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Overview

The purpose of these notes is to introduce the reader to some topics of current
interest in mathematics, that are related in a broad sense to turbulence in
fluids. The fundamental physical example of turbulence relates to the behavior
of incompressible fluids at very high Reynolds number. However, very little
is known about this problem that is based on first principles. That is, there
are few results that connect the underlying partial differential equations (the
Euler and Navier-Stokes equations) to the main empirical regularities observed
in turbulence, especially isotropic, homogeneous turbulence.

The central theme in these notes is the development of a mathematical un-
derstanding of ensembles of turbulent flows. This involves three different areas:
the analyis of nonlinear partial differential equations; stochastic processes; and
statistical physics. The relation between these areas in the study of turbulence,
is roughly as follows. First, the study of the equations of fluid mechanics, and
reduced models inspired by fluid mechanics, has been a central concern in par-
tial diffential equations since the 1930s. The study of stochastic processes is
the branch of probability theory devoted to the analysis of random functions.
It is of central importance here, since in order to formulate the notion of a ‘so-
lution chosen at random’, we must understand how to associate probabilities
to solutions of differential equations. More formally, a turbulent ensemble is
a probability measure supported on a set of solutions to an underlying family
of partial differential equations, such as the Euler or Navier-Stokes equations.
Finally, the choice of models, ensembles and questions must be guided by the
principles of statistical physics.

These notes are primarily directed at mathematicians. However, I hope they
will also be of value to readers in the sciences and engineering. To this end, I
have tried to eschew jargon and technicalities, and to provide an informal sense
of why mathematicians study problems the way they do. This is particularly
important in the study of nonlinear partial differential equations, since often the
very notion of what constitutes a solution to the equations requires care. This is
not pedantry: the non-existence of solutions typically corresponds to interesting
physical singularities such as the formation of shocks, or the blow-up of vorticity.

The notes are structured in a set of self-contained modules to assist readers
with varied backgrounds. These modules are based on three distinct approaches
to the problem, due to Hopf, Kolmogorov and Onsager. Their work provides
a ‘framework’ for the problem, though at present there are many gaps in the
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ii OVERVIEW

implementation of this framework for three-dimensional fluid flows (i.e. real flu-
ids). For these reasons, the remainder of the notes are devoted to the analysis of
model problems, each of which while approximate, possesses some ‘solvability’,
challenges, and riches, of its own.

Here are the topics in more detail:

1. Onsager’s approach in 2D. Mean-field equations and their analysis.

2. Dimensional analysis and Kolmogorov scaling in 3D.

3. Onsager’s approach in 3D. Critical regularity and energy conservation.

4. Hopf’s method. Hierarchies of equations for the evolution of moments,
the closure problem and positivity criterion.

5. Gaussian ensembles: Wick’s lemma and Feynman diagrams; closure for
linear PDE, ‘non-closure’ for nonlinear PDE.

6. 1D: PDE theory for conservation laws; closure and statistical theory.

7. 2D Euler revisited: Arnold’s least action principle. Zeitlin’s model. Bre-
nier’s approach.

8. Kraichnan’s Direct Interaction Approximation (DIA) and linear response
theory. The kinetics of spherical spin glasses.

For both the 1D and 2D models, the notes contain a description of the underlying
PDE theory before a statistical theory for solutions is developed.

The modular structure here is roughly as follows: the work of Kolmogorov,
Hopf and Onsager forms a core set of ideas that motivates everything else.
Gaussian ensembles provide the simplest tractable example of random fields –
these are quite inconsistent for turbulence, but it is necessary to understand why.
The 1D models illustrate an elegant resolution of the closure problem. They
also connect to the study of stochastic particle systems and the KPZ equation.
The 2D models are important for oceanographic flows, and nicely illustrate the
connection with equilibrium statistical mechanics. Finally, Kraichnan’s DIA
model was motivated by turbulence, but is also of interest in phase transitions,
since it is an early example of Mezard and Parisi’s celebrated replica method in
spin glass theory.



Suggested reading

It is impossible to present a self-contained treatment of the topics here. While
I will aim to present the essential details in the notes, additional reading is
essential. The following sources are very useful as concurrent reading.

1. V. Šverák, Lectures on fluid mechanics. Available online at the author’s
website. This is a wonderful introduction to mathematical problems in
fluid mechanics by one of the leading researchers in the subject. The
lectures focus on a wide range of fluid phenomena, in parallel with a
discussion of mathematical challenges. The lectures contain an excellent
presentation of certain aspects of turbulence, in particular the inverse
cascade in 2D, the scaling argument underlying Kolmogorov’s theory and
Hopf’s example of a loss of stability through a cascade of bifurcations.
It does not include any stochastic models, however, or a description of
Hopf’s functional equation [16].

2. A. J. Majda and A. L. Bertozzi, Vorticity and incompressible flow [21].
This book originated in lectures by Majda at Princeton and NYU. It
contains simple and complete proofs for many basic problems in fluid
mechanics, related to the well-posedness theory for the Euler and Navier-
Stokes equations, as well as singularity formation. As the title makes clear,
the focus is on the role of vorticity.

3. V. Elser, Three lectures on statistical mechanics. This recent set of lectures
provides a quick introduction to to the main ideas of equilibrium statistical
mechanics.

4. A.J. Chorin , Vorticity and turbulence [9]. This book contains a descrip-
tion of some stochastic models in 2D and 3D turbulence, building up to
the statistical mechanics of vortex filaments. While there is not a great
deal of overlap with these notes (except the 2D theory), the book contains
several interesting ideas.

5. U. Frisch, Turbulence [13]. This book presents a phenomenological ap-
proach to turbulence from a physicist’s perspective. It contains an inter-
esting overview of several questions of interest, without much mathemat-
ical detail.
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6. G.L. Eyink and K. R. Sreenivasan, Onsager and the theory of hydrody-
namic turbulence [12]. This is a review paper that expands on Onsager’s
article, by including several additional documents. It may be a viewed as
a counterpoint to Frisch’s book, which emphasizes Kolmogorov’s scaling
theory, rather than Onsager’s ideas.

7. Finally, most of the primary sources in the subject are available online and
well worth reading. These include the papers by Burgers [7, 5, 6], Chan-
drasekhar [8], Hopf [16], Kolmogorov [18], Onsager [27], and Taylor [29]
as well as reviews by Batchelor [3] and von Neumann [31].
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Chapter 1

Phenomena and equations

1.1 Phenomena

(a) (b)

Figure 1.1.1: 2D turbulence. (a) Turbulence on a thin shell– the Giant Red
Spot on Jupiter (Wikimedia commons); (b) A snapshot of the distribution of
vorticity in a two dimensional flow with small viscosity. The vortices are ob-
served to coalesce into larger and larger vortices, see [1].

The interplay between order and disorder in turbulent flows is best illustrated
with images of fluid flows. The Great Red Spot on Jupiter is an anticyclonic
storm that has been raging for at least a few hundred years. The dominant
feature of the atmospheric flow in the Red Spot is a giant, stable vortex. It
has been speculated that this vortex was formed by the coalescence of many
smaller vortices. Such a process is illustrated by numerical computations of two-
dimensional (2D) fluid flows with small viscosity in Figure 1.1.1. The structure
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2 CHAPTER 1. PHENOMENA AND EQUATIONS

(a) (b)

Figure 1.1.2: Turbulence in incompressible fluids in 3D. (a) Decaying
turbulence behind a grid. Streamlines are visualized by wires that release thin
tendrils of smoke into the flow. An initially laminar flow grows into a fully
developed turbulent flow. (b) Wrinkling of fluid surfaces. An electric current
through a thin, straight platinum wire releases a continuous sheet of hydrogen
bubbles that is deformed by the flow. Both figures are taken from Van Dyke’s
Album of Fluid Motion [30].

of turbulent flows in three dimensions (3D) is more subtle. While vorticity
continues to play a central role, it is not as obvious visually – the vortices
stretch and twist as seen in Figure 1.1.2.

The viewpoint that is adopted in these notes is that the analysis of the
Navier-Stokes and Euler equations forms a natural starting point for the study
of turbulence. This viewpoint is natural because these equations are firmly
founded in classical physics. They are derived in a direct manner from New-
ton’s laws, using the geometry of fluid flows and a constitutive relation between
viscosity and shear as explained in books on fluid mechanics [4, 14]. However,
it is not known if solutions to these equations form singularities. If so, the reso-
lution of these singularities would cause a paradigm shift in our understanding
of fluid flows. A lack of detailed understanding of the Navier-Stokes and Eu-
ler equations immediately impacts any attempt to combine the analysis with
probability theory to develop interesting turbulent ensembles. For this reason,
an important role in the theory is played by simplified partial differential equa-
tions in one and two dimensions. These simplified models help illustrate one of
the advantages of starting with the partial differential equations: the methods
developed to study turbulence have applications well beyond fluid mechanics.
Let us ilustrate this idea with an example.

The generation and propagation of disorder is of central interest in condensed
matter physics, particularly in the study of critical phenomena and phase tran-
sitions. Figure 1.1.3 illustrates one such example: grain boundary evolution.
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In the simplest setting, the grains are topological polygons in the plane, sep-
arated by smooth curves, which meet at perfect 120o degree triple junctions.
Each curve evolves by motion by mean curvature – i.e., the normal velocity of
a point on the curve is proportional to its curvature. The net effect of this mo-
tion is that domains with five sides and fewer vanish, and the grain boundary
network coarsens. As we shall see below, one of the simplest tractable models
of turbulence introduced by Burgers to describe turbulence in fluids, is a bet-
ter phenomenological model of domain coarsening, than it is of homogeneous,
isotropic turbulence as in Figure 1.1.2.

A common theme in phase transitions and turbulence is the balance be-
tween microstructure and empirical scaling laws. By microstructure, we mean
the complexity of individual fluid flows, or the geometric and topological com-
plexity of grain boundaries as shown, for example, in Figures 1.1.1– 1.1.3. It
is a remarkable, and fundamental, physical fact that in all these instances the
complex microstructure coexists with simple and robust empirical scaling laws.
Two examples of such scaling laws in turbulent flows are illustrated in Fig-
ure 1.1.4. The first of these is the celebrated Kolmogorov spectrum in isotropic,
homogeneous turbulence. The second image is a less well-known spectrum – the
distribution of kinetic energy among different modes in the atomsphere.

The coexistence of complex microstructure, but simple scaling laws, is me-
diated by a statistical viewpoint. Figures 1.1.2– 1.1.3 should be viewed as
snapshots of typical representatives of ensembles of fluid flows or material mi-
crostructures that satisfy both the governing equations and the empirical scaling
laws. The central theme of these notes is to understand the challenges implicit in
constructing such ensembles starting from the equations of continuum physics.
Our hope is that such a study will shed light on what is at present a vast gap
between our understanding of the fundamental laws of fluid mechanics and the
empirically observed universal scaling laws of turbulence.

In order to make meaningful progress from such a starting point, one must
confront both analytic and probabilistic difficulties. First, it is necessary to
understand the underlying partial differential equations. In technical terms, this
means that we require well-posedness theorems with minimal regularity of initial
data. Second, it is challenging to construct random fields in 2D and 3D such as
those shown in Figures 1.1.1—-1.1.3. To illustrate these issues, let us consider
what is required for a rigorous analysis of Figure 1.1.3. Our tasks include: (a)
finding a good ‘coordinate system’ for the combinatorial topology and geometric
embedding of the network; (b) a tractable probability measure on such networks;
(c) a precise understanding of motion by mean curvature of networks satisfying
the Herring boundary condition that includes grain deletion; and finally, (d) an
understanding of the flow of probability measures on random networks induced
by the deterministic evolution of an initial random network. As stated, this
problem is currently out of reach. But there is cause for optimism and plenty of
room for questions of intermediate difficulty that are mathematically tractable
and provide real physical insight.
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While these results show the evolution behavior of entire
systems, the exact von Neumann–Mullins relation (Eq. (1))
describes how each individual grain evolves, i.e. at a constant
rate that depends only on its number of sides. Fig. 10 shows
the area growth rates at a single time step for each of the
20,000 grains in a system that was evolved from a 25,000

grain Voronoi microstructure using the Brakke and pro-
posed methods together with a refined discretization. When
Mc ¼ 1, these figures should show sharp, horizontal lines at
integer values of 3DA

pDt , where each line corresponds to a differ-
ent number of grain neighbors n. Fig. 10b is an excellent
description of the results for the proposedmethod.However,

(a) t=0, 1000 grains. (b) t=0.0001, 982 grains (c) t=0.001, 571 grains

(d) t=0.005, 157 grains (e) t=0.01, 82 grains (f) t=0.1, 12 grains

Fig. 7. Temporal evolution of a microstructure based upon the proposed method for McL2 ¼ 1. This microstructure was initialized as a Voronoi
tessellation of the unit square into 1000 grains.

(a) Brakke method (b) Proposed method

Fig. 8. Microstructures evolved from a single Voronoi tessellation of 1000 grains after half of the grains have been consumed, using (a) the Brakke method
and (b) the proposed method.

E.A. Lazar et al. / Acta Materialia 58 (2010) 364–372 369

Figure 1.1.3: Coarsening of a random 2D grain boundary network.
Motion by mean curvature of a network of individual curves with the Herring
boundary condition (all curves meet at 120o in triple junctions, except when a
polygon vanishes). The initial network is chosen at random. It is observed that
the mean area of the grains grows linearly in time, for random initial conditions.
Numerical simulations by Lazar, MacPherson, and Srolovitz [19].

1.2 Equations

We now turn to the basic equations of fluid flow for an incompressible fluid with
constant density. In all that follows, we assume the fluid occupies a fixed domain
Ω ⊂ Rd, d = 2, 3 with boundary ∂Ω. It is convenient to first ignore the effect
of boundaries (though these are very important in practice). A special role is
played by the domains Ω = Rd and Ω = Td. In particular, Fourier analysis of
the fluid equations is simplest in these domains. The velocity field is a map
u : Ω× [0, T ]→ Rd for some positive time T > 0. The Navier-Stokes equations
for a fluid with constant density ρ and viscosity µ are

ρ (∂tu + u · ∇u) = −∇p+ µ4u, (1.2.1)

∇ · u = 0. (1.2.2)

The first equation expresses conservation of momentum (Newton’s law). The
second equation expresses conservation of mass (incompressibility). The dif-
ferential expression on the left-hand side of (1.2.5) is the convective derivative
which is also denoted

Du

Dt
:= ∂tu + u · ∇u. (1.2.3)

The expression on the right-hand-side of (1.2.1) is the net force on a fluid par-
ticle. These include a pressure gradient, ∇p, and viscous shear stresses.

The Navier-Stokes equations may be recast in non-dimensional form as fol-
lows. We choose mass, space and time scales M , L and T respectively, and
use these to derive the associated velocity, density and force scales L/T , M/L3,
ML/T 2. The length scales L and T are typically set by the geometry of the
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(a)

©          Nature Publishing Group1984

(b)

Figure 1.1.4: Energy spectra of turbulent flows. (a) The Kolmogorov
spectrum – time averaged energy density in Fourier modes as measured in wind-
tunnel experiments [28]. Experimental data from many sets of experiments
are shown to collapse onto one curve in the inertial range, where the slope is
E(k) ∼ k−5/3; (b) Time averaged energy density of winds in the tropopause [26].
There are two ranges: the one on the left has slope k−3, this is followed by a
range k−5/3.

flow, and as we will see below, the mass-scale drops out when we assume that
the fluid has constant density. We then form the non-dimensional space and
time variables, velocity and pressure

x̃ =
x

L
, t̃ =

t

T
, ũ =

T

L
u, p̃ =

LT 2

M
p. (1.2.4)

The tilde has been introduced for clarity. We now drop the tilde sign and rewrite
the Navier-Stokes equations (1.2.1)–(1.2.2) in non-dimensional form

∂tu + u · ∇u = −∇p+
1

Re
4u, (1.2.5)

∇ · u = 0, (1.2.6)

where the Reynolds number, Re, is the non-dimensional ratio

Re =
ρL2

µT
=
L2

νT
, (1.2.7)
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and the ratio ν = µ/ρ is called the kinematic viscosity.

The Reynolds number admits many different interpretations, all of which
express the fact that it is the ratio of inertial effects to viscous effects in the
flow. For example, in a flow through a pipe or shear flow, it is conventional to
define L to be the width of the pipe or channel, and to set T = U/L, where U
is the mean velocity at the inlet of the pipe or the relative velocity between the
plates. We then find

Re =
L2/ν

L/U
:=

τviscous

τinertia
, (1.2.8)

where the numerator, τviscous, and the denominator τinertia, define time-scales on
which viscous and inertial effects manifest themselves. The main characteristic
of turbulent flows is that we do not see viscous effects for a long time. Thus,
our interest lies in the limit Re→∞.

An ideal fluid has no viscosity. The equations for an ideal fluid were formu-
lated by Euler, before Navier and Stokes formulated the notion of a constitutive
relation for viscous fluids. But these models are closely related, and Euler’s
equations for an ideal fluid may be obtained from the Navier-Stokes equation
by dropping the viscous term

∂tu + u · ∇u = −∇p, (1.2.9)

∇ · u = 0. (1.2.10)

Formally, Euler’s equations are obtained by setting Re = ∞, but this is a
singular limit. In particular, viscous and invsiscid flows satisfy fundamentally
different boundary conditions. The microscopic mechanisms that create viscos-
ity impose a no-slip boundary condition for viscous flows and the Navier-Stokes
equations (1.2.5)–(1.2.6) must be augmented by the boundary condition

u(x, t) = 0, x ∈ ∂Ω. (1.2.11)

An ideal fluid, however, can slide along a boundary since there is no friction,
but it cannot penetrate the boundary. Thus, the Euler equations are augmented
with the boundary condition

u(x, t) · n(x) = 0, x ∈ ∂Ω, (1.2.12)

where n(x) denotes the unit normal to the boundary ∂Ω. When the Reynolds
number is large, despite the fact that inertial effects may dominate the bulk
of the flow, the structure of the flow depends crucially on the behavior of the
flow near the boundary. The description of turbulent boundary layers is be-
yond current mathematical methods (as indeed is much of turbulence without
boundaries!). For these reasons, we will not consider the effects of boundaries
in these lectures.
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1.3 Vorticity

The vorticity, ωωω, is the curl of the velocity field. For two dimensional flows, the
vorticity is a scalar field, and in three dimensions it is a vector field 1. Both the
Euler and the Navier-Stokes equations may be expressed completely in terms
of the vorticity. This follows from two properties of (1.2.5)–(1.2.6). The first is
that the linear system

∇× u = ωωω, ∇ · u = 0, (1.3.1)

may be inverted to recover a velocity field from its vorticity. The second is that
the curl of (1.2.5) yields a transport equation for the vorticity.

It is easiest to invert (1.3.1) for flows in Rd (see the Exercises for bounded
domains). We take the curl of the first equation in (1.3.1), and use the vector
identity ∇× (∇× u) = ∇ (∇ · u)−4u = −4u, to obtain the equation

−4u = ∇× ωωω. (1.3.2)

We solve equation (1.3.2) using the fundamental solution of Poisson’s equation,
and integrate by parts to obtain the Biot-Savart law (Section 1.4 below).

u(x, t) =

∫
Rd
Kd(x− y)ωωω(y, t) dy, d = 2, 3, (1.3.3)

K2(x) =
1

2π

x⊥

|x|2
, K3(x)h =

1

4π

x× h
|x|3

, x, h ∈ R3, (1.3.4)

Here K2 is a vector and K3 is a matrix whose action on a vector h is given
by the formula above. We have also used the notation x⊥ = (−x2, x1) for
x = (x1, x2) ∈ R2.

The evolution of the vorticity field is determined as follows. First, we note
that the Navier-Stokes equation (1.2.5) may be rewritten in the form

∂tu− u×ωωω = −∇
(
p+
|u|2

2

)
+

1

Re
4u, (1.3.5)

using the vector identity

u× (∇× u) =
1

2
∇ (u · u)− u · ∇u. (1.3.6)

We now take the curl of (1.3.5), and use the identities ∇ · u = ∇ · ωωω = 0, to
obtain the vorticity evolution equation for viscous flows

Dωωω

Dt
= ωωω · ∇u +

1

Re
4ωωω. (1.3.7)

Similarly, the vorticity formulation of the Euler equations is

Dωωω

Dt
= ωωω · ∇u. (1.3.8)

1Though we focus on two and three dimensional flows, the vorticity has an elegant math-
ematical description in any dimension [2, Ch.1]



8 CHAPTER 1. PHENOMENA AND EQUATIONS

In both these equations, the i-th component of the vector ωωω · ∇u is given by

(ωωω · ∇u)i =

3∑
j=1

ωωωj∂xjui. (1.3.9)

In two dimensions, the vorticity is orthogonal to the plane of the fluid flow, and
we see immediately that the term ωωω ·∇u vanishes. Thus, the vorticity is simply
transported by the flow in two dimensions. This allows a dramatic simplification
of the analysis as described below. In three dimensions, however, this term has
a subtle effect on the flow, that is best interpreted in light of Kelvin’s circulation
theorem.

Consider a closed material line Γ(t) that encloses a surface S(t). The circu-
lation around Γ(t) is the line integral

C(t) =

∮
Γ(t)

u · dl =

∫
S(t)

ωωω · da. (1.3.10)

(Here dl and da denote the infinitesimal oriented line and area element respec-
tively). The rate of change of the circulation is computed from (1.3.7) and
Reynolds transport theorem, and we find [4, §5.2]

dC

dt
= − 1

Re

∮
(∇× ωωω) · dl. (1.3.11)

In particular, the circulation around a closed loop contained within the fluid is
conserved for ideal flows: this is Kelvin’s theorem.

We see immediately from the expression of the circulation as an area integral,
that if a small loop Γ(t) shrinks as it is convected by the flow, then the vorticity
field must grow in order that the circulation stays constant. It is not known
if such ‘vortex stretching’ is sufficient to cause the formation of singularities in
the Euler equations (see [21, Thm 3.6]).

1.4 Point vortices

In this section, we consider two dimensional flows u = (u, v) on a bounded
domain Ω ⊂ R2 with a smooth boundary. The incompressibility condition
∇ · u = 0 is immediately satisfied if we can find a streamfunction, ψ, such that

u1 = −∂x2
ψ, u2 = ∂x1

ψ, or u = ∇⊥ψ. (1.4.1)

The flow is parallel to the contours of the stream function. The (scalar) vorticity
and the stream function are related by Poisson’s equation

4ψ = ω, x ∈ Ω. (1.4.2)

Further, when we rewrite the boundary condition (1.2.12) using (1.4.1), we find
that the tangential derivative ∇ψ · t(x) vanishes on the boundary ∂Ω. When Ω
is simply connected, we may assume without loss of generality that

ψ = 0, x ∈ ∂Ω. (1.4.3)
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In general, the boundary may consist of countably many components and ψ
may take a different constant value on each component.

Let us now explain the Biot-Savart law in the simplest setting in 2D. Pois-
son’s equation with Dirichlet boundary conditions may be solved by the method
of Green’s functions. The fundamental solution, denoted GΩ(x, y), to Poisson’s
equation (1.4.2) solves

4xG = δy(x), x, y ∈ Ω, (1.4.4)

along with the boundary condition GΩ(x, y) = 0, x ∈ ∂Ω. Since the vorticity
distribution is concentrated at a single point, we call the resulting flow a point
vortex . The solution to (1.4.2) is then given by

ψ(x) =

∫
Ω

GΩ(x, y)ω(y) dy. (1.4.5)

When Ω = R2, the flow field of a point vertex is obtained from the free-space
Green’s function

GR2(x, y) =
1

2π
log |x− y| = 1

4π
log
(
(x1 − y1)2 + (x2 − y2)2

)
. (1.4.6)

We compute the velocity field using (1.4.1) to obtain the Biot-Savart kernel

u(x, y) =
1

2π

(x− y)⊥

|x− y|2
= K2(x− y). (1.4.7)

For simple domains with some symmetry, such as the disk, the Green’s
function may be computed by the method of images (see Exercises). While it is
not possible to explicitly describe the Green’s function on an arbitrary domain,
an important aspect is that its leading-order behavior is always described by
GR2 . That is, the difference

GΩ(x, y)−GR2(x, y) (1.4.8)

is a harmonic function in Ω. In particular, this means that a point-vortex on a
bounded domain Ω has infinite self-energy . Indeed, the kinetic energy

1

2

∫
Ω

|u|2 dx =
1

2

∫
Ω

|∇xGΩ|2 dx (1.4.9)

differs by only a finite amount from the divergent integral

1

2

∫
Ω

|∇xGR2 |2 dx =
1

8π2

∫
Ω

1

|x− y|2
dx. (1.4.10)

Despite the fact that the velocity field of a point-vortex has infinite self-
energy, Kirchhoff observed that the flow-field of a finite number of point vortices
has an elegant description. The key observation is that while the velocity field
induced by a vortex at y diverges at the rate 1/|x− y| as x→ y, the ‘eye of the
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storm’ at x = y is steady. That is, the flow field induced by a point vortex at
y, does not cause the vortex itself to move.

Since equation (1.4.2) is linear, one may superpose N point vortices with
strengths {κj}Nj=1, located at points {xj}Nj=1 ⊂ Ω, to obtain a velocity field

u(x;x1, . . . , xN ) =

N∑
j=1

κj∇⊥xGΩ(x, xj), x ∈ Ω. (1.4.11)

Since the k-th vortex does not move itself, it is advected by the flow field induced
by all other vortices

ẋk = u(xk;x1, . . . , xN ) =
∑
j 6=k

κj∇⊥xGΩ(xk, xj). (1.4.12)

Thus, we have obtained a closed system of ordinary differential equations for
the evolution of N vortices. These equations may be written as a Hamiltonian
system:

κkẋk = J∇xkH(x1, . . . , xn), k = 1, . . . , N, (1.4.13)

where J denotes the standard 2× 2 symplectic matrix

J =

(
0 1
−1 0

)
, (1.4.14)

and H denotes the ‘renormalized’ Hamiltonian

H(x1, . . . , xn) = −1

2

∑
1=j<k≤N

κjκkGΩ(xj , xk). (1.4.15)

The negative sign above stems from (formally) integrating equation (1.4.9) by
parts:

H(x1, . . . , xn)
?
=

1

2

∫
Ω

|u|2 =
1

2

∫
Ω

|∇ψ|2 (1.4.16)

−
∫

Ω

ψ4ψ (1.4.2)
= −

∫
Ω

ψω
(1.4.5)

= −
∫

Ω

∫
Ω

GΩ(x− y)ω(x)ω(y) dx dy.

(The question mark in the first equality, reflects the fact that the integrals are
not well-defined because of the self-energy of each vortex). Thus, comparing
(1.4.16) and (1.4.15) we see that the self-energy of each point vortex has been
removed from the kinetic energy, which is why we say that the Hamiltonian H
has been ‘renormalized’.

Equations (1.4.15) are in the standard form of Hamiltonian dynamics if all
the vortex strengths {κk}Nk=1 are equal. If not, one may check that the rescaled
variables pk =

√
κkxk, k = 1, . . . , N , evolve according to a Hamiltonian flow

with the Hamiltonian K(p1, . . . , pn) = H(x1, . . . , xN ). 2

2First check this under the assumption that all the κk are positive. Then modify the
argument for negative κ, noting that under the identification C = R2, multiplying a complex
number z = x+ iy by

√
−1 is the same as multiplying the vector (x, y)T by J .
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This system of equations connects fluid mechanics with a class of problems
in electromagnetism and gravitation. The motion of classical point charges in a
Coulombic potential is described by a system above. Similarly, the classical N -
body problem is the study of N point masses in a gravitational field. Thus, the
statistical mechanics ofN -vortices is naturally linked to the statistical mechanics
of galaxies and the statistical mechanics of charge clouds.

1.5 Steady flows in 2D

We say that a velocity field is steady, if it does not depend on time. In this
section and the next, we consider steady solutions to the Euler equations on
a domain Ω with the boundary condition (1.2.12). These solutions also serve
as building blocks for time-dependent solutions to the Navier-Stokes equations
(see [21, Ch.2]).

In 2D, the vorticity formulation (1.3.8) reduces to the transport equation

∂tω + u · ∇ω = 0. (1.5.1)

The flow is steady if and only if

0 = u · ∇ω = u1ωx1 + u2ωx2 (1.5.2)

Further, since u = ∇⊥ψ and ω = 4ψ, we may rewrite (1.5.2) in the form

0 = −ψx2
4ψx1

+ ψx1
4ψx2

=

∣∣∣∣ ψx1 ψx2

4ψx1
4ψx2

∣∣∣∣ . (1.5.3)

It follows that the vectors ∇ψ and ∇4ψ are everywhere linearly dependent.
Thus, they have the same level curves: i.e. for each constant c, the set {ψ = c}
is identical to the set {4ψ = c̃} for a constant c̃ that depends only on c. But
this means that there is a functional dependence between ψ and 4ψ of the form

4ψ = f(ψ). (1.5.4)

Conversely, if we assume a dependence of the form (1.5.4) it is clear that the
resulting flow is steady. In summary, all steady, ideal flows in 2D are described
by partial differential equations of the above form. In Chapter 2 we shall see
how Onsager derived an equation of this form to describe a ‘most-likely’ velocity
field in 2D turbulence.

1.6 Steady flows in 3D: Beltrami fields

It follows from (1.3.8) that s steady, ideal flow in 3D must satisfy the equation

u · ∇ωωω = ωωω · ∇u. (1.6.1)
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A large class of steady 3D flows may be constructed by seeking velocity fields
that are parallel to their curl. That is, assume there exists a (sufficiently smooth)
scalar function α(x) and a divergence-free velocity field u(x)such that

ωωω(x) = α(x)u(x). (1.6.2)

We call all such velocity fields, Beltrami fields. Since 0 = ∇ · u = ∇ · ωωω, any
such scalar field must satisfy the condition

u · ∇α = 0. (1.6.3)

That is, α is constant along the stream lines of u. We substitute (1.6.2) in
(1.6.1), and use (1.6.3) to see that every Beltrami field defines an ideal steady
3D flow.

In order to obtain a deeper understanding of Beltrami fields, we assume the
domain Ω is the unit torus T3, and we further assume that α(x) is a constant α.
In this setting, Beltrami fields are constructed by solving the eigenvalue problem

∇× u = αu, ∇ · u = 0, x ∈ T3. (1.6.4)

This problem may be solved by Fourier analysis. Let us represent the velocity
field by its Fourier series

u(x) =
∑
k∈Z3

a(k)e2πik·x. (1.6.5)

In order that the velocity field is real, it is necessary and sufficient that

ā(k) = a(−k), k ∈ Z3. (1.6.6)

The condition ∇ · u = 0 is equivalent to

k · a(k) = k1a1(k) + k2a2(k) + k3a3(k) = 0. (1.6.7)

The first equation in (1.6.4) implies that

2πik × a(k) = αa(k). (1.6.8)

We take the cross-product of the above equation with k, use (3.2.8) and the
vector triple-product formula to obtain

2πi|k|2a(k) = α(k × a(k)) =
α2

2πi
a(k). (1.6.9)

Thus, the eigenvalue α = ±2πi|k|. We may now check that for every b ∈ C3

such that b · k = 0 the function

u(x) =

(
b± i k

|k|
× b
)
e2πik·x (1.6.10)

is a divergence free eigenfunction of the curl operator with eigenvalue α =
±2πi|k|. Finally, in order to construct real vector eigenfunctions we choose
b(k) ∈ C3 such that

b̄(k) = b(−k), k · b(k) = 0, (1.6.11)

and define the Beltrami field Bk(x; b(k)) as above.



Chapter 2

Onsager’s theory: the 2D
vortex gas

2.1 Introduction

During the early 1940’s several scientists, including Chandrasekhar, Heisenberg,
Kolmogorov, and Onsager, turned their attention to turbulence [31]. One of the
main ideas formulated in this period is of turbulence as a process of energy
transfer from long to small length scale, or intuitively, a picture of an incom-
pressible flow that consists of eddies within eddies. It is an interesting irony of
turbulence, that the simplest physical caricature, a scaling law for energy and
dissipation was formulated by a mathematician, Kolmogorov, whereas a more
careful mathematical examination of energy and dissipation in fluid flows was
discovered by a physical chemist, Onsager. In this chapter, we introduce On-
sager’s approach to turbulence expanding on his brief, but seminal, article [27].
In addition, to this paper, we also draw on some of Onsager’s correspondence
during that period, and his unpublished notes following [12].

Onsager’s treatment of two and three dimensional flows is completely differ-
ent. He studied 2D flows consisting of many point vortices using the principles
of equilibrium statistical mechanics. He discovered an intriguing notion of nega-
tive temperature, which he speculated explained the clustering of point vortices
into giant vortices. In unpublished work, he also derived a mean-field equation
to describe the form of the most-likely flow. This equation was rediscovered
more than twenty years later by Joyce and Montgomery [22]. For 3D flows, he
studied the notion of an energy cascade in Fourier space and carefully formu-
lated the idea of energy transfer from one shell to another. 1 This led him to
speculate that ideal flows, i.e. solutions to the Euler equations, which formally
conserve energy, could in fact dissipate energy if the solutions were not smooth.
This aspect of the problem has received extensive mathematical attention in the

1He was also the first to use the word ‘cascade’ to describe this process.

13
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past ten years [10]. In this lecture, we focus on the 2D theory. The 3D theory
is treated in the next lecture.

2.2 The vortex gas and negative temperature

The starting point for Onsager’s theory in 2D are Kirchhoff’s equations for
a system of point vortices in a bounded domain, Ω. In order to present the
essentials of the theory in a concrete manner, let us first consider a situation
where we have N identical point vortices, each with strength κ, located at
points {z1, . . . , zN} ⊂ Ω 2. Kirchhoff’s equation (1.4.13) then specializes to the
Hamiltonian system

κẋk = ∂ykH(x1, y1, . . . , xn, yn), (2.2.1)

κẏk = −∂xkH(x1, y1, . . . , xn, yn), k = 1, . . . , N. (2.2.2)

It is immediate from the form of the equation that the coordinates (xk, yk)
of zk ∈ Ω are canonically conjugate. In more mathematical terms, we say
that equation(2.2.1) is a Hamiltonian system with the standard symplectic form∑N
k=1 dyk ∧ dxk.
A fundamental feature of Hamiltonian systems is that the symplectic form

is preserved under the flow. In particular, the volume form

dV2N =
1

N !

(
N∑
k=1

dxk ∧ dyk

)N
= dx1∧dy1∧dx2∧dy2 . . .∧dxN ∧dyN , (2.2.3)

is left invariant under the flow (Liouville’s theorem). Further, a solution z(t) to
(2.2.1) is restricted to the energy hypersurface

E = {z ∈ ΩN |H(z1, . . . , zn) = E }, (2.2.4)

where E = H(z(0)) denotes the initial value of the Hamiltonian. Observe also
that the Hamiltonian diverges if two distinct vortices approach one another.
Thus, there are no collisions between vortices, and for each initial configuration
z0 with zj 6= zk for all distinct j, k, (2.2.1) has a unique solution z(t) on the
time interval (−∞,∞) with z(0) = z0.

A fundamental hypothesis of statistical mechanics is that in the large N
limit, typical Hamiltonian systems, i.e. those without hidden symmetries, will
have ergodic behavior. In the context of point vortices, this assumption means
that the proportion of time a typical trajectory z(t) spends in a relatively open
subset U ⊂ E of phase space is proportional to the 2N−1 dimensional volume of
the subset U obtained by restricting the volume form dVN to the hypersurface
E . That is,

lim
T→∞

∫ T

0

1U (z(t)) dt =
|U |2N−1

|E|2N−1

, (2.2.5)

2In this section, we denote the coordinates of a point z ∈ R2 by (x, y). This is at variance
with the notation in (1.4.13), but fits better with standard notation for Hamiltonian systems.
We also denote z = (z1, . . . , zN ) ∈ ΩN .
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where |·|2N−1 is the 2N − 1 dimensional volume form obtained by restricting
the volume form dV2N to the hypersurface E as follows. If dl2 =

∑n
j=1 dx

2
j +dy2

j

is the length element on Ω2N , and dV2N−1 is the associated 2N − 1 dimensional
volume element, then the 2N − 1 dimensional volume element on E is [24, §1.3]

dA2N−1 =
dV2N−1

|∇H|
, |U |2N−1 =

∫
U

dA2N−1. (2.2.6)

The probability measure on E obtained by normalizing the restricted volume
form dS2N−1 as above is called the microcanonical measure or the microcanon-
ical ensemble.

Despite the fact that our starting point is the Euler equations, the assump-
tion of ergodicity removes time dependence from the problem by equating two
distinct probabilistic notions – the left-hand-side of (2.2.5) is a frequentist mea-
surement of likelihod of an event, whereas the right-hand-side associates a prob-
ability to sets that is independent of time. We stress that ergodicity is an
assumption that underlies Onsager’s theory, not a theorem! In fact, very few
models in statistical mechanics are rigorously justified from the standpoint of er-
godic theory. In most instances, ergodicity should be viewed as an assumption,
that has useful consequences (see[11]).

The computation of restricted volumes can be cumbersome, and it is often
more convenient to work with the unrestricted volume form in ΩN , sampling
states in proportion to the probability density

pβ,N (z) dV2N =
1

Zβ
e−βHN (z) dV2N , Zβ,N =

∫
ΩN

e−βHN (z) dV2N . (2.2.7)

Here β ∈ R is (at first) a phenomenological parameter. The probability density
(2.2.7) is called the canonical measure, and the related law on ΩN is called
the canonical ensemble. The underlying dynamical system is no longer (2.2.1),
but instead a system that augments (2.2.1) with both dissipation and random
forcing. That is, the system of point vortices is assumed to be interacting with
a thermal bath.

The large N -limit is termed the thermodynamic limit. In this limit the
parameter β has an interpretation as the inverse temperature. For the ideal
gas, the temperature has an intuitive interpretation as the mean energy per
particle, and it is always positive. Further, an interesting calculation reveals
that both the canonical and microcanonical measure have exactly the same
large-N limit 3. More generally, the assumption that both these ensembles have
the same limit, is termed the equivalence of ensembles. Again, this should be
viewed as an assumption, not a theorem, though it is considerably easier to
check in practice than the assumption (2.2.5).

In general, the temperature has a thermodynamic definition in terms of
the number-of-states function. For the N -vortex model, the number-of-states

3Outlined in lecture. To be added as an exercise to notes with correct constants.
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function is defined as follows [11, Ch.2]. Let

ΦN (E) =

∫
ΩN

1H(z)<E dV2N . (2.2.8)

By definition, the function ΦN (E) is a monotonically increasing function of E
on the domain (−∞,∞). Further, since the Ω is bounded, the 2N -dimensional
volume of ΩN is simply AN where A is the area of the domain Ω, and we have

Φ′N (E) ≥ 0, ΦN (−∞) = 0, ΦN (+∞) = AN . (2.2.9)

The inverse temperature of the system is defined to be [11, Ch.2] (assuming the
thermodynamic limit exists) 4

β(E) = lim
N→∞

d

dE
log Φ′N (E) = lim

N→∞

Φ′′N (E)

Φ′N (E)
. (2.2.10)

Onsager applied this calculation to the vortex gas and noted the following inter-
esting feature. Since the domain is bounded, ΦN (E) is an increasing function
with a finite limit as E → +∞. Thus, it is natural to expect that the ther-
modynamic limit Φ′(E) → 0 as E → ±∞, so that it has a maximum at some
critical value of the energy, Ec where Φ′′(Ec) = 0. But then (2.2.10) shows that
the inverse temperature β(E) is negative for E > Ec!

5

Onsager interpreted negative temperature states as a sign of clustering of
vortices in a rough analogy with crystallization. A basic model of phase transi-
tions in thermodynamics goes as follows: assuming the temperature (or inverse
temperature β is held fixed), the equilibrium phase of the system is determined
by minimizing the Helmholtz free energy

F = U +
1

β
S. (2.2.11)

Here U is the internal energy and S is the entropy of the system (see footnote
below (2.4.3)). At low temperatures (β → ∞), the free energy is minimized
when the entropy is low, thus the system settles into an ordered state (e.g a
crystal). At high temperatures β → 0, disorder dominates since there is only a
low cost for high entropy. This heuristic order-disorder argument can be applied
to the vortex gas. But now, if the temperature is negative, the free energy is
minimized by an ordered state.

2.3 The combinatorial origin of the entropy

Onsager’s paper [27] is rather cryptic on what the ordered negative-temperature
states should be, but in unpublished work he had derived a mean-field equa-
tion that described these states. The mean-field equation was rediscovered by

4In revision, explain for hard-sphere gas, as done in lecture.
5We are implicitly assuming that that there is a single inflection point Ec and that Φ′′N (E) >

0 for E < Ec and Φ′′N (E) < 0 for E > Ec. Figure to be added.
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Joyce and Montgomery [22]. The mean-field equations are derived on the basis
of a second postulate: in the thermodynamic limit, the most likely state (i.e.
distribution of vortices in Ω) minimizes the Boltzmann entropy subject to the
constraint that the total energy and total vorticity are prescribed. In this sec-
tion, we explain the combinatorial origin of the entropy in a simplified setting.
The minimization principle is applied in the next section.

In the simplest setting, the point vortex model consists of N vortices with
equal strength κ/N located at points {z1, . . . , zN} ⊂ ΩN , with Hamiltonian

HN (z) = − κ2

2N2

∑
j 6=k

G(zj , zk), (2.3.1)

In this section, we explain the combinatorial origin of the entropy by discretizing
the set of states for the point vortex model as follows. Instead of the open set
Ω ⊂ R2 we consider a finite lattice ΩM ⊂ Ω with M points

ΩM = {a1, . . . , aM}, ai ∈ Ω, i = 1, . . . ,M, (2.3.2)

and we assume that the vortices are constrained to lie at these points. Thus,
each state of the vortex lattice model is a vector z = (z1, . . . , zN ) ∈ ΩNM . In
order to formulate a thermodynamic limit for the lattice model which extends
naturally to the point vortex model, we define the empirical measure for both
models,

ρN (dz) =
1

N

N∑
j=1

δ(z − zk) dz, (2.3.3)

where dz denotes the area element in Ω. We rewrite the energy of the point-
vortex model in the form

HN (ρN ) = −κ
2

2

∫
(Ω×Ω)\{(z,z):z∈Ω}

G(z, z′)ρN (dz)ρN (dz′), (2.3.4)

to stress that it is only a function of the empirical density. The diagonal is
excised from the domain of integration to remove the infinite self-energy of a
point vortex.

Formula (2.3.4) also extends to the lattice model. Let n1, . . . , nM the total
number of vortices at each site ai ∈ ΩM for the lattice vortex model, i.e,

ni = #{k |zk = ai },
M∑
i=1

ni = N. (2.3.5)

The empirical measure for the lattice model is completely determined by the
fraction of vortices at each site:

ρN (z) = p1δ(z − a1) + p2δ(z − a2) + . . . pMδ(z − aM ), pi =
ni
N
. (2.3.6)
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Here p implicitly depends on N , but we will take limits N →∞ such that p is
fixed. Thus, the energy of the lattice model is the quadratic form

H(p) = −N2κ
2

2
pTGp, (2.3.7)

where G denotes the symmetric M ×M Green’s matrix,

Gij =

{
G(ai, aj), i 6= j
0, i = j.

(2.3.8)

In order to have a meaningful energy in the limit, we must assume that

lim
N→∞

H(p)

N2
= E, (2.3.9)

for some constant E ∈ R.
We do not associate discrete time dynamics in the lattice vortex model.

Instead, we use H to define a microcanonical measure on ΩNM and focus on a
simpler question: How do we describe the limit of the microcanonical ensemble?

Given an energy level E, the microcanonical ensemble for the lattice model
is the uniform distribution on states z ⊂ ΩNM with energy H(ρN ) = N2E. Since
we have assumed that all vortices are identical, the energy of a state depends
only on the number of vortices, n1, . . . , nM , at each lattice site. The total
number of such states is given by the multinomial coefficient(

N

n1, n2, . . . , nM

)
=

N !

n1!n2! · · · nM !
. (2.3.10)

The entropy appears as the dominant term when the multinomial coefficient is
approximated by Stirling’s formula in the regime N → ∞, p(N) → p. Recall
that Stirling’s formula may be written in the form

log n! ∼ n (log n− 1) +
1

2
log n+

1

2
log 2π. (2.3.11)

Therefore, retaining only the dominant terms, we obtain

log

(
N

n1, n2, . . . , nM

)
= logN !−

M∑
i=1

log ni! (2.3.12)

∼ N (logN − 1)−
M∑
i=1

ni (log ni − 1) = −N
N∑
i=1

ni
N

log
ni
N

:= −NSM (p),

where we have defined the Boltzmann entropy 6

SM (p) =

M∑
i=1

pi log pi. (2.3.13)

6The definition of entropy in information theory and mathematics is the negative of the
usual convention in physics. Thus, mathematicians minimize entropy, rather than maximizing
it. Similarly, the Helmholtz free energy and entropy are related through F = E+TS (math),
not F = E − TS (physics); here E is the internal energy, T is the temperature, and S is the
entropy.
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Thus, the microcanonical ensemble has the following approximate descrip-
tion: given an energy level E, we first determine all p such that

pi ≥ 0,

M∑
i=1

pi = 1, −1

2
pTGp = E. (2.3.14)

Geometrically, this set is the intersection of the M − 1 dimensional simplex
with the quadric energy surface. For each p such that (2.3.14) holds, there are
approximately e−NSM (p) equally likely arrangements of the vortices. Since N is
very large, and SM < 0, the most likely arrangement of vortices corresponds to
the value of p such that SM is minimized. In summary, the most likely value of
p is determined by minimizing SM (p) subject to the constraints (2.3.14).

2.4 The mean-field equation for identical vor-
tices

We now return to the point vortex model. In the thermodynamic limit N →∞
we assume that the empirical densities, ρN (z) converge to a limiting density,
ρ(z). More precisely, we assume∫

U

ρ(z) dz = lim
N→∞

∫
U

ρN (dz) = lim
N→∞

#{zk ∈ U}
N

, (2.4.1)

for every open set U ⊂ Ω.
The minimization principle for the point vortex model is obtained by taking

the continuum (M → ∞) limit of the vortex lattice model. In this limit, the
vector p = (p1, . . . , pM ) is replaced by the density ρ(z), and the discrete sums
in (2.3.13)–(2.3.14) are replaced by integrals over Ω). The limiting vorticity and
energy are given by

ω(z) = κρ(z), H(ρ) = −κ
2

2

∫
Ω×Ω

G(z, z′)ρ(dz)ρ(dz′) dz dz′. (2.4.2)

Similarly, the Boltzmann entropy relative to the uniform measure on Ω is

S(ρ) =

∫
Ω

ρ(z) log ρ(z) dz. (2.4.3)

We minimize the Boltzmann entropy subject to the constraint that the energy
and the total number of particles is fixed. Without loss of generality, we may
rescale so that the constraints are∫

Ω

ρ(z) dz = 1, H(ρ) = E, (2.4.4)

for some fixed constant E ∈ (−∞,∞). The constraints may be included in the
maximization problem by adding Lagrange multipliers, say α and β. Thus, our
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problem is to minimize the functional

I(ρ) := S(ρ) + α

∫
Ω

ρ+ βH(ρ). (2.4.5)

The Euler-Lagrange equations for an extremum of the functional I(ρ) are

log ρ(z) = βκ2

∫
G(z, z′)ρ(z′) dz′ − α. (2.4.6)

The calculation so far could have applied to the thermodynamic limit of a
system of point charges, each of magnitude κ/N . We now reconnect with fluid
mechanics. The vorticity ω(z) = κρ is related to the stream function ψ by
(1.4.5). Thus, (2.4.6) is equivalent to

ω(z) = κρ(z) = e−αeβκψ. (2.4.7)

The Lagrange multiplier α must be determined by the condition that (2.4.4)
is satisfied. We now use (1.4.2), and change our notation for the constant e−α

to notation more common in statistical mechanics, to obtain the mean-field
equation 7

4ψ(z) =
1

Zβ
eβψ, z ∈ Ω, Zβ =

∫
Ω

eβψ. (2.4.8)

ψ(z) = 0, z ∈ ∂Ω. (2.4.9)

It is a surprising fact, of some depth, that the mean-field equation arises in con-
formal geometry, where it is called the Liouville equation. As explained below,
the equation is solvable only for β ∈ (βc,∞) where βc < 0 is a critical negative
inverse temperature. Thus, the mean-field equation (2.4.8) has nontrivial nega-
tive temperature states for a range βc < β < 0. The existence of these solutions
uses very interesting mathematics, including the Moser-Trudinger inequality
and complete integrability. We first discuss these ideas. We then introduce a
family of infinitely many mean-field equations and turn to an important issue
regarding the infinite self-energy of the vortex gas and the conservation laws for
a 2D fluid.

2.5 Exact solutions to the mean-field equation

The mean-field equation is exactly solvable on a disk. To be concrete, let Ω = B1

be the unit ball in R2. We consider the equation

4ψ =
1

Zβ
eβψ, z ∈ B1, (2.5.1)

ψ = 0, z ∈ ∂B1. (2.5.2)

7In the literature (see especially [20]), this equation is often written

−4ψ(z) =
1

Zβ
e−βψ .

One equation may be obtained from the other by changing ψ 7→ −ψ. Regrettably, Lions
defines the vorticity with the opposite sign of the choice in [21], causing some inconsistency.
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It is clear that 4ψ > 0; thus, by the maximum principle, any solution to
(2.5.1) must be negative. A celebrated result of Gidas, Ni and Nirenberg [15,
Thm.1], then implies that ψ must be radially symmetric. We may therefore
write ψ = ψ(r), where r = |z|, and reduce equation (2.5.1) to the ordinary
differential equation

ψ′′ +
1

r
ψ′ − 1

Zβ
eβψ = 0, ψ′ =

∂ψ

∂r
. (2.5.3)

The boundary conditions and elliptic regularity imply

ψ(1) = 0, ψ′(0) = 0. (2.5.4)

Further, Theorem 1 [15] also implies that ψ is strictly increasing at all other
points

∂ψ

∂r
> 0, 0 < r < 1. (2.5.5)

(Note that ψ < 0, so |ψ| is strictly decreasing.) Solutions to (2.5.3) of this form
are obtained by phase plane analysis and some explicit calculations. We make
the change of variables

r = log t, ϕ(t) = ψ(r) +
2t

β
, (2.5.6)

to transform equation (2.5.3) into the one-dimensional Hamiltonian system

ϕ̈− 1

Zβ
eβϕ = 0. (2.5.7)

Thus, we have the conservation law

1

2
ϕ̇2 − 1

βZβ
eβϕ = E, (2.5.8)

where E is a constant of motion. We may separate variables in the equation
above to obtain

dϕ√
2
(
E + 1

βZβ
eβϕ
) = dt. (2.5.9)

The change of variables s = eβϕ/2 followed by a rescaling, reduces the left hand
side to the standard form

du√
u2 − 1

(2.5.10)

which may be integrated to yield cosh−1 u. In all these calculations, we as-
sume that Zβ is a positive constant. Finally, Zβ must be determined by self-
consistency, i.e.

Zβ = 2π

∫ 1

0

eβψ(r)r dr. (2.5.11)



22 CHAPTER 2. ONSAGER’S THEORY: THE 2D VORTEX GAS

After some manipulations 8, we find that the mean-field vortex density is

ρ(r) =
1− a
π

1

(1− ar2)2
, a =

β

8π + β
, −8π < β <∞. (2.5.12)

2.6 Existence of solutions to the mean-field equa-
tion

For arbitrary domains Ω, there are no general symmetry principles, and the
existence of solutions to the mean-field equation (2.4.8)–(2.4.9) must be estab-
lished using other methods. In the positive temperature region, this follows
from routine energy methods. Roughly, when β ≥ 0 is held fixed, the problem
of minimizing the functional I(ρ) defined in (2.4.5) may be seen as the mini-
mization problem for a convex functional on a convex set. On general grounds,
such a problem has a unique minimizer, which further solves the partial differ-
ential equation (2.4.8) with boundary condition (2.4.9). However, for β < 0, the
existence of minimizers and the existence of βc < 0 relies on a critical inequality.
Here is an outline of these ideas.

2.6.1 The positive temperature regime

Fix β ∈ [0,∞), consider the set

S = {ρ ∈ L1(Ω)

∣∣∣∣ρ ≥ 0,

∫
Ω

ρ = 1,

∫
Ω

ρ log(1 + ρ) <∞}. (2.6.1)

and the functional

Iβ : S → R ∪ {∞}, Iβ(ρ) = βS(ρ) +H(ρ). (2.6.2)

It is easy to check that S is a convex subset of L1(Ω): that is, if ρ1 and ρ2 are
elements of S, then so is

(1− θ)ρ1 + θρ2, θ ∈ [0, 1]. (2.6.3)

The functional Iβ is strictly convex. Indeed, the function x 7→ x log x is convex
on [0,∞], using the conventions 0 log 0 = 0 and ∞ log∞ = ∞ to extend the
value of the function from (0,∞) to [0,∞]. It then follows that ρ 7→ S(ρ) is
convex as a map from S → R∪ {∞}. The strict convexity of the kinetic energy
is a consequence of the identity

H(ρ) =
1

2

∫
Ω

|∇ψ|2 . (2.6.4)

We apply this identity to ρ(θ) and use the Cauchy-Schwarz inequality to find

H(ρ(θ)) ≤ (1− θ)H(ρ1) + θH(ρ2), 0 < θ < 1, (2.6.5)

8More details to be added, or outlined as exercise.
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with equality only if ρ1 = ρ2. These observations show that Iβ is a strictly
convex function on a convex subset of a complete metric space. Thus, Iβ has
a unique minimizer, denoted ρβ . In order to show that ρβ solves (2.4.8), this
abstract existence theorem must be combined with (standard) elliptic regularity
theory. The interested reader may find the details in [20].

These conclusions may be summarized in the following

Theorem 1. Fix β ∈ [0,∞). Assume Ω ⊂ R2 is bounded, simply connected and
∂Ω is C2,α, for some 0 < α ≤ 1. Then (2.4.8)–(2.4.9) has a unique solution,
denoted ρβ. Further, ρβ is the unique minimizer of the functional Iβ on the set
S ⊂ L1(Ω).

The assumptions on ∂Ω are included for completeness in the statement of
the theorem. These assumptions are more restrictive than necessary – all that
is required is that Ω be regular enough that there there is a well-defined solution
to (1.4.2)–(1.4.3).

2.6.2 The negative temperature regime

The more interesting regime is β < 0. In this regime, the properties of (2.4.8)
are more transparent in a dual variation problem in terms of ψ. We note that
equation (2.4.8) is the Euler-Lagrange equation for the functional

Fβ(ψ) =
1

β
logZβ +

1

2

∫
Ω

|∇ψ|2. (2.6.6)

Again, the functional F (ψ) is the Helmholtz free energy of the system: the
first term is β times the entropy, and the second term is the internal energy of
vortices (the kinetic energy). Thus, (2.6.6) is equivalent to (2.4.5), if we restrict
attention to ρ such that

∫
Ω
ρ = 1. However, the entropic term is no longer

convex. In order to establish the existence of a unique minimizer, it is necessary
to control the entropy by the energy. Remarkably, a fundamental geometric
inequality –Moser’s sharp form of Trudinger’s inequality [23] – yields exactly
what is needed.

We first state the inequality in its standard form. The weaker form needed
to study Fβ is an easy corollary. Given a domain Ω ⊂ R2, the homogeneous
Sobolev space H1

0 (Ω) is the closure of C∞0 (Ω) in the norm

‖f‖H1
0

:=

(∫
Ω

|∇f |2
)1/2

. (2.6.7)

Theorem 2 (Moser-Trudinger). Assume Ω ⊂ R2 is bounded. There exists a
universal constant CMT > 0 such that

sup
u∈H1

0 (Ω),‖u‖
H1

0
≤1

∫
Ω

e4πu2

≤ CMT |Ω|. (2.6.8)
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Corollary 1. For every g ∈ H1
0 (Ω) and β ∈ R,

log

(∫
Ω

eβg
)
≤ β2

16π

∫
Ω

|∇g|2 + log (CMT |Ω|) . (2.6.9)

Proof of Corollary. For brevity, we use ‖ · ‖ to denote ‖ · ‖H1
0 (Ω). Given g ∈ H1

0

and β ∈ R we note that

βg ≤ |βg| ≤ β2

16π
‖g‖2 + 4π

g2

‖g‖2
. (2.6.10)

We apply (2.6.8) with f = g/‖g‖ to obtain∫
Ω

eβg ≤ e
β2

16π ‖g‖
2

∫
Ω

e4πf2

≤ e
β2

16π ‖g‖
2

(CMT |Ω|) . (2.6.11)

We now take logarithms to obtain (2.6.9).

Theorem 3 (Negative temperature states). Assume β ∈ (−8π, 0), and assume
Ω is bounded and has a smooth boundary. The functional Fβ has a minimizer
in H1

0 (Ω) that solves the mean-field equation (2.4.8).
Further, if Ω is simply connected, this solution is unique.

Proof of existence. Assume β ∈ (−8π, 0). We apply Corollory 1 with g = βψ to
obtain the inequality

logZβ ≤
β2

8π
H(ψ) + log (CMT |Ω|) . (2.6.12)

Since β < 0 it follows that

Fβ(ψ) =
1

β
logZβ +H(ψ) (2.6.13)

≥
(

1 +
β

8π

)
H(ψ) +

1

β
log (CMT |Ω|) . (2.6.14)

When β > −8π, it follows that fβ := infψ∈H1
0 (Ω) Fβ(ψ) > −∞. Thus, we may

choose a minimizing sequence {ψn}∞n=1 such that Fβ(ψn)→ fβ . Without loss of
generality, we may suppose that Fβ(ψn) < fβ + 1. It then follows from (2.6.14)
that the sequence {ψn}∞n=1 is uniformly bounded in H1

0 . Thus, we may extract
a subsequence, also denoted {ψn}∞n=1 that converges weakly in H1

0 and a.e to
a limiting function ψ ∈ H1

0 . The energy H(ψn) is weakly lower semicontinuous
in H1

0 . The a.e. convergence of ψn, when combined with (2.6.9), shows that
limn→∞ Zβ(ψn) = Zβ(ψ). Thus, ψ must minimize Fβ since

fβ ≤ Fβ(ψ) ≤ lim inf
n→∞

Fβ(ψn) = fβ . (2.6.15)

The existence proof presented above is a classic application of the direct
method in the calculus of variations. However, uniqueness is more delicate. For
example, the assumption that Ω is simply connected is necessary. The unique-
ness proofs rely on interpreting (2.4.8) in terms of conformal geometry [25].
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2.7 The mean-field equation for a mixture

2.7.1 The limiting variational problem

We now extend the mean-field equation to point vortices with distinct vorticity.
Let us consider a system with s distinct species, such that:

1. A point vortex of species j has strength κj/N , for some fixed constants
κ1, κ2, . . . , κs.

2. There are N1, N2, . . . , Ns vortices of species j = 1, 2, . . . , s located at po-
sitions zj = (z1,j , . . . , zNj ,j). The associated empirical measure is

ρj,N =
1

N

Nj∑
k=1

δ(z − zk,j), N = N1 +N2 + . . .+Ns. (2.7.1)

3. As N → ∞, we assume that the relative proportion of species remains
fixed, that is

lim
N→∞

Nj
N

= pj , j = 1, . . . , s (2.7.2)

for fixed positive numbers pj > 0, j = 1, . . . , s such that
∑s
j=1 pj = 1.

In the thermodynamic limit, each empirical measure ρj,N converges to a
limiting density ρj . The vorticity and Hamiltonian of the limiting field is

ω(z) =

s∑
j=1

κjρj(z), H(ρ) = −1

2

∫
Ω×Ω

G(z, z′)ω(z)ω(z′) dz dz′. (2.7.3)

The Boltzmann entropy is the functional

S(ρ) =

s∑
j=1

∫
Ω

ρj log ρj dz, ρ = (ρ1, . . . , ρs) , (2.7.4)

and the mean-field equation for the stream function ψ is obtained by minimizing
the Boltzmann entropy subject to the constraints

H(ρ) = E,

∫
Ω

ρj(z) dz = pj , j = 1, . . . , s. (2.7.5)

2.7.2 Variational principle for a lattice model

Let us briefly explain why the functional of Section 2.4 has to be modified as
above. The combinatorial derivation of Section 2.3 may be extended to s species
as follows. Again we discretize the domain Ω to the lattice ΩM with M lattice
sites defined in equation (2.3.2). As in equation (2.3.5) Let n1,j , . . . , nM,j denote
the total number of vortices of species j at each lattice site

nij = #{k |zk,j = ai },
M∑
i=1

nij = Nj . (2.7.6)
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The empirical measure for each species may now be expressed as

ρj,N (z) =

M∑
i=1

pijδ(z − ai), pij =
nij
N
. (2.7.7)

The Hamiltonian for this lattice model is given by summing over the interactions
between all species. As in (2.3.7) we obtain

H(p) = −1

2

s∑
j=1

s∑
k=1

κjκkp
T
j Gpk, pTj = (p1j , p2j , . . . , pMj). (2.7.8)

(The factor of N2 in equation (2.3.7) is absent from equation (2.7.8) because
we have scaled the vortex strengths in step 1 above). If we define the empirical
vorticity

ωN (z) =

s∑
j=1

κjρj,N (z). (2.7.9)

then the Hamiltonian for the lattice model is also obtained by substituting
(2.7.8) in (2.7.4), and ignoring the infinite self-energies in the system. This
eplains why (2.7.4) is the limiting energy.

The entropy is additive because the total number of states computed in
(2.3.10) is now given by a product of multinomials. That is,

e−NSM (p) ≈
s∏
j=1

(
Nj

n1j , . . . , nMj

)
. (2.7.10)

We take logarithms and use Stirling’s formula to obtain the Boltzmann entropy
for the lattice model

SM (p) =

s∑
j=1

M∑
i=1

pij log pij . (2.7.11)

In the M →∞ limit, we obtain the entropy functional S(ρ) in (2.7.4).

2.7.3 The mean-field equation

We introduce Lagrange multipliers {αi}si=1 and β to deal with the constraints,
and minimize the functional

I(ρ) = S(ρ) + βH(ρ) +

s∑
j=1

αj

∫
Ω

ρj . (2.7.12)

The functional I has a unique minimizer ρ = (ρ, . . . , ρs) for β ∈ (βc,∞) that
satisfies the Euler-Lagrange equations

log ρj = −αj + βκj

∫
Ω

G(z, z′)ω(z′) dz′, j = 1, . . . , s. (2.7.13)
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We again observe that the integral above is simply the stream function. Thus,

ρj = e−αjeβκjψ, j = 1, . . . , s. (2.7.14)

The constants αj are determined by the constraint(2.7.4), and we may write

e−αj =
pj
Zj
, Zj,β =

∫
Ω

eβκjψ j = 1, . . . , s. (2.7.15)

Finally, we relate the stream function to the vorticity through (1.4.2) and (2.7.3)
to obtain the mean-field equation

4ψ =

s∑
j=1

pj
Zj,β

eβκjψ. (2.7.16)

The mean-field equation (2.7.16) admits the following dual variational ex-
pression. Let us define the partition function

Zβ =

s∏
j=1

Z
pj
j,β (2.7.17)

Then equation (2.7.16) is the Euler-Lagrange equation for the functional

Fβ(ψ) =
1

β
logZβ +

1

2

∫
Ω

|∇ψ|2 . (2.7.18)

The simplest example is the behavior of a neutral vortex gas consisting of
an equal number of plus and minus vortices of unit magnitude. That is, s = 2,
κ1 = 1, κ2 = −1 and p1 = p2 = 1/2 in the notation above. We further expect
that the symmetry of the problem ensures

Zβ :=

∫
Ω

e−βψ =

∫
Ω

eβψ, (2.7.19)

(this requires a proof). In this situation, the mean-field equation becomes the
sinh-Poisson equation

4ψ =
1

Zβ
sinhβψ. (2.7.20)

This equation was known to Onsager and was rediscovered by Joyce and Mont-
gomery [22].

More generally, equation (2.7.16) has a natural continuum limit as the num-
ber of species s→∞ in such a manner that the measures

s∑
j=1

pjδκj (ds)→ µ(ds), (2.7.21)

where µ(ds) is a probability measure on the line, and the measures converge in
the weak topology. The partition function (2.7.17) converges to

Zβ = exp

∫
R

(
log

∫
Ω

eβsψ(z) dz

)
µ(ds), (2.7.22)
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and the variational principle remains unchanged. In particular, we may express
the mean-field equation in the form

4ψ = − 1

β

δ

δψ
logZβ . (2.7.23)

Here δ/δψ denotes the first variation of the functional Zβ with respect to the
stream function ψ.

2.8 The Miller-Robert theory

2.8.1 Integrals of motion for 2D flows

In summary, we may say that the use of Kirchhoff’s model has allowed us to
derive an interesting mean-field equation for 2D fluids by a direct application
of standard ideas in statistical mechanics. However, this model has some flaws.

The approximation of 2D flows by point vortices is unphysical, since all point
vortices have infinite self-energy. A truly consistent mean-field theory must rely
on the use of flows with finite total energy. The fundamental well-posedness
theorem for 2D flows, due to Yudovich [17], asserts that if ω0 ∈ L∞(Ω), then
the Euler equations define a global continuous dynamical systems in L∞(Ω) 9

More precisely, equipping L∞) with the weak-* topolgy, there is a continuous
mapping

R× L∞(Ω)→ L∞(Ω), (t, ω0) 7→ ωt, (2.8.1)

such that ωt ∈ L∞(Ω) is the vorticity field at time t for the unique solution to
the Euler equations with initial data u0 = curl−1ω0. (It is convenient here to
use the notation ωt to denote the vorticity field ω(z, t)).

The Hamiltonian for the vorticity field, i.e. the kinetic energy,

H(ω) = −1

2

∫
Ω

∫
Ω

GΩ(z, z′)ω(z)ω(z′) dz dz′ =
1

2

∫
Ω

|u|2 <∞, (2.8.2)

because the Green’s function is locally integrable and ω ∈ L∞(Ω). Further, the
Hamiltonian remains constant along the orbit,

H(ωt) = H(ω0), t ∈ R. (2.8.3)

Yudovich’s proof also establishes that the Lagrangian flow map

Φ : R× Ω→ Ω, (t, z) 7→ Φt(z),
dΦt(z)

dt
= u(Φt(z), t), Φ0(z) = z, (2.8.4)

is an area-preserving diffeomorphism for each t ∈ R. The vorticity is transported
by the flow map, and we have

ω(z, t) = ω0(Φ−1
t (z)). (2.8.5)

9We assume throughout this chapter that Ω is bounded. This ensures that ω ∈ L1 ∩ L∞,
in accordance with the hypotheses in [17].
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As a consequence, the flow has infinitely many integrals of motion, in addition
to the Hamiltonian. Let us define the vorticity distribution function

µ(s) =
1

|Ω|

∫
Ω

1{ω0(z)≤s} s ∈ (−∞,∞). (2.8.6)

We find using (2.8.5) and det(DΦt) = 1 that∫
Ω

h(ω(z, t)) dz =

∫
Ω

h(ω0(z) dz, h ∈ C0(R). (2.8.7)

Thus, the flow preserves the vorticity distribution function 10.

2.8.2 Young measures and weak convergence in L∞

Onsager’s theory provides a consistent method to derive a steady state fluid flow
from an assumption about point vortices. Further, as explained in Section 2.7,
we may incorporate more and more ‘species’ of point vortices, so that we obtain
a mean-field equation that is in accordance with any distribution ω ∈ L∞(Ω).
On first sight, it appears that the mean-field equation (2.7.16) could describe
the mean-field limit for a given initial vorticity field ω0 ∈ L∞ that takes a finite
number of values κ1, . . . , κ2 on subsets of Ω of measure pj , and β is determined
by the constraint that

∫
|∇ψ|2 = 2H(ω0). But this is false! The right-hand-side

of (2.7.16) may take values outside [−‖ω0‖∞, ‖ω0‖∞] violating the constraints.
Thus, it is necessary to redevelop Onsager’s theory based solely on vorticity fields
in L∞(Ω), without invoking Kirchhoff’s point-vortex approximation, ensuring
compatibility with the integrals of motion described above.

A mean-field model in accordance with (2.8.7) was introduced independently
by Miller [?] and Robert [?]. The main physical idea in the theory is as follows
– we assume that over a long time scale the flow mixes an initial vorticity
distrbution in space on all scales in a way that the likelihood of observing a
particular value of the vorticity at any point in the domain is given by the
conserved distribution function. More precisely, we assume that for each z ∈ Ω

lim
T→∞

∫ T

0

h(ω(z, t)) dt =

∫ ∞
−∞

h(s)µ(ds), h ∈ C(Ω). (2.8.8)

While both theories lead to the same mean-field equation, Robert’s approach
is mathematically rigorous and combines weak convergence methods for partial
differential equations with large deviation theory. For these reasons, we adopt
Robert’s approach. The use of weak convergence methods is natural here since
the Euler equations in 2D define a continuous dynamical system in L∞(Ω) as
described in (2.8.1). Thus, each initial condition ω0 has a well-defined ω-limit
set, and it is of basic interest to classify these limit sets. 11 For each sequence of

10In fact, it preserves other combinatorial invariants when ω0 ∈ C∞(Ω). See [2, Ch.1]
11There is an unfortunate clash in notation at this point: the same symbol ω is used to

denote the concept of ω-limit sets in dynamical systems, as well as the vorticity in a fluid flow.
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times {tn}∞n=1 such that tn →∞, we may extract a subsequence (also denoted
by {tn}∞n=1), such that ω(·, tn) converges weakly to a point in the ω-limit set of
ω0. However, we expect the vorticity to oscillate increasingly rapidly in space
as t→∞, and in order to understand the convergence of nonlinear functionals
of ω(·, t), we focus on their distributions. More formally, for each solution we
introduce the family of Young measures, νz,t = δω(z,t). Thus,∫ ∞

−∞
h(s)νz,t(ds) = h(ω(z, t). (2.8.9)

The limiting Young measures for each weakly convergent sequence captures the
distribution of the weak-∗ limits. More precisely, for each weakly convergent
sequence ω(·, t) there exists a map ν : Ω→ P Young measure such that

lim
n→∞

∫
U

h(ω(z, tn)) dz =

∫
U

∫
R
h(s)νz dz, (2.8.10)

for each open set U ⊂ Ω and h ∈ C0(R). The mixing assumption (2.8.8) may
be restated as an assumption on the convergence of the Young measures:

lim
T→∞

1

T

∫ T

0

νz,t dt = µ, z ∈ Ω, (2.8.11)

with the topology of weak convergence on P(R) 12.
Assumption (2.8.8) bears a formal similarity to the ergodicity assumption

(2.2.5) underlying the point-vortex model, since both equations relate time av-
erages to space averages. However, the right hand side of equation (2.2.5) is
the microcanonical measure for a Hamiltonian dynamical system (Kirchhoff’s
equations), whereas the right hand side of (2.8.8) is an average over the distri-
bution function of the vorticity, not a microcanonical measure. In fact, the main
subtlety in the Robert-Miller theory lies in the definition of the microcanoni-
cal and canonical measures, since these are measure on the infinite-dimensional
phase space L∞(Ω). In order to explain these issues, we first introduce another
natural discretization of the velocity field.

2.8.3 Permutations as discrete rearrangements

For simplicity we assume Ω = T2 and consider an initial vorticity field that
takes only two values ω0(z) = ±1 on sets of equal measure, denoted A± ⊂ Ω
respectively. Thus, the vorticity distribution function is

µ(s) =
1

2

(
1{s≥−1} + 1{s≥1}

)
, s ∈ (−∞,∞), (2.8.12)

and the underlying assumption about long time behavior of the flow is

lim
T→∞

∫ T

0

h(ω(z, t)) dt =
1

2
(h(−1) + h(1)) . (2.8.13)

12Add appendix on weak convergence
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We discretize the problem as follows. For any even positive integer N , let

zjk =

(
j

N
,
k

N

)
, 1 ≤ j, k ≤ N, (2.8.14)

denote points on the uniform grid with side 1/N . This set of points is denoted
ΩN . The initial vorticity distribution, denoted ωN ∈ L∞(Ω) is an assignment
of values ωjk = ±1 to each square with lower-right corner zjk. It is assumed
that there are an equal number of plus and minus one’s, so that the distribution
function of ω0,N is (2.8.12).

The natural discretization of a volume-preserving diffeomorphism in this
setting is provided by permutations of the squares in the lattice. Since the grid
consists of N2 squares, each permutation σ ∈ SN2 , defines an area-preseving
map Φσ : Ω → Ω. The analogues of (2.8.5) and (2.8.7) for the discrete model
are immediate

ωN,σ(z) = ωN
(
Φ−1
σ (z)

)
,

∫
Ω

h(ωN,σ(z)) dz =

∫
Ω

h(ωN (z) dz, h ∈ C0(R).

(2.8.15)
Let PN ⊂ SN2 consist of the permutations σ ∈ SN2 such that

H(ωN,σ) = H(ωN ) (2.8.16)

In contrast with the point-vortex models, we no longer need to renormalize the
Hamiltonian by subtracting the infinite self-energy of point vortices, nor do we
need to rescale the energy by N when we set ω = ω0,N .

The microcanonical measure is the uniform distribution on the finite set
PN . The canonical measure at inverse temperature β ∈ R is the probability
distribution on all of SN2 , defined by

pN,σ =
1

ZN,β
e−βH(ωN,σ), ZN,β =

∑
σ∈SN2

e−βH(ωN,σ). (2.8.17)

The definitions above account scrupulously for the rearrangements of a given
vorticity field, but they are unwieldy. For example, the set PN may consist only
of the identity permutation because of the ‘hard’ constraint (2.8.16). Similarly,
the asymptotics of both the microcanonical and canonical ensembles are difficult
to analyze based on the above definitions. Finally, the limiting oscillations of
the vorticity field are captured by Young measures. For these reasons, we adopt
a simpler discrete model.

2.8.4 The canonical measure

Let us now consider an arbitrary bounded domain Ω, and an arbitrary initial
vorticity field ω0 with vorticity distribution function µ. We discretize the prob-
lem by considering a grid ΩN ⊂ Ω, for example as in the previous section.
The discretized initial vorticity distribution is denoted ωN,0. Rather than use a
probability distribution on permutations to define the analogue of a phase space
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volume, we introduce a probability distribution νz at each lattice site z ∈ ΩN ,
that accounts for the possible values that the vorticity takes at z. For example,
if the initial vorticity field takes a discrete set of values κ1, . . . , κs, then νz is
assumed to take values κ1, . . . , κs. The key physical assumption here is that the
fluid flow mixes the vorticity field so that all initial values of the vorticity are
seen in the neighborhood of any lattice site in a manner that is consistent with
the conservation law (2.8.7). Further, we assume that the vorticity fluctuations
at the different lattice sites are independent.

These two assumptions imply that the law on the discretized vorticity field,
written ωN ∈ L∞(ΩN ), is the product measure 13

Π(dωN ) =
∏
z∈ΩN

νz(dωN (z)). (2.8.18)

Each function h ∈ C(ΩN ) may be ‘lifted’ into a functional h̃ : L∞(ΩN )→ R,

h̃(ωN ) =
1

|ΩN |
∑
z∈ΩN

h(ωN (z)). (2.8.19)

When νz = µ for each z ∈ ΩN , the product measure Π is invariant under
permutations of lattice sites, and for any h ∈ C(ΩN ) we find∫

L∞(ΩN )

h̃(ωN ) Π(dωN ) =

∫
R
h(s)µ(ds). (2.8.20)

The canonical measure on L∞(ΩN ) is defined by including the Hamiltonian
and vorticity distribution as exponential weights. We set

Πcan(dωN ) =
1

ZN,β,h
exp

(
−h̃(ωN )− βH(ωN )

)
Π(dωN ), (2.8.21)

with the partition function

ZN,β,h =

∫
L∞(ΩN )

exp
(
−h̃(ωN )− βH(ωN )

)
Π(dωN ), (2.8.22)

The parameters β and h are Lagrange multipliers, so that the vorticity distri-
bution and energy constraints are met in the form

EΠcan
(h̃) =

∫
R
h(s)µ(ds), EΠcan

(H) = H(ω0,N ). (2.8.23)

Computing the variation of logZN,β,h with respect to β and h, allows us to
express the constraints in the form

− δ

δh
logZN,β,h = µ(ds), − ∂

∂β
logZN,β,h = H(ω0,N ). (2.8.24)

In the second equality here, it is simplest to compute the variation by choosing
h ∈ C(ΩN ) so that it is non-zero only at a fixed lattice site z.

13Clearly, the space L∞(ΩN ) is isomorphic to R|ΩN |; we adopt this notation to make clear
that our goal is to introduce a probability measure on L∞(Ω).
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2.8.5 The mean-field equation

The Miller-Robert theory is the continuum limit of this model. In the continuum
limit, the fundamental object is a map ν : Ω → P that is determined by an
entropic variational principle with constraints. The appropriate entropy here is
the Kullback-Leibler distance, defined by

S(ν) =

∫
Ω

∫
R

log
dνz
dµ

νz(ds) dz, (2.8.25)

when νz is absolutely continuous with respect to µ a.e in z. We set S(ν) = −∞
when νz is not absolutely continuous with respect to µ on a set of positive
measure. The most likely Young measure is determined by minimizing S(ν)
with respect to the continuum limit of the constraints (2.8.23)

H(ω̄) = H(ω0),

∫
Ω

νz(ds) dz = µ(ds), (2.8.26)

where ω̄ is the mean vorticity field

ω̄(z) =

∫
R
sνz(ds), z ∈ Ω. (2.8.27)

Let us illustrate the consequences of this minimization problem in a concrete
instance. Assume the vorticity field ω0 takes s distinct values κ1, κ2, . . . , κs on
sets of measure |Ω|p1, . . . , |Ω|ps, with pj > 0, 1 ≤ j ≤ s, and

∑s
j=1 pj = 1.

Thus, the vorticity distribution is

µ(ds) =

s∑
j=1

pjδκj (ds). (2.8.28)

A Young measure νz is absolutely continuous with respect to µ if and only if it
is of the form

νz(ds) =

s∑
j=1

ρj(z)δκj (ds), 0 ≤ ρj(z) ≤ 1,

s∑
j=1

ρj(z) = 1, z ∈ Ω. (2.8.29)

Such a Young measure has mean vorticity and Kullback-Leibler entropy

ω̄(z) =

s∑
j=1

κjρi(z), S(ν) =

s∑
j=1

∫
Ω

ρj(z) log

(
ρj(z)

pj

)
dz. (2.8.30)

In order to minimize the entropy subject to the constraints (2.8.23) we introduce
Lagrange multipliers {αj}sj=1 and β to impose the vorticity distribution and
energy constraints∫

Ω

ρj(z) = pj , j = 1, . . . , s, H(ω̄) = H(ω0). (2.8.31)
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Finally, we also need a Lagrange multiplier γ(z) to impose the ‘hard’ constraint∑s
j=1 ρj(z) = 1. We may think of γ(z) as a ‘pressure’, since the constraint∑s
j=1 ρj(z) = 1 is analogous to incompressibility. In summary, we must mini-

mize the functional

S(ν) +

s∑
j=1

αj

∫
Ω

ρj + βH(ω̄) +

∫
Ω

Z(z)

 s∑
j=1

ρj(z)

 . (2.8.32)

Elementary calculations similar to equations (2.7.13)–(2.7.15) yield

ρj(z) = e−γ(z)e−αjpje
βκjψ, eαj =

∫
Ω

e−γ(z)eβκjψ, eγ(z) =

s∑
i=1

pie
−αieβκiψ.

(2.8.33)
Since the vorticity and stream function are related through 4ψ = ω, and the
mean vorticity is given by (2.8.30), we find the mean-field equation

4ψ = e−γ(z)
s∑
j=1

pjκje
βκjψ

Zj,β
. (2.8.34)

This mean-field equation admits the following unified formulation for an
arbitrary vorticity distribution function µ that is analogous to equation (2.7.23).
Robert expresses (2.8.34) in the following manner. Given a function α(s) and a
real number β, let us define the ‘pointwise’ partition function

Zα,β(z) =

∫
R
s exp (−α(s) + βsψ(z)) µ(ds). (2.8.35)

Then the mean-field equation (2.8.36) takes the form

4ψ = − 1

β

d

dψ
logZα,β . (2.8.36)

Of course, α and β are not independent variables, but must be determined by
the constraints (2.8.36). In contrast with (2.7.23), it is immediate that the right
hand side of (2.8.36) always lies in the range [−‖ω0‖∞, ‖ω0‖∞].

2.9 Turkington’s model



Chapter 3

Komogorov’s law and
Onsager’s criterion for
dissipation in ideal flows

3.1 Introduction

In this chapter, we describe both Kolmogorov and Onsager’s approach to fully
developed turbulence. Kolmogorov derived a scaling law for the power spectrum
of turbulent flows that is remarkable for its simplicity and predictive power.
Once one assumes the fundamental role of the energy dissipation rate, ε, the
structure of the power spectrum of turbulent flows follows from dimensional
analysis. However, the theory is phenomenological – that is, at present we do
not know how to connect the universal energy dissipation rate to the Navier-
Stokes or Euler equations; nor do we understand how to develop a suitable
theory of turbulent ensembles that provides a firm foundation for the implicit
probabilistic assumptions in Kolmgorov’s theory. The issue is not just one
of mathematical rigor and completeness – while Kolmogorov’s analysis makes
succesful predictions about the power spectrum of the velocity field, analogous
predictions about other structure functions are incorrect.

Onsager’s work complements Kolmogorov’s theory, but separates the issue of
a statistical description of the fluid flow, from that of energy dissipation in ideal
flows. In order to get to the heart of the matter in a simpler and direct manner,
we first present the essence of Kolmogorov’s ideas, relying on an informal, visual
understanding of ‘flow statistics’. This is followed by a description of Onsager’s
ideas, including some rigorous statements.

35
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3.2 Normalization

Since dimensional analysis plays an important role in this chapter, we will revert
to the equations in dimensional form. The Navier-Stokes equations are

∂tu + u · ∇u = −∇p+ ν4u, (3.2.1)

∇ · u = 0, (3.2.2)

where ν is the kinematic viscosity.
Our interest lies in describing the statistical properties of flows such as those

shown in Figure 1.1.2. By flow statistics we typically mean quantities such as
the correlation of the velocity field that may be extracted from time series data.
While these statistics are unambiguous in a laboratory, if we view the Navier-
Stokes equations or Euler equations as our starting point, then it is necessary to
describe precisely what we mean by ‘random fluid flows’. Kolmogorov implicitly
assumes the existence of isotropic, homogeneous turbulence in the following
sense: there exists an ensemble of solutions to the Navier-Stokes equations in
R3 such that:

(i) the law of the velocity field is invariant under translations and rotations
in space;

(ii) the expected value of the kinetic energy at any point in space-time is finite:

K(t) =
1

2
|u(x, t)|2 <∞. (3.2.3)

(iii) The energy dissipation at any point in space-time is defined by

εν(t) = ν|∇u(x, t)|2, (3.2.4)

The fundamental phenomenological assumption of Kolmogorov’s theory is
that the energy dissipation remains strictly positive in the limit ν → 0,

lim inf
ν→0

εν(t) = ε(t) > 0. (3.2.5)

Since the statistics are invariant under translation, the parameters K and ε do
not depend on x. However, we do allow them to depend on t in order to describe
freely decaying turbulence.

The mean energy in any bounded domain, Ω ⊂ Rd is K(t)|Ω|. Since the flow
is defined on Rd the total energy of any such solution is infinite. In order to for-
mulate the main ideas, without the additional complexity of infinite energies at
each step, we will consider flows on a periodic box with length L, and then take
the limit as the box size L → ∞. At first sight, the assumption of periodicity
is at variance with flows such as those in Figure 1.1.2. However, an essential
aspect of Kolmogorov’s theory is universality . The universal power spectrum
for turbulent flows on T3 depends only on a single positive number, the mean
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dissipation rate ε, and the univeral flow fields on T3 describe the local behavior
of fully developed turbulent flows in many domains. For instance, what is shown
in Figure 1.1.2(a) is a form of decaying turbulence – the size of eddies grows
as we move downstream along the x-axis. In this example, universality means
that if we blow-up a small region of the flow at two fixed locations x1 and x2,
the statistical properties of these flows should be identical to that of isotropic,
homogeneous turbulence, except for a scaling factor that is determined by the
ratio of the eddy sizes at x1 and x2.

In the rest of this chapter, we assume that Ω is a periodic box with sides of
length L. The Fourier coefficients of the velocity field are defined as follows:

a(k, t) =
1

Ld

∫
LTd

u(x, t)e−2πix·k, dx, k ∈ 1

L
Zd, (3.2.6)

so that the velocity field may be expressed as the infinite sum

u(x, t) =
∑

k∈L−1Zd
a(k, t)e−2πix·k, x ∈ LTd. (3.2.7)

The incompressibility condition (3.2.2) is equivalent to

k · a(k, t) = 0, k ∈ L−1Zd. (3.2.8)

The above normalization of the Fourier coefficients is chosen so that we may
ascribe a meaning to the energy density in the limit L → ∞. More precisely,
when the Fourier coefficients are defined by (3.2.6), Plancherel’s theorem takes
the form

1

Ld

∫
LTd
|u(x, t)|2 dx =

∑
k∈L−1Zd

|a(k, t)|2 . (3.2.9)

The quantity on the left is the kinetic energy per unit volume, which we expect
to have a finite limit as L→∞.

Our interest lies in velocity fields u(x, t) that are random. For such random
fields the mean kinetic energy density and the mean energy dissipation are
defined by

K(t) =
1

2Ld

∫
LTd
|u(x, t)|2, εν(t) =

ν

Ld

∫
LTd
|∇u(x, t)|2 dx. (3.2.10)

When the law of u(x, t) is invariant under translations, we may also write

K(t) =
1

2
|u(x, t)|2, εν(t) = ν|∇u(x, t)|2, x ∈ LTd. (3.2.11)

Averaging over the randomness, Plancherel’s theorem now implies

K(t) =
1

2

∑
k∈L−1Zd

|a(k, t)|2. (3.2.12)
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The power spectrum, EL(dl, t), of the random field u(x, t) is the measure on

Rd with atoms of magnitude |a(k, t)|2 at each wave number k ∈ L−1Zd.
The normalization of Fourier coefficients in (3.2.6) is chosen so that the

kinetic energy per unit volume and the power spectrum have a limit as L→∞.
In the particular case of homogeneous, isotropic turbulence, we assume the
power spectrum has a radially symmetric limiting density E(|k|, t) such that for
any 0 < r < R <∞,∫ R

r

E(s, t) ds = lim
L→∞

∑
k∈L−1Zd

1{r≤|k|≤R}|a(k, t)|2. (3.2.13)

The power spectrum provides a natural notion of the energy contained within a
shell with inner radius r and outer radius R in k-space. Of particular importance
is a decomposition of the power spectrum into shells that are logarithmically
spaced – we consider the energy in shells {(rk, rk+1)}∞k=−∞ with rk = λk for
some λ > 1. The power spectrum then provides a notion of the mean energy at
wave-number λk. The total energy in the system is obtained by summing over
all wave-numbers

K(t) =

∫ ∞
0

E(r, t) dr. (3.2.14)

Kolmogorov’s main result is as follows: in the limit ν → 0, the power spec-
trum of isotropic, homogeneous turbulence satisfies the scaling law

E(k, t) = ε(t)2/3k−5/3F (lν(t)k), k = |k| > 0. (3.2.15)

where the length scale lν , called the Kolmogorov length, is given by

lν(t) = ν3/4ε(t)−1/4, (3.2.16)

and F is a universal function that is positive and satisfies F (0) > 0.

In what follows, we first review some basic distinctions between two and
three dimensional flows, so that the phenomenological basis for Kolmogorov’s
theory is clear. We then establish (3.2.15) by dimensional analysis, including
cut-offs for ν > 0, and interpret it as an energy cascade from long to short
length scales. Finally, we extend Kolmogorov’s approach to 2D flows, deriving
an analogous power-law due to Kraichnan, which describes an inverse cascade
in two dimensions.

3.3 Energy and energy dissipation

The fundamental phenomenological difference between flows in two and three
dimensions is the possibility of enhanced dissipation in three dimensional flows.
In order to formulate this idea precisely, we review the relation between energy
and energy-dissipation for weak and strong solutions. Classical solutions to
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the Navier-Stokes equations on a time interval [0, T ] satisfy the fundamental
energy-energy dissipation identity

1

2

∫
LTd
|u(x, t)|2 dx+ν

∫ t

0

∫
LTd
|∇u(x, t)|2 dx dt =

1

2

∫
LTd
|u(x, 0)|2 dx, 0 ≤ t ≤ T.

(3.3.1)
Further, since the flow is incompressible,∫

LTd
|∇u(x, t)|2 dx =

∫
LTd
|ωωω(x, t)|2 , (3.3.2)

so that it is the vorticity that determines the rate of energy dissipation.
As we show below, classical solutions to the Euler equations are insufficient

to describe the energy dissipation in turbulence, and it is necessary to consider
weak solutions to the equations. The energy identities above have to be in-
terpreted with some care for weak solutions. The incompressibility condition
(1.2.6) is linear and may be interpreted in the sense of distributions if u is a
distribution. As a consequence, the identity (3.3.2) is very robust (we defer
technical statements to later sections). However, the Leray-Hopf weak solutions
to the Navier-Stokes equations are constructed as a limit of Galerkin approxi-
mations and are only known to satisfy the energy inequality for a.e. t ∈ (0, T )

1

2

∫
LTd
|u(x, t)|2 dx+ ν

∫ t

0

∫
LTd
|∇u(x, t)|2 dx dt ≤ 1

2

∫
LTd
|u(x, 0)|2 dx.

(3.3.3)
In order to formulate the idea of anomalous dissipation, or dissipation in

ideal flows precisely, we fix an initial datum ω0 ∈ L2, and consider a sequence
of flows, labeled {ω(n)}∞n=1 with viscosities {νn}∞n=1 such that limn→∞ νn = 0 1.
We then ask whether

lim inf
ν→0

∫ t

0

∫
LTd
|∇uν(x, t)|2 dx dt > 0? (3.3.4)

3.3.1 No anomolous energy dissipation in two-dimensions

As we have seen, the evolution of the vorticity is completely different in two
and three dimensions. In two dimensions, the vorticity field is a scalar, and it
satisfies the transport equation

∂tω + u · ∇ω = ν4ω. (3.3.5)

The effect of the convective nonlinearity is simply to rearrange the distribution
of vorticity in space. Further, the diffusive term has the effect of smoothing the

1This is equivalent to considering a sequence of flows on a fixed (non-dimensional) domain
T2 with Reynolds number, {Ren}∞n=1, such that limn→∞Ren =∞. In practice, the increase
in Reynolds number is obtained by increasing the flow velocity or length scale L, not the
viscosity. We have chosen to vary νn for consistency with the dimensional analysis in this
chapter.
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vorticity field. As a consequence, every smooth solution to (3.3.1) satisfies a
maximum (and minimum) principle

min
x∈T2

ω(x, 0) ≤ min
x∈T2

ω(x, t) ≤ max
x∈T2

ω(x, t) ≤ max
x∈T2

ω(x, 0), 0 ≤ t ≤ T. (3.3.6)

Similarly, all Lp norms of the vorticity are uniformly bounded. This may be
seen as follows. Assume h : R → R is a positive convex function. We multiply
equation (3.3.1) by h′(ω) and integrate by parts, to obtain the a priori estimate

d

dt

∫
LT2

h(ω(x, t)) dx = −ν
∫
T2

h′′(ω) |∇ω|2 dx ≤ 0, (3.3.7)

since h′′(s) ≥ 0 for a convex function. In particular, choosing h(s) = s2, we find∫
LT2

|ω(x, t)|2 dx ≤
∫
LT2

|ω(x, 0)|2 dx. (3.3.8)

Let us now assume that the initial datum ω0 ∈ L1∩L∞ (this is the assump-
tion underlying Yudovich’s theorem for weak solutions to the Euler equations
on the bounded domain LT2). It follows immediately that the mean dissipation
in the flow satisfies the estimate

ν

TL2

∫ T

0

∫
LT2

|∇uν(x, t)|2 dx dt ≤ ν

L2

∫
LT2

|ω0(x)|2 dx. (3.3.9)

Thus, the mean dissipation in the flow converges to zero at rate O(ν). 2

3.3.2 Vortex stretching and energy dissipation in three
dissipation

How could the mean energy dissipation, ε, in three dimensional flows remain
strictly positive? A heuristic mechanism for enhanced energy dissipation in
three dimensions, termed vortex stretching, was first proposed by G.I. Taylor.
Recall that the circulation is conserved in sufficiently smooth, ideal flows (see
Section 1.3 and (1.3.11)). Let us consider a vortex tube as shown in Figure 3.3.1,
and let us assume that the flow stretches the tube as shown. The conditions of
incompressibility and Kelvin’s theorem imply

l0a0 = la, ω0a0 = ωa, (3.3.10)

so that the stretching of the vortex tube leads to growth of the vorticity

ω = ω0
l

l0
. (3.3.11)

Since the above flows are smooth, the effect of adding viscosity is a regular
perturbation on a time scale of order O(1/ν). Thus, on this time scale the

2Check on convergence of NSE solutions to Yudovich solutions under this assumption.
Ladyzhenskaya?
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vorticity field for a viscous flow ωωων(x, t) behaves as shown in Figure 3.3.1. But
then we see that the dissipation in the three dimensional flow is significantly
greater than that of a two dimensional flow, since the L2-norm of the vorticity
is amplified as in (??).

This heuristic argument, while plausible, contains several flaws, and is hard
to pin down (though see [21]). For example, we are implicitly assuming that
the flow is unstable to small perturbations which cause vortex tubes to stretch.
However, the Euler equations are reversible in time, so that vortex stretching is
reversible! At present, there are no rigorous construction of solutions (weak or
classical) to the Navier-Stokes equations that satisfy the lower bound (3.3.4).
This is one of the central obstructions to understanding turbulence.

(a) (b)

Figure 3.3.1: Vortex stretching. (a) An initial vortex tube – we assume that
ω has constant magnitude ω0 on the ring with perimeter l0 and cross-sectional
area a0; (b) the length of the tube increases to l and its area decreases to a
because of incompressibility. The vorticity must increase because of Kelvin’s
theorem.

3.4 Kolmogorov’s scaling law

We now turn to a derivation of Kolmogorov’s law (3.2.15) based on dimensional
analysis. We denote the dimensions of length and time as L and T respectively.
The velocity, pressure gradient and kinematic viscosity have dimensions 3

[u] =
L

T
, [∇p] =

L

T 2
, [ν] =

L2

T
. (3.4.1)

3Fix notation for L, or is this OK?
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The dimensions of the mean energy and energy dissipation rate are

[K(t)] =
L2

T 2
, [ε(t)] =

L2

T 3
. (3.4.2)

The normalization of the Fourier coefficients in (3.2.6) and the Plancherel the-
orem ensures that the dimensions of a(k) and the power spectrum are given
by

[a] =
L

T
, [E(k, t) dk] = [|a|2] =

L2

T 2
, [E(k, t)] =

L3

T 2
. (3.4.3)

Kolmogorov’s analysis proceeds as follows. The basic cartoon of the fluid
flow is that it is assumed to consist of coherent structures, or eddies, on many
length scales. Any form of coherent fluid motion, for example a large eddy
is very unstable and shorter length scales are rapidly excited (the evolution
equations in the Fourier modes are introduced below). This causes a transfer of
energy from long to short scales. Since ν is small, the action of viscosity on the
long wavelengths is very weak, and most of the energy is transferred to smaller
wavelengths. We expect this process to occur in a self-similar manner, until the
length scales are so small that viscosity becomes the dominant factor.

We ignore the role of the mean energy, K in the system, and treat the
mean-energy dissipation, ε as the primary parameter in the problem then there
is only one intrinsic length scale in the system: the Kolmogorov length scale
lν = ν3/4ε−1/4 introduced in (3.2.16). The exponents of ν and ε are fixed by
their dimensions noted above. At length scales smaller than l−1

ν , equivalently
at wave numbers k � l−1

ν , the flow is dominated by viscosity and the nonlinear
effects of convection are negligible. The wavenumber k � l−1

ν is termed the
inertial range and k � l−1

ν is called the dissipation range. We expect self-
similar transfer of energy between eddies to dominate in the inertial range. The
specific form of this energy cascade is again determined by dimensional analysis.

The power-spectrum of the flow is assumed to depend on only the parameters
ε, k, and ν. Since k has dimensions L−1, and ε and E have dimensions given in
(3.4.2) and (3.4.3), we find that

Eν(k, t) = ε2/3k−5/3F (klν) (3.4.4)

as noted in (3.2.15). In the limit ν → 0, there is only one dimensional parameter,
ε, and (3.4.4) reduces to

E(k, t) = F (0) ε2/3k−5/3. (3.4.5)

While it is conventional to focus on a ‘turbulent equilibrium’ when the dissipa-
tion rate ε(t) = is independent of time, this requires us to assume that energy
dissipation is balanced by the input of energy at long length scales. Unfortu-
nately, this means that the mean-energy in the system is infinite! Indeed,

K(t) =

∫ ∞
0

E(k, t) dk = F (0) ε2/3

∫ ∞
0

k−5/3 dk = +∞. (3.4.6)
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The divergence is at low wave-numbers and arises in part from the fact that
Kolmogorov ignored a second dimensional parameter, the mean energy K(t), in
his analysis. In our view, it is more natural to include this parameter, both
because it models a situation of freely decaying turbulence, and also because
the inclusion of the energy resolves the above divergence.

More precisely, let us postulate the existence of random fields that solve the
Euler equations whose law is invariant under translations and rotations in space,
and have finite mean energy and positive dissipation. Then a new length scale,

l∗(t) =
K3/2(t)

ε(t)
, (3.4.7)

is determined by the balance between the energy and the dissipation. Dimen-
sional analysis as above, yields the universal law 4

E(k, t) = ε2/3k−5/3G(kl∗(t)), (3.4.8)

where G(s) is a positive, universal function such that∫ ∞
0

s−5/3G(s) ds = 1. (3.4.9)

In particular, we expect freely decaying turbulence to be described by a statisti-
cally self-similar velocity fields that solve the Euler equations, with parameters
K(t) and ε(t) such that equations (3.4.8)–(3.4.9) hold and the mean energy and
dissipation depend on time through

K̇(t) = −ε(t). (3.4.10)

While the existence of such random fields is unknown for the Euler equations,
later in these notes, we will establish the existence of such random fields in a
simpler model problem.

3.5 Onsager’s criterion and dissipation in ideal
flows

1. Equations in Fourier space.

2. Criterion for smoothness related to Kolmogorov law.

3. Rigorous resuls: (Duchon-Robert).

Suppose ϕ ∈ C∞c (R3) is even and non-negative; set ϕε(x) = ε−3ϕ(x/ε) and

Dε(u)(x, t) =
1

4

∫
T3

∇ϕε(y) ·δu(x, y)|δu(x, y)|2 dy, δu(x, y) = u(x+y)−u(y).

(3.5.1)

4This should be somewhere in the literature, but where?
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Theorem 4 (Local energy balance for the Navier-Stokes equations). (a) Sup-
pose u ∈ L3(0, T ;L3) is a weak solution to the Navier-Stokes equations, and
define Dε(u) ∈ L1((0, T ) × T3) as in (3.5.1). As ε → 0, the functions Dε(u)
converge to a distribution D(u) that is independent of the choice of ϕ.
(b) The following local form of energy conservation is satisfied:

∂t

(
1

2
|u|2

)
+∇·

(
u

(
1

2
|u|2 + p

))
+

1

Re
|∇u|2− 1

2Re
4|u|2 = −D(u). (3.5.2)

(c) If u ∈ L∞((0, T );L2) ∩ L2((0, T ); Ḣ1) is a Leray-Hopf weak solution, then
D(u) is a non-negative measure.

Theorem 5 (Local energy balance for the Euler equations). (a) Assume u ∈
L3(0, T ;L3(T3)) is a weak solution to the Euler equations. The following local
form of energy conservation is satisfied:

∂t

(
1

2
|u|2

)
+∇ ·

(
u

(
1

2
|u|2 + p

))
= −D(u), (3.5.3)

where D(u) is the limit of the distributions Dε(u) defined in (3.5.1) as ε→ 0.
(b) If u ∈ L∞((0, T );L2)∩L2((0, T ); Ḣ1) is a limit of Leray-Hopf weak solutions,
then D(u) is a non-negative measure.

3.6 Rigorous results: the Euler equations as a
differential inclusion
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[10] C. De Lellis and L. Székelyhidi Jr, The h-principle and the equa-
tions of fluid dynamics, Bulletin of the American Mathematical Society, 49
(2012), pp. 347–375.

[11] V. Elser, Three lectures on statistical mechanics, in Mathematics and Ma-
terials, IAS/Park City Mathematics Series, American Mathematical Soci-
ety, Providence, RI, 2016, pp. 1–30.

[12] G. L. Eyink and K. R. Sreenivasan, Onsager and the theory of hydro-
dynamic turbulence, Reviews of modern physics, 78 (2006), p. 87.

[13] U. Frisch, Turbulence: the legacy of AN Kolmogorov, Cambridge univer-
sity press, 1995.

45



46 BIBLIOGRAPHY

[14] Y. C. Fung, A first course in continuum mechanics, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 2 ed., 1977.

[15] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related proper-
ties via the maximum principle, Comm. Math. Phys., 68 (1979), pp. 209–
243.

[16] E. Hopf, Statistical hydromechanics and functional calculus, J. Rational
Mech. Anal., 1 (1952), pp. 87–123.
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