal Residual Algorithm
In a fourth set of computations, the authors again consider the
solution of Wx = b, but here W has the form I + X, and X ≡ Xn is
a random, real nonsymmetric matrix and b = (bj) is independent
with uniform iid entries {bj}. Because W = I + X is (almost
surely) no longer positive definite, the CG algorithm breaks
down, and the authors solve (I + X)x = b using the generalized
minimal residual (GMRES) algorithm (11). Again, the algorithm
is iterative, and at iteration k of the algorithm an approximate

solution xk of (I +X)x = b is found and the residual rk = (I +X)xk − b
is computed. As before, for any given e > 0, the method is halted
when krkk2 < e and ke,n,A,E(X, b) is recorded. As in the conjugate
gradient problem, the authors compute the histograms for the
fluctuations of the halting time τe,n,A,E (2) for two ensembles E,
where now A = GMRES. The results are given in Fig. 5, where
again two-component universality is evident.
Remark 1. The computations in the CG and GMRES sections

are particularly revealing for the following reason. Both the CG and
GMRES algorithms proceed by generating approximations xn to the
solution in progressively larger subspaces Vk ofR

n, xk ∈ Vk, dim Vk = k
(almost surely). These algorithms terminate in at most n steps, in the
absence of rounding errors. If the matrix W in the case of CG, or
I + X in the case of GMRES, is too close to the identity, then the
algorithm will converge in Oð1Þ steps, essentially independent of n.
However, if W or I + X is too far from the identity, the algorithm will
converge only after n steps (GMRES) or be dominated by rounding
errors (CG). Thus, in both cases there are no meaningful statistics.
What the calculations these sections reveal is that if the ensembles for
CG and GMRES are such that the matrices W and I + X, re-
spectively, are typically not too close to and not too far from the
identity, then the algorithms exhibit significant statistical fluctuations,
and two-component universality is immediately evident. (For further
discussion, see legends for Figs. 4 and 5). Analogous considerations
apply below.

Discretization of a Random PDE
In a fifth set of computations, the authors raise the issue of
whether two-component universality is just a feature of finite-
dimensional computation, or is also present in problems that are
intrinsically infinite dimensional. In particular, is the universality
present in numerical computations for PDEs? As a case study,
the authors consider the numerical solution of the Dirichlet
problem Δu = 0 in a star-shaped region Ω ⊂ R

2 with u = f on ∂Ω.
The boundary is described by a periodic function of the angle θ,
r = r(θ), and similarly f = f(θ), 0 ≤ θ ≤ 2π. Two ensembles,
Bernoulli–Dirichlet ensemble (BDE) and uniform Dirichlet
ensemble (UDE; as described in Definition of Matrix Ensembles),
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Fig. 3. The observation of two-component universality for τe,n,A,E when A =
QR, E = QUE, COSH, GUE and e = 10−10. Here we are using deflation time (or
halting time), as in ref. 1. (Left) Three histograms, one each for GUE, COSH,
and QUE, when n = 70. (Right) Same information for n = 150. All histograms
are produced with 16,000 samples. Two-component universality emerges for
n sufficiently large: the histograms follow a universal (independent of E)
law, which is surprising because COSH and QUE have eigenvalue dis-
tributions that differ significantly from GUE in that they do not follow the
so-called “semicircle law.” In addition, these histograms appear to collapse
to the same curve in Fig. 1, which is a further surprise, given the well-known
fact that orthogonal and unitary ensembles give rise to different (eigen-
value) universality classes.
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Fig. 4. The observation of two-component universality for τe,n,A,E when
A = CG and E = cLOE, cPBE with e = 10−10. (Left) Two histograms, one for
cLOE and cPBE, when n = 100. (Right) Same information for n = 500. All
histograms are produced with 16,000 samples. Two-component univer-
sality is evident for n sufficiently large: the histograms follow a universal
(independent of E ) law. The critical scaling (see Definition of Matrix
Ensembles) has significant impact on the distribution of the condition
number and forces 〈τe,N,A,E〉 ∼ nα, α < 1. If the scaling m = 2n is chosen in
the ensemble E, then the CG method converges too quickly and the
halting time tends to take only 10–15 different values for each value of
m. No interesting limiting statistics are present. Conversely, if m = n, the
CG method converges slowly (〈ke,m,A,E〉 � m) and rounding errors domi-
nate the computation. Experiments do not indicate two-component
universality if m = 2n or m = n. The scaling m=n+ 2

ffiffiffi
n

p
identifies a critical

scaling region. Within this scaling region, we see two-component uni-
versality emerge for n sufficiently large: the histograms follow a univer-
sal (independent of E ) law.

§Here, M = QR where Q is unitary and, again, R is upper triangular with Rii > 0.
{The notation k·k2 is used to denote the standard ℓ2 norm on n-dimensional
Euclidean space.
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are derived from a discretization of the problem with specific
choices for r, defined by a random Fourier series. The boundary

condition f is chosen randomly by letting
�
f
�
2πj
n

�n−1

j=0
be iid uni-

form on [−1, 1]. Histograms for the halting time τe,n,A,E from
these computations are given in Fig. 6 and again, two-com-
ponent universality is evident. What is surprising, and quite
remarkable, about these computations is that the histograms
for τe,500,A,E in this case are the same as the histograms for
τe,500,A,E in Fig. 5 (see Fig. 6 for the overlaid histograms). In
other words, UDE and BDE are structured with random
components, whereas scaled shifted Ginibre ensemble (cSGE)
and critically scaled shifted Bernoulli ensemble (cSBE) have
no structure, yet they produce the same statistics (modulo
two components).

A Genetic Algorithm
In all of the computations discussed so far, the randomness in the
computations resides in the initial data.k In the sixth set of com-
putations, the authors consider an algorithm which is intrinsically
stochastic. They consider a genetic algorithm to compute Fekete
points (12, p. 142). Such points Pp = ðPp

1; P
p
2; . . . ;P

p
NÞ∈RN are the

global minimizers of the objective function

HðPÞ= 2
NðN − 1Þ

X
1≤i≠j≤N

log
		Pi −Pj

		−1 + 1
N

XN
i=1

V ðPiÞ

for real-valued functions V = V(x), which grow sufficiently rapidly
as jxj → ∞. It is well-known (12) that as N → ∞, the counting
measures δPp = 1

N

PN
i=1δPp

i
converge to the so-called “equilibrium

measure” μV, which plays a key role in the asymptotic theory of
the orthogonal polynomials generated by measure e−NV(x)dx on R.
Genetic algorithms involve two basic components, mutation and
cross-over. The authors implement the genetic algorithm in the
following way.
The algorithm: Fix a distribution D on R. Draw an initial

population P0 =P = fPigni=1 consisting of n = 100 vectors in R
N,

N large, with elements that are iid uniform on [−4, 4]. The

random map FDðPÞ :ðRNÞn → ðRNÞn is defined by one of the fol-
lowing two procedures.

Mutation. Pick one individual P ∈ P at random (uniformly), and
then pick two integers n1, n2 from {1, 2, . . ., N} at random
(uniformly and independent). Three new individuals are created.
– ~P1 — draw n1 iid numbers fx1; . . . ; xn1g from D and perturb

the first n1 elements of P: ð~P1Þi = ðPÞi + xi, i = 1,. . .,n1, and ð~P1Þi =
ðPÞi for i > n1.
– ~P2 — draw N − n2 iid numbers fyn2+1; . . . ; yNg from D and

perturb the last N − n2 elements of P: ð~P2Þi = ðPÞi + yi, i = n2 +
1,. . ., N, and ð~P2Þi = ðPÞi for i ≤ n2.
– ~P3 — draw jn1 − n2j iid numbers fz1; . . . ; zjn1−n2jg fromD and

perturb elements np1 = 1+minðn1; n2Þ through np2 =maxðn1; n2Þ:
ð~P3Þi = ðPÞi + zi−n1*+1, i= np1; . . . ; n

p
2, and ð~P3Þi = ðPÞi for i∉

fnp1; . . . ; np2g.
Cross-Over. Pick two individuals P, Q from P at random (inde-
pendent and uniformly), and then pick two numbers n1, n2 from
{1, 2, . . ., N} (independent and uniformly). Two new individuals
are created.
– ~P4 — Replace the n1th element of P with the n2th element of

Q and perturb it (additively) with a sample of D.
– ~P5 — Replace the n1th element of Q with the n2th element

of P and perturb it (additively) with a sample of D.
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Fig. 5. The observation of two-component universality for τe,n,A,E when A =
GMRES, E = cSGE, cSBE, and e = 10−8. (Left) Two histograms, one for cSGE
and one for cSBE, when n = 100. (Right) Same information for n = 500. All
histograms are produced with 16,000 samples. The critically scaled ensem-
bles cSBE and cSGE are of the form I + Xn with kXnk ∼ 2. If the matrix is too
close to the identity, the halting time will take almost constant values, i.e.,
ke,n,A,E = 8, independent of n. If the matrix is too far from the identity, the
fact that it is unstructured makes GMRES perform poorly and the algorithm
typically completes in n steps, the maximum possible number of iterations
(see Remark 1). With the proper scaling of X, we see two-component uni-
versality emerge for n sufficiently large: the histograms follow a universal
(independent of E) law.
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Fig. 6. The observation of two-component universality for τe,n,A,E when
A = GMRES, E = UDE, BDE, and e = 10−8. (Upper Left) Two histograms, one
for UDE and one for BDE, when n = 100. (Upper Right) Same information
for n = 500. (Lower) Four histograms, two taken from Fig. 5 (E = cSGE,
cSBE) and two from Upper Right (E = UDE, BDE). All histograms are
produced with 16,000 samples. It is interesting to note two properties.
First, as we observe from our computations, BDE and UDE are of the form
I + Xn, where Xn has a norm that grows proportional to some fractional
power of n. Though this type of growth in the unstructured case of Fig. 5
would cause GMRES to take its maximum possible number of iterations,
i.e., k = n, nevertheless, nontrivial statistics emerge. In light of Remark 1,
we conjecture that structure is necessary for GMRES to perform well
when the perturbation of the identity has an unbounded spectral radius
in the large n limit. The second and most important feature is that two-
component universality for matrices of the form I + Xn persists as the
computations are moved from structured randomness (UDE and BDE) to
unstructured randomness (cSBE and cSGE): the histograms follow a uni-
versal (independent of E ) law.kAside from round-off errors, see Fig. 4 legend.
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At each step, the application of either cross-over or mutation is
chosen with equal probability. The new individuals are appended to
P and P ↦P′=FDðPÞ∈ ðRNÞn is constructed by choosing the 100
Pi’s in ~P that yield the smallest values of H(P).** The algo-
rithm produces a sequence of populations P1;P2; . . . ;Pk; . . .
in ðRNÞn, Pk+1 =FDðPÞ, n = 100, and halts, with halting time
recorded, for a given e, when minP∈Pk HðPÞ− infP∈RN HðPÞ< e.
The histograms for the fluctuations τe,N,A,E, with A = genetic

are given in Fig. 7, for two choices of V, V(x) = x2 and V(x) = x4 −
3x2, and different choices of E ’ D. For V(x) = x2, infP∈RN HðPÞ
is known explicitly, and for V(x) = x4 − 3x2, infP∈RNHðPÞ is ap-
proximated by a long run of the genetic algorithm. As before,
two-component universality is evident.

Curie–Weiss Model
In the seventh and final set of computations, the authors pick up on
a common notion in neuroscience that the human brain is a com-
puter with software and hardware; if this is indeed so, then one may
speculate that two-component universality should certainly be
present in some cognitive actions. Indeed, such a phenomenon is in
evidence in the recent experiments of Bakhtin and Correll (13). In
ref. 13, data from experiments with 45 human participants was
analyzed. The participants are shown 200 pairs of images. The
images in each pair consist of nine black disks of variable size. The
disks in the images within each pair have approximately the same
area so that there is no a priori bias. The participants are then asked
to decide which of the two images covers a larger (black) area,
and the time T required to make a decision is recorded. For
each participant, the decision times for the 200 pairs are collected
and the fluctuation histogram is tabulated.†† The experimental

results are in good agreement with a dynamical Curie–Weiss
model frequently used in describing decision processes (14),
and because each of the 45 participants operates, presumably,
in his or her own stochastic neural environment, this is a re-
markable demonstration of two-component universality in cog-
nitive action.
At its essence, the Curie–Weiss model is Glauber dynamics on

the hypercube {−1, 1}N with a microscopic approximation of a
drift-diffusion process. Consider N variables fXiðtÞgNi=1, Xi(t) ∈
{−1, 1}. The state of the system at time t is X(t) = (X1(t),
X2(t), . . ., XN(t)). The transition probabilities are given through
the expressions

PðXiðt+ΔtÞ≠XiðtÞjXðtÞ= xÞ= ciðxÞΔt+ oðΔtÞ;

where ci(x) is the spin flip intensity. The observable considered
is MðXðtÞÞ= 1

N

PN
i=1XiðtÞ∈ ½−1; 1�, and the initial state of the sys-

tem is chosen so that M(X(0)) = 0, a state with no a priori bias,
as in the case of the experimental setup. The halting (or de-
cision) time for this model is k = inf{t: jM(X(t))j ≥ e}, the time
at which the system makes a decision. Here, e ∈ (0, 1) may not
be small.
This model is simulated by first sampling an exponential ran-

dom variable with mean λðtÞ= ðPiciðXðtÞÞÞ−1 to find the time Δt
at which the system changes state. Sampling the random variable
Y, PðY = iÞ= ciðXðtÞÞλðtÞ, i = 1, 2, . . ., N produces an integer j,
determining which spin flipped. Define Xi(t + s) ≡ Xi(t) if s ∈
[0, Δt) for i = 1, 2, . . ., N and Xi(t + Δt) ≡ Xi(t), Xj(t + Δt) ≡ −Xj(t)
for i ≠ j. This procedure is repeated with t replaced by t + Δt to
evolve the system.
Central to the application of the model is the assumption on

the statistics of the spin flip intensity ci(x). If one changes the
basic statistics of the ci’s, will the limiting histograms for the
fluctuations of k be affected as N becomes large? In response to
this question, the authors consider the following choices for E ’
ci(x) (β = 1.3): ciðxÞ= oiðxÞ= e−βxiMðxÞ (the case studied in ref. 13,
ciðxÞ= uiðxÞ= e−βxiðMðxÞ−M3ðxÞ=5Þ, or ciðxÞ= viðxÞ= e−βxiðMðxÞ+M8ðxÞÞ.
The resulting histograms for the fluctuations τe,N,A,E of T are
given in Fig. 8. Once again, two-component universality is evi-
dent. Thus, the universality in the decision process models mir-
rors the universality observed among the 45 participants in the
experiment of Bakhtin and Correll (13).
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Fig. 7. The observation of two-component universality for τe,N,A,E when
A = genetic, e = 10−2, and E ’ D, where D is chosen to be either uniform on
[−1/(10N), 1/(10N)] or taking values ±1/(10N) with equal probability. The top
row is created with the choice V(x) = x2 and the bottom rowwith V(x) = x4 − 3x2.
(Left) Each of the plots display two histograms, one for each choice of D
when n = 10. (Right) Same information for n = 40. All histograms are pro-
duced with 16,000 samples. It is evident that the histograms collapse onto
a universal curve, one for each V.
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Fig. 8. The observation of two-component universality for τe,N,A,E when A =
Curie–Weiss, E ’ oi, ui, vi, e = 0.5, and β = 1.3. (Left) Three histograms, one
for each choice of E when n = 50. (Right) Same information for n = 200. All
histograms are produced with 16,000 samples. The histogram for E = oi

corresponds to the case studied in refs. 12 and 13. It is clear from these
computations that the fluctuations collapse on to the universal curve for
E = oi. Thus, reasonable changes in the spin-flip intensity do not appear to
change the limiting histogram, which indicates why the specific choice made
in ref. 12 of E = oi is perhaps enough to capture the behavior of many
individuals.

**After mutation we have ~P =P ∪ f~P1,~P2,~P3g, and after cross-over, ~P =P ∪ f~P4,~P5g.
††In ref. 12 the authors do not display the histogram for the fluctuations directly, but
such information is easily inferred from their figures (see figure 6 in ref. 12).
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Conclusions
Two distinct themes are combined in this work: (i) the notion of
universality in random matrix theory and statistical physics and (ii)
the use of random ensembles in scientific computing. The origin of
both these ideas dates to the 1950s in the work of Wigner (7, 15)
and von Neumann and Goldstine (16). There has been consider-
able progress in the rigorous understanding of universality in
random matrix theory (refs. 17 and 18 and references therein). In
contrast, the performance of numerical algorithms on random
ensembles is less understood, although results in this area include
probabilistic bounds for condition numbers and halting times for
numerical algorithms (19–21).
The work presented here reveals empirical evidence for two-

component universality in several numerical algorithms. The re-
sults of ref. 2 and the Jacobi, QR, CG, and GMRES sections
reveal universal fluctuations of halting times for iterative algo-
rithms in numerical linear algebra on random matrix ensembles
with both dependent and independent entries. In each instance,
the process of numerical computation on a random matrix may
be viewed as the evolution of a random ensemble by a de-
terministic dynamical system. In a similar light, the genetic
algorithm and Curie–Weiss Model may be seen as stochastic dy-
namical systems with that in Curie–Weiss Model having a close
connection with neural computation. In all these examples, the
empirical observations presented here suggest new universal
phenomena in nonequilibrium statistical mechanics. The results
from solving the Dirichlet problem reveal that numerical com-
putations with a structured ensemble with some random com-
ponents may have the same statistics (modulo two-components)
as an unstructured ensemble, which brings to mind the situation
in the 1950s when Wigner introduced random matrices as a
model for scattering resonances of neutrons off heavy nuclei:
the neutron–nucleus system has a well-defined and structured
Hamiltonian, but nevertheless the resonances for neutron scat-
tering are well-described statistically by the eigenvalues of an
(unstructured) random matrix.

Materials and Methods
All algorithms discussed here are implemented in Mathematica. A package
is available for download (21) that contains all relevant data and the code
to generate this data. The package supports parallel evaluation for most
algorithms and runs easily on personal computers.

Definition of Matrix Ensembles
Gaussian Ensembles. The Gaussian orthogonal ensemble is given
by ðX +XTÞ= ffiffiffiffiffi

4n
p

, where X is an n × n matrix of standard iid
Gaussian variables. The Gaussian unitary ensemble is given by

ðX +X*Þ= ffiffiffiffiffi
8n

p
, where X is an n × n matrix of standard iid

complex Gaussian variables.

Bernoulli Ensemble. The Bernoulli ensemble is given by an n × n
matrix X consisting of iid random variables that take the val-
ues ± 1=

ffiffiffi
n

p
with equal probability subject only to the constraint

XT = X.

Positive Definite Ensembles. The cLOE is given by W = XXT/m,
where X is an n × m matrix with standard iid Gaussian entries.
The cPBE is given by W = XXT/m, where X is an n × m matrix
consisting of iid Bernoulli variables taking the values ±1 with
equal probability. In both cases, the critical scaling refers to the
choice m= n+ 2b ffiffiffi

n
p c.

Shifted Ensembles. The cSBE is given by I +X=
ffiffiffi
n

p
, where X is an

n × n matrix consisting of iid Bernoulli variables taking the
values ±1 with equal probability. The cSGE is given by I +X=

ffiffiffi
n

p
,

where X is an n × n matrix of standard iid Gaussian variables.
With this scaling, PðjkX=

ffiffiffi
n

p k− 2j> eÞ→ 0 as n → ∞ (22).

Unitary Ensembles. The Quartic unitary ensemble (QUE) is a com-
plex, unitary ensemble with probability distribution proportional to
e−ntrM

4
dM. The Cosh unitary ensemble (COSH) has its distribution

proportional to e−tr cosh MdM.

Dirichlet Ensembles. We consider the numerical solution of the
equation Δu = 0 in Ω and u = f on ∂Ω. Here, we let Ω be the
star-shaped region interior to the curve (x, y) = (r(θ)cos(θ),
r(θ)sin(θ)), where r(θ) for 0 ≤ θ < 2π is given by rðθÞ=
1+

Pm
j=1ðXj cosðjθÞ+Yj sinðjθÞÞ; and Xj and Yj are iid random

variables on [−1/(2m), 1/(2m)]. The boundary integral equation

πuðPÞ−
Z
∂Ω

uðPÞ ∂
∂nQ

logjP−QjdSQ =−f ðPÞ; P∈∂Ω

is solved by discretizing in θ with n points and applying the
trapezoidal rule with n = 2m (23). For the BDE, Xm and
Ym are Bernoulli variables taking values ±1/(2m) with equal
probability. For the UDE, Xm and Ym are uniform variables on
[−1/(2m), 1/(2m)].
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