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Chapter 1

Overview

1.1 What is a random matrix?

There are two distinct points of view that one may adopt. On one hand, our
intuitive ideas of randomness are intimately tied to the notion of sampling a
realization of a random variable. Thus, given a random number generator,
one may build a random Hermitian matrix, M € Her(n), by choosing its real
diagonal and complex upper-triangular entries independently at random. It is
conventional to assume further that all the diagonal entries have the same law,
and that all the upper-triangular entries have the same law. For example, we
may assume that the entries on the diagonal are +1 with probability 1/2, and
that the upper-triangular entries are £1 4 ¢ = 1 with probability 1/4. Random
matrices of this kind, are said to be drawn from Wigner ensembles.

On the other hand, one may adopt a more analytic view. The Hilbert-
Schmidt inner product of two Hermitian matrices, Tr(M?) = > k=1 | M|,
defines a natural metric Tr(dM?) and volume form dM on Her(n) (see Lec-
ture ??). Thus, each positive function p : Her(n) — [0, 00) that decays suffi-
ciently fast as ||[M| — oo, may be normalized to define a probability measure.
A fundamental example is the law of the Gaussian Unitary Ensemble (GUE)

1 s
pGuE(M)dM = Z—e—fo<M2>dM. (1.1.1)

n

Here Z,, is a normalization constant that ensures pqug is a probability density
(we use the same notation for different ensembles; thus the numerical value
of Z, must be inferred from the context). The term GUE was introduced by
Freeman Dyson [5], and refers to an important invariance property of pgug.
Each U € U(n) defines a transformation Her(n) — Her(n), M — UMU*. It
is easily checked that the volume form dM is invariant under the map M —
UMU*, as is the measure pgur(M)dM. More generally, a probability measure
on Her(n) is said to be invariant if p(M)dM remains invariant under the map
M — UMU*, for each U € U(n). Important examples of invariant ensembles

5



6 CHAPTER 1. OVERVIEW

are defined by polynomials in one-variable of the form

Viz) = asNz?N + aon_ 12V L+ ag, a; €R,j=0,1,...,2N, asn > 0.
(1.1.2)
Then the following probability measure is invariant

p(M)dM = 1 -mvan, (1.1.3)
Zn
More generally, any potential V' : R — R such that V(z) — oo, sufficiently
rapidly as |z| — oo defines an invariant ensemble.

We have assumed that all matrices are Hermitian simply to be concrete. The
above notions extend to ensembles of matrices from Symm(n) and Quart(n).
The notion of invariance in each case is distinct: for Symm(n), the natural
transformation is M +— QMQT, Q € O(n); for Quart(n) it is M +— SMSP,
S € Sp(2n,R). The standard Gaussian ensembles in these cases are termed
GOE (the Gaussian Orthogonal Ensemble) and GSE (the Gaussian Symplectic
Ensemble), and they are normalized as follows:

1
pcoe(M) = Zfefiﬂ(MQ)dM’ pase(M) = Zfe*“(MQ)dM. (1.1.4)

The differing normalizations arise from the different volume forms on Symm(n),
Her(n) and Quart(n) as will be explained in Lecture ??. For now, let us note
that the densities for all the Gaussian ensembles may be written in the unified
form

B
Zn(B) e T (1.1.5)

where 8 = 1,2 and 4 for GOE, GUE and GSE respectively. While it is true
that there are no other ensembles that respect fundamental physical invariance
(in the sense of Dyson), many fundamental results of random matrix theory
can be established for all 3 > 0. These results follow from the existence of
ensembles of tridiagonal matrices, whose eigenvalues have a joint distribution
that interpolates those of the § = 1,2 and 4 ensembles to all § > 0 [4].

1.2 The main limit theorems

The basic question in random matrix theory is the following: what can one
say about the statistics of the eigenvalues of a random matrix? For example,
what is the probability that the largest eigenvalue lies below a threshold? Or,
what is the probability that there are no eigenvalues in a given interval? The
difficulty here is that even if the entries of a random matrix are independent,
the eigenvalues are strongly coupled.

Gaussian ensembles play a very special, and important, role in random ma-
trix theory. These are the only ensembles that are both Wigner and invari-
ant (see Theorem ?? below). Pioneering, ingenious calculations by Dyson [5],
Gaudin and Mehta [17, 16], on the Gaussian ensembles served to elucidate the
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fundamental limit theorems of random matrix theory. In this section we outline
these theorems, assuming always that the ensemble is GUE. Our purpose is
to explain the form of the main questions (and their answers) in the simplest
setting. All the results hold in far greater generality as is briefly outlined at the
end of this section.

By the normalization (1.1.1), a GUE matrix has independent standard nor-
mal entries on its diagonal (mean zero, variance 1). The off-diagonal entries
have mean zero and variance 1/2. We denote the ordered eigenvalues of the
GUE matrix by A\; < Ao < ... A,. A fundamental heuristic for GUE matrices
(that will be proven later, and may be easily simulated) is that the largest and
smallest eigenvalues have size O(y/n). In fact, Ay & —2y/n and A\, = 2y/n as
n — o0o. Since there are n eigenvalues, the gap between these eigenvalues is
typically O(1/+/n). There are thus two natural scaling limits to consider as
n — o0o:

1. Rescale M + n~/2M so that the spectral radius is O(1). In this scaling
limit, n eigenvalues are contained within a bounded interval, and we obtain
a deterministic limit called the semicircle law.

2. Rescale M — n!'/2M so that the gaps between eigenvalues are O(1). In
this scaling limit, we expect a random limiting point process. The limiting
point process is a determinantal point process called the Sines process.

In fact, the situation is more subtle. While the expected value of the gap
between eigenvalues for a GUE matrix is indeed O(1/n), the gaps are O(n=2/3)
about the edge of the spectrum. There is an an entirely different scaling limit
called the Airy, process obtained by rescaling the spectrum of M + 2/nl.

In all that follows, we consider a sequence of random matrices of size n
sampled from GUE(n). To make this explicit, the matrix is denoted M,,, and
its ordered eigenvalues are denoted A\ < \%,... A"

n-

1.2.1 The semicircle law

Definition 1. The probability density and distribution function

1 xT
Psc(x) = %\/4 — 22 1i4<2, Fi(z) = / psc(2’), da’ (1.2.1)

are called the semicircle density and the semicircle distribution respectively.

Theorem 2. Let M,, be a sequence of GUE matrices of size n. The rescaled
empirical spectral measures

1 n
pin (de) = ~ Zl 81723 (da) (1.2.2)
iz

converge weakly to the semicircle density almost surely.
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Theorem 2 may also be interpreted as the statement that the empirical spec-
tral distribution of the matrices M, //n converges to the semicircle distribution.
The shortest proof of Theorem (2) uses the following integral transform.

Definition 3. Assume p is a measure on R that satisfies the finiteness condition

/00 ! (dx) < 0. (1.2.3)

——u
oo 1+ a2

The Stieltjes transform of y is the function

a(z) = /OO L p(dx), ze C\R. (1.2.4)

r— =z

The Stieltjes transform is of fundamental importance in the theory of or-
thogonal polynomials and spectral theory. This is because there are natural
Stieltjes transforms associated to the resolvent (M — z)~!, such as

Tr(M —2)~',  and(v*(M —2) v, veC"|v| =1 (1.2.5)

The proof of Theorem 2 uses a recursive expression for the law of Tr(z — M, )~ L.
As n — oo, the fixed point of this recursion, Ry solves the quadratic equation

R*—2R+1=0. (1.2.6)

It is then easy to verify that

Ruo(z) = % (—z +V/2 - 4) . zeC\[-2,2]. (1.2.7)

We recover the semicircle law from Rs.(z) by evaluating the jump in Im(Rs.(2))
across the branch cut [-2,2].

1.2.2 Fluctuations in the bulk: the sine process

We now rescale so that the gaps between eigenvalues is O(1), and the scaling
limit is a random process. This random process will always be denoted Siney
(and Sineg for the general 8-ensembles). Each realization of the Sineg process is a
countable set of points {x}72 .. One of the fundamental statistics associated
to a point process is the probability of having k points in an interval. In order to
state a typical fluctuation theorem that describes these probabilities, we must
define the sine-kernel and its Fredholm determinants.

Definition 4. The sine-kernel is the integral kernel on R x R given by

sinw(z —y)

Ksine(xy y) = ﬂ'(l‘ — y)

. xFy, (1.2.8)

and Kgne(z, x,) = 1.
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In the following theorem we will assume that x and y are restricted to a finite
interval (a,b). The sine-kernel defines an integral operator on L?(a,b) that we
denote by Kiinel(q,p)- The kernel Kine(x,y) is clearly continuous, thus bounded,
for 2,y € (a,b). Thus, Kgnel(q,) defines an integral operator on L?(a,b) that
is trace-class, and it has a well-defined Fredholm determinant

(=™
m!

00
det (1 — Ksine]-(a,b)) = 1+Z
m=0

(1.2.9)
Though perhaps mysterious at first sight, the origin of this formula is rather
simple. Integral operators with some smoothness and boundedness (in particu-

lar, continuous integral operators K whose trace f(f | K (z, z)|dz is finite) may be
approximated on a discrete-grid of size h by a finite-dimensional discretization
K. The determinant (I — K}) is then the usual determinant of a matrix and
we may use the definition of the determinant to expand det(I — K},) in a finite
series, which is nothing but the infinite series above in the instance when all
terms beyond m = rank(K},) vanish. This approach was pioneered by Fredholm
in 1900 before the development of functional analysis.

Theorem 5 (Gaudin-Mehta [17]). For each finite interval (a,b) C R,

lim P (\/ﬁ)\z ¢ (a,b), 1 S k S TL) = det (1 - Ksine]-(a,b)) . (1210)

n—oo

The probabilities of the Siney process can be expressed without reference to
the matrices M,,. For each interval (a,b) let N(g ) = Yoo 1, €(ap)- Then,

P (N(a’b) = 0) = det (1 - Ksinel(a,b)) . (1.2.11)

For comparison, if we had a Poisson process {Zj}3> . with rate A(dz), the
associated count ]\Nf(a)b) would satisfy

P (N(a’b) = O) =1-—exp (/ab A(dx)) .

1.2.3 Fluctuations at the edge: the Airy point process

Theorem 5 reveals that the gaps between consecutive eigenvalues A7 and A7,
is of O(1). However, the fluctuations at the edge are much smaller, of O(n~=2/3).
The point process of shifted and scaled eigenvalues converges in distribution to
a limiting point process, {yx}7>, called the Airy, process. In order to describe
the law of this process, we must define the Airy function and the Airy kernel.

Definition 6. The Airy function is defined by the oscillatory integral

1 o 13 e
Ai(z) = %/ etk =ik /3 gp;. (1.2.12)

/ det (Ksine(l‘j, xk)1§j7;€§m) dridzs ...
(a,b)™

dx .
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The Airy function is one of the classical special functions [1]. It admits
several alternative definitions. For instance, the oscillatory integral in (1.2.12)
may be deformed into an absolutely convergent integral in the complex plane.
This argument allows us to establish that the Airy function is entire and to
determine its asymptotic expansions as x — +o0.

These properties may also be established using the theory of ordinary dif-
ferential equations in the complex plane [10]. Tt is easy to verify from (1.2.12)
that Ai(x) satisfies the differential equation

¢"(z) =zp, —00 <z < O00. (1.2.13)

Equation (1.2.13) admits two linearly independent solutions, only one of which
decays as ¢ — oo. Upto a (fixed by convention, but otherwise arbitrary) nor-
malization constant, the decaying solution is Ai(x).

Definition 7. The Airy kernel is the continous integral kernel on R x R given
by
Ai() A (y) — AT'(2)Ai(y)

KAiry(xvy) = T—y 3 l'#ya

and by continuity at z = y.
Observe that both the sine and Airy kernel have the form

Ko - LG L@ o

where f solves a second-order linear differential equation. Similar kernels arise
in various limiting models in random matrix theory. For instance, the Bessel
kernel — corresponding to f(z) = J,(z), the Bessel function with parameter «
— describes fluctuations about the singular values of random positive definite
Hermitian matrices.

Theorem 8. For each interval (a,b) CR, —oo < a < b < oo,

)\n
lim P (n??( “E —2) ¢ (a,b), 1<k <n)=det(l— Kanlay). (1.2.15)
n—oo \/ﬁ )

As in the remarks following Theorem 5, the expression det (1 - K A;,yl(a’b))
gives the probability that no points of a realization of the Airy, point process
lie in (a,b).

1.2.4 Fredholm determinants, Painlevé equations, and in-
tegrable systems

It is immediate from Theorem 5 and Theorem 8 that the Fredholm determinants
det (1 — Ksinel(a,b)) and det (1 — KAiryl(mb)) are positive for all (a,b). This is
astonishing, if one treats (1.2.9) as a starting point, since it is by no means clear
that the signed infinite series sums to a positive number! It is in fact, rather
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challenging to extract meaningful information, such as the asymptotics of tails,
from the expression of probabilities as Fredholm determinants. A crucial piece
of the puzzle lies in the connection between Fredholm determinants and the
theory of integrable systems. More precisely, the Fredholm determinants satisfy
differential equations in a and b (or more generally in endpoints of intervals,
when one considers the obvious extensions of Theorem 5 and Theorem 8 to
a collection of intervals []j, (am,bm)). These ordinary differential equations
have a special, integrable structure, that allows their analysis. The following
theorems illustrate this aspect of random matrix theory.

Theorem 9 (Jimbo-Miwa-Mori-Sato [11]). For all t > 0,

"a(s)
det (1 - Ksinel(_%)) = exp </O = ds) : (1.2.16)

where o(t) is the solution to the Painlevé-5 equation
(to")? +4(to’ — o) (to' — o +0%) =0, (1.2.17)

which satisfies the asymptotic condition

o(t) = —— — — — —, tlo. (1.2.18)

Theorem 10 (Tracy-Widom distribution [24]). For all real t,

F5(t) := det (1 — Kairyl(z,00)) = €xp (—/ (s — t)g*(s) ds) , (1.2.19)
t
where q is the solution to the Painlevé-2 equation
¢ =tq+2¢%, —0co <t < o0 (1.2.20)
which satisfies the asymptotic condition
q(t) ~ Ai(t), t— oo. (1.2.21)

We will discuss the basic properties of Painlevé equations and integrable
systems in Lecture ?7. Here is a brief preview.

The Painlevé differential equations are a special family of nonlinear ordi-
nary differential equations that generalize the classical theory of linear dif-
ferential equations in the complex plane and the associated theory of special
functions [10]. For example, the Painlevé-2 equation (1.2.20) may be viewed as
a nonlinear analogue of the Airy differential equation (1.2.13). The theory of
Painlevé equations was developed in the early years 1900’s, by Boutroux and
Painlevé, but fell into obscurity ! . It was reborn in the 1970s with the discovery

1Paul Painlevé was rather restless: he began in mathematics, became an early aviation
enthusiast, and then turned to politics. He rose to become the Prime Minister of France for
part of World War I, and was later the designer of the disastrous Maginot line.
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of their importance in integrable systems and exactly solvable models in statis-
tical mechanics, such as the Ising model in 2D [15]. We illustrate these links
with a fundamental integrable system: the Korteweg-De Vries (KdV) equation

up + 6uty + Ugere =0, —00 <z <00, t>0. (1.2.22)

Despite the fact that KdV is nonlinear, it may be solved explicitly through the
inverse scattering transform. We will not discuss this method in detail. But in
order to make the connection with random matrix theory, let us note that if one
seeks self-similar solutions to KdV of the form

1 T
(3t)2/3q ((3t)2/3> (1.2.23)

then ¢ satisfies the Painlevé-2 equation (1.2.20). In fact, it is in this context
that Hastings and McLeod established the existence of a solution to (1.2.20)
that satisfies the asymptotic condition (1.2.21) [9]. It is remarkable that it is
exactly this solution that describes the Tracy-Widom distribution Fy(t)!

u(z,t) =

1.2.5 Universality

We have restricted attention to matrices from GUE to present some of the
central theorems in the subject in an efficient manner. One of the main achieve-
ments of the past decade has been the establishment of universality — informally,
this is the notion that the limiting fluctuations in the bulk and edge described
by the Siney and Airy, processes, hold for both Wigner and invariant ensembles
which satisfy natural moment assumptions. The idea of universality is of clear
practical importance (we need understand only a few universal limits). It also
appears to hold the key to some of the connections between random matrix the-
ory and other areas of mathematics. The explanation of these connections may
lie in the fact that determinantal point processes, such as the Sine; and Airy,
process, have the simplest structure of strongly interacting point processes. By
contrast, Poisson processes, while universal, describe non-interacting points.

1.3 Connections to other areas of mathematics

Random matrix theory has deep connections with many areas of mathematics,
many of which are still poorly understood. A brief overview of some of these
connections is presented below. While some of these notions, such as the con-
nections with stochastic PDE require more background than we assume, some
other connections (e.g. with quantum gravity) are in fact more elementary (and
fundamental) than one may naively expect. Our purpose here is to present a
small sample of the rich set of ideas that make the subject so attractive.
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1.3.1 Number theory

The Riemann zeta function is defined by the infinite sum
C(s) = i L Re(s) > 1 (1.3.1)
= 2 , . .3.

The function ((s) is central to number theory, since it provides a generating
function for the distribution of the prime numbers via Euler’s product formula

(oo}

1 1
— = 11 =t Re(s) > 1. (1.3.2)

n=1 p prime
For instance, the divergence of the harmonic series at s = 1 provides a proof
that there are infinitely many primes. The study of ((s) by complex analysis is
the cornerstone of analytic number theory. The basic facts are as follows. The
function ((z) extends to a meromorphic function on C by analytic continuation,
which has a simple pole at s = 1 where the residue is 1. A closely related
function is the Riemann &-function

S

£(s) = ?15/25(5 RIENE) (1.3.3)

Recall that the I' function is a ‘continuous interpolation’ of the factorial, defined
by the integral

I'(s) = /000 e *x*tdr, Re(s)>0. (1.3.4)

The I'-function extends to a meromorphic function C, which has simple poles at
..,—2,—1,0 where the residue is 1. These poles cancel the ‘trivial’ zeros of the

¢ function, and the essential difficulties related to the study of the ¢ function

are more transparent for the £ function. It satisfies the functional equation

E(s)=¢&(1—-s), seC (1.3.5)

The celebrated Riemann Hypothesis is the conjecture that all zeros of the £
function lie on the critical line Re(s) = 1/2 (this line is the symmetry axis for
the functional equation above). In his fundamental paper on the distribution
of prime numbers (translated in [7] and [19]) Riemann presented a series of
asymptotic expansions that would imply rigorous bounds on the distribution of
primes if the Riemann Hypothesis is true.

The connection between random matrix theory and the Riemann Hypoth-
esis is two-fold. First, if one could construct a Hermitian operator with point
spectrum whose eigenvalues coincide with the zeros of £(i(s — 1/2) then the
Riemann Hypothesis would follow immediately (since all eigenvalues of a Her-
mitian operator are real). The catch, of course, is to determine such an operator.
Nevertheless, as we discuss below, random matrix theory has shed new lie on
the spectral theory of several operators, deterministic and random. Thus, the
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theory provides a catalog of ‘guesses’. Second, if one assumes the Riemann hy-
pothesis, the fluctuations in the zeros of ((s) are described by the sine-kernel!
Under the Riemann hypothesis, the non-trivial zeros of ((s) may be written
Yo = 3 Eit, with 0 < t; <ty <.... Let

tn
w, = 27T1 (%)’ and N(z lenq (1.3.6)

This rescaling is chosen so that lim, . N(z)/z = 1 in accordance with the
Prime Number Theorem.

Despite the fact that the zeros w,, are deterministic, we may introduce proba-
bilistic notions by counting the (rescaled) zeros upto a level > 0. For example,
we may define the empirical probability measure

w1 (dw; x) Z Sy, (dw). (1.3.7)

In order to study the gaps between eigenvalues, we must consider instead the
empirical measures

1
pa(dls ) = — > Sy —wy (dl). (1.3.8)
1<) k<N (2)3j#k
The expectation of a continuous function with respect to ps(dl; z) is denoted
e 1
[ tomldn =1 S fwmw). (139)
> 1<j<k<N(x)

Under the assumption that f is band-limited, i.e. that its Fourier transform has
compact support, Montgomery established the following

Theorem 11 (Montgomery). Assume the Riemann Hypothesis. Assume f is
a Schwartz function whose Fourier transform f is supported in [—1,1]. Then

sinml\”
lim Ro(f;x) / FDpa(dl), pa(dl) = ( - ) dl. (1.3.10)

r—00

The point here is that the right hand side of (1.3.10) is precisely the 2-point
function for the sine-process. More generally, Montgomery’s theorem is now
known to hold for the distribution of n-consecutive gaps. That is, the rescaled
fluctuations converge to the Sines process in distribution. Bourgade’s thesis is
an excellent review of the state of the art [2].

1.3.2 Combinatorics and enumerative geometry

We will present two problems of enumerative combinatorics that connect with
random matrix theory. As a first example, we note that the 2m-th moment of
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the semicircle law

2
1 2m
2m _ _
\/72I Psc(z) dax = pe <m> Chm, (1.3.11)

the m-the Catalan number. An analytic proof of this identity follows from a
comparison between the Stieltjes transform Rg.(z), and the generating function

Clz)= )Y Cpa™= 1=vizdz (1.3.12)

X
m>0

The Catalan numbers describe the solution to many combinatorial problems 2.
For example, C},, enumerates the number of Bernoulli excursions or Dyck paths
of length 2m: these are walks S, 1 < k < 2m such that Sy = So,,, =0, S > 0,
0 <k <2m,and |Sky1 — Skl =1.

A deeper set of connections between integrals on Her(n) and geometry was
first noticed by the physicist 't Hooft [23]. Ignoring (for now), physicists’ mo-
tivation, let us illustrate a particular computational technique that underlies
their work. Consider a matrix integral of the form

Zn(2) = / e (=M p (M) dM,  Re(z) > 0. (1.3.13)
Her(n)

The quartic nonlinearity prevents us from expressing this integral in closed form.
Nevertheless, this integral may be expanded in a Taylor series

Zn(2) :kz_:o(_k'z!)//(T‘r(M‘L))kpGUE(M) dM, Re(z)>0.  (1.3.14)

A fundamental lemma on Gaussian integrals (on RY) (Wick’s lemma) allows us
to reduce each integral above to a sum over pairings of indices. It is convenient
to keep track of these pairings with a graphical description, called a Feynman
diagram. 't Hooft observed that when R™ = Her(n) the Feynman diagram
associated to each term in (1.3.14) enumerates embedded graphs on a Riemann
surface. This characterization was independently discovered by mathematicians.

Lemma 1 (Harer-Zagier [8]). Let ¢4(m) denote the number of ways to pair the
edges of a symmetric 2m-gon to form an orientable surface with genus g. Then

oo

flm,n) = eg(m)n™ 1720 = /H ( )Tr(Mzm)pGUE(M) dM.  (1.3.15)

g=0

Note that only finitely many terms in the sum are non-zero. The series above

is an instance of a genus-expansion. It illustrates the beautiful fact that matrix

integrals serve as the generating functions for Riemann surfaces with a given
combinatorial decomposition!

2Stanley lists 66 examples in [21, Exercise 6.19].
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1.3.3 Spectral and inverse spectral theory of operators

While Theorem 2-Theorem 8 associate limits to the spectrum of the operators
M, it is natural to ask if there are limiting operators that may be naturally
associated to the limiting spectra. Thus, for Theorem 2 we ask for a ‘natural’
operator that has spectral density given by the semicircle law, ps., and for
Theorem 5 and Theorem 8 we seek ‘natural’ random operators that have pure
point spectra with the law of the Siney and Airy, point processes. What is a
‘natural’ operator is, of course, a subjective idea, but convincing candidates
operators are suggested by inverse spectral theory.

We say that a matrix T € Symm(n) is a Jacobi matrix if all its off-diagonal
entries are strictly positive. The spectral measure of a Jacobi matrix is the mea-
sure whose Stieltjes transform is el (T'— z)~'e;. Thereis a 1 —1 correspondence
between the space of n x n Jacobi matrices and probability measures on the line
with n atoms. This correspondence extends naturally to semi-infinite Jacobi
matrices. The essence of this theory (due to Stieltjes) is that the entries of T'
may be determined from the continued fraction ewpansion of el (T — z)te;.
This correspondence will be considered in detail in Lecture ??, but here is a
concrete example. By applying Stieltjes’ procedure to the semicircle law, we
discover that ps.(z) is the spectral density for the seminfinite tridiagonal ma-
trix that is 1 on the off-diagonal, and 0 in all other entries. This follows from
the continued fraction expansion

Ry(—2)= ———— (1.3.16)

Ensembles of tridiagonal matrices are of practical important in numerical
linear algebra. For instance, a key pre-processing step while solving symmet-
ric linear systems is to transform the matrix to tridiagonal form by House-
holder’s procedure (Lecture 3). Dumitriu and Edelman pushed forward the
Gaussian measures under this procedure to obtain a family of tridiagonal en-
sembles, known as the general-8 ensembles [4]. Further, Edelman and Sutton
made a formal expansion of these operators, and observed that as n — oo, the
tridiagonal operators appeared to converge to the stochastic Airy operator [6]:

d? 2 .
with Dirichlet boundary conditions at 2 = 0. Here b denotes (formally) white
noise (it is not hard to define Hg rigorously).

Theorem 12 (Ramirez-Rider-Virag [18]). The spectrum o(Hg) of the operator
Hpg is almost surely a countably infinite number of eigenvalues p; < po < p3 <
.... Moreover, 0(Hg) has the same law as the Airyg point process.
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In particular, for 8 = 2, the spectrum of the stochastic Airy operator de-
scribes the limiting fluctuations at the edge of the spectrum of GUE matrices.
Despite the simplicity of this characterization, it is not know how to recover the
explicit determinantal formulas of Tracy and Widom from this formulation.
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Chapter 2

Integration on spaces of
matrices

In this section, we review the geometry of the classical Lie groups, as well as the
spaces Symm(n), Her(n) and Quart(n) and explain how to integrate over these
groups and spaces. Our main goal is the following

Theorem 13 (Weyl’s formula).
DM = |A(A)|° DA DU (2.0.1)

where A(A) is the Vandermonde determinant

NUVE || ECYEP ST (2.0.2)

1<j<k<n

DA is Lebesgue measure on R™, and DU denotes (unnormalized) Haar measure
on O(n) , U(n)/T™ , and USp(n)/T™ in the cases B = 1,2 and 4 respectively.

Remark 14. It is common to normalize the Haar measure such that it is a
probability measure. We have ignored this constant here, though is is explored
in the exercises. The essential aspect of (2.0.1) is that the Jacobian for diago-
nalization is given by |A(A)]?. This has far-reaching consequences for random
matrix theory and has the interesting physical interpretation of eigenvalue re-
pulsion.

In what follows, we first present a detailed description of integration on O(n)
and Symm(n). The ideas are then extended to Her(n) and Quart(n).

2.1 Integration on O(n) and Symm(n)

All matrices in this section lie in Mﬂsxn.

19
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There is a natural volume form on each finite-dimensional inner-product
space of dimension p. For example, on RP, the standard inner product defines
the metric with infinitesimal length element ds? = 25:1 dx?- and the volume
form Dz = dxidzs...dz, (we follow the notation of [25] for volume forms).
More generally, each g € Symm_ (p) defines an inner-product and metric on RP.

p P
(x,y)g = Z GikTiyr, ds® = Z gjrdxjdry. (2.1.1)
Jik=1 Jik=1

The associated p-dimensional volume form is

Dz = +/det(g) dzy ... dx,. (2.1.2)

A (linear) isometry of R™ is a linear transformation that leaves the inner-
product invariant !. The Lie group O(n) is the group, under composition, of
linear transformations of R™ that preserve the standard metric ¢ = I. For each
O € O(n) and each z € R" we must have (Ox)?(Oz) = 2Tx. Thus, O(n) is
equivalent to the group of matrices O such that OTO = I. The group operation
is matrix multiplication. It is easy to check that the group axioms are satisfied,
but a little more work is required to check that O(n) is a differentiable manifold,
and that the group operation is smooth.

We now introduce the natural volume forms on Symm(n) and O(n). We first
note that the space Symm(n) is isomorphic to R?, p = n(n + 1)/2 via the map

M'—>£: (Mllw~~;MnnaM127~'~7Mn71,n)- (213)

Thus, all that is needed to define integrals over Symm(n) is a choice of inner-
product. We will always use the Hilbert-Schmidt inner product

Symm(n) x Symm(n) — R, (M, N)+— Tr(MTN) = Tr(MN). (2.1.4)

The associated infinitesimal length element is

ds® = Te(dM"dM) = M7 +2) " M. (2.1.5)
Jj=1 Jj<k

In ¢ coordinates on RP, the associated metric tensor g is diagonal and takes
the value 1 for the first n coordinates (diagonal terms), and the value 2 for
all the other coordinates (off-diagonal terms). Thus, the metric tensor g €
Symm, (p) has determinant 2"("~1V/2. We apply formula (2.1.2) to find the
following volume form on Symm(n),

DM =2"""VA T dM;; ] dMe. (2.1.6)
j=1

1<j<k<n

1t is not necessary to assume that the transformation is linear, but it takes more work to
prove that an isometry must be affine.
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Each O € O(n) defines a map Symm(n) — Symm(n), M — OMO?. This map
is an isometry of Symm(n) with the metric above. It is in this sense that (2.1.8)
is the natural inner-product. Since this map is an isometry, the volume element
DM is also invariant.

O(n) is a differentiable manifold. Thus, in order to define a volume form
on O(n), we must identify its tangent space TO(n), and then introduce an
inner-product on TO(n). Further, the ‘natural’ inner-product must be invariant
under the group operations. The tangent space at the identity to O(n), TrO(n),
is isomorphic to the Lie algebra, o(n), of O(n). In order to compute o(n) we
consider smooth curves (—1,1) — O(n), t — Q(t) with Q(0) = I, differentiate
the equation Q(¢)TQ(t) = I with respect to t, and evaluate at ¢t = 0 to find

Q)" = ~Q(0). (2.1.7)

Thus, each matrix in o(n) is antisymmetric. Conversely, given an antisymmetric
matrix A, the curve t +— e* gives a smooth curve in O(n) that is tangent to I
at t = 0. Thus,

T;O(n) =o(n) = {A|A=-A"}. (2.1.8)

The tangent space at arbitrary O € O(n) is obtained by replacing (2.2.2) with
the condition that O7'O is antisymmetric. Thus,

ToO(n) = {OA|A € o(n) ). (2.1.9)

Finally, given A, A € o(n), we define their inner product Tr(ATA) = —Tr(AA).
This inner-product is natural, because it is invariant under left-translation. That

is, for two vector OA, OA € ToO(n) we find Tr (OA)T(OA) = Tr(AT A). The

associated volume form on O(n) is called Haar measure. It is unique, upto a
normalizing factor, and we write

DO =2"=V T dAy. (2.1.10)

1<j<k<n

2.2  Weyl’s formula on Symm(n)

Let us now recall some basic facts about Symm(n). Each matrix M € Symm(n)
has n real eigenvalues and an orthonormal basis of real eigenvectors. We write
A for the matrix diag(Aq,...,A,) of eigenvalues, and @ for a matrix whose k-
th column is a normalized eigenvector of M associated to the eigenvalue A,
1 < k < n. Since the columns of @) are orthogonal and normalized to length 1,
it is immediate that @ € O(n). Thus,

MQ=QA and M =QAQT. (2.2.1)

In what follows, we will view the transformation M +— (A,Q) as a change
of variables, from Symm(n) — R™ x O(n). Strictly speaking, this change of
variables is not well-defined since (2.2.1) is unaffected if we replace the k-th
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column Qy of @ by —Q. This issue is considered more carefully in Lemma 3
and Lemma 4 below. In a loose sense, diagonalization is analogous to polar
coordinates in R"™,

R™ — [0,00) x S, x> (r,u), r:|x\7u:£. (2.2.2)
T

Polar coordinates are natural for rotation invariant probability density on R™.
For example, the standard Gaussian measure on R”™ may be written

e"2 Dx=Cpe 2 " 'drDu, (2.2.3)

where Du denotes the normalized n — 1-dimensional measure on S”~! and C,,
is a universal constant. The factor r™ ! is the Jacobian of this transformation.
Weyl’s formula shows that the Jacobian for (2.2.1) is |A(A)|. The proof of
Weyl’s formula relies on an orthogonal decomposition of Th;Symm(n).

Lemma 2.
TpSymm(n) 2 R" & o(n), (2.2.4)

and these subspaces are orthogonal.

Proof. We first assume that M is diagonal. Consider a smooth curve (—1,1) —
Symm(n), t — M(t) = Q(t)A(t)Q(t)T such that M(0) = A(0) = A, and Q(0) =
1. We differentiate this expression with respect to ¢ and evaluate it at t = 0 to
find the following expression for a tangent vector in ThSymm(n):

M = A +[Q, Al (2.2.5)

Here A can be an arbitrary diagonal matrix, and Q an arbitrary antisymmetric
matrix. Since the diagonal terms in the commutator [@, A] vanish, these two
matrices are orthogonal. Thus,

TASymm(n) = R" @ o(n). (2.2.6)

When M is not diagonal, we consider a curve M (t) as above, with M (0) =
M, A(0) = A and Q(0) = Q. Now equation (2.2.5) is replaced by

M=0Q (A +[QT0, A]) o7, (2.2.7)

The matrices QTQ are antisymmetric and span o(n). Moreover, the matrices
[QTQ,A] and A are orthogonal as before. O

Remark 15. The proof of Lemma 2 reveals that all matrices of the form
Q [QTQ7 A]) QT lie on an isospectral manifold — i.e. a manifold of matrices in

Symm(n) with the same spectrum as A.
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Proof of Weyl’s formula for f =1. We now have two coordinate systems on
Ty Symm(n). The coordinates €%, 1 < a < p give the metric (2.1.5). The

second coordinate system is (A,A) where A is a diagonal matrix and A is

an antisymmetric matrix. We use (2.2.7) to see that the infinitesimal length
element in this coordinate system is

ds® = Te(dM?) = d\}+2 Y (N — M)’dA3,. (2.2.8)
j=1

1<j<k<n

Thus, the metric tensor in these coordinates is a diagonal matrix in Symm , (p)
that takes the value 1 on the first n coordinates, and the value 2(\; — Aj)? for
each term Aj,. By (2.1.2), the volume form is

DM =2"=D/ATTdx; [ 1N — Ml dAje = [AM)|DADQ.  (2.2.9)

j=1 1<j<k<n

O

2.3 Diagonalization as a change of coordinates

Some care is needed when treating the map M — (A, Q) as a change of vari-
ables. First, the map is not even well-defined in general, since the sign of each
normalized eigenvector is arbitrary. Second, even if we fix the signs, the choice
of eigenvectors is degenerate when M has repeated eigenvalues. The following
lemmas address this issue.

Lemma 3. Assume My € Symm(n) has distinct eigenvalues. Then there exists
€ > 0 such that for each s € {£1}", there is a C*° map

h() : B.(Mp) — R" x O(n), M (A, Q(s))

that is a C* diffeomorphism onto its image.

Proof of Lemma 8. An outline of the proof is presented. The details are left to
the exercises.

The choice of s corresponds to fixing the signs of the eigenvectors as follows.
Let a basis of normalized eigenvectors of My be fixed. Call the associated matrix
of eigenvectors Qg. For each s, let Qgs) = diag(si,. .., s,)Qo. Each Q(()s) is also
an eigenvector matrix for My. Since the eigenvalues of M are distinct, we may
use the implicit function theorem to solve the algebraic equations that determine
the eigenvalues and eigenvectors, in a way that is consistent with the choice of
S. O

Lemma 4. Assume that My has a repeated eiegenvalue. Then for every e > 0
there exists M., such that ||My — M| < e and M, has distinct eigenvalues.
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Proof. Exercise. O

Lemma 3 show that the map M — (A, Q) provides a local coordinate system
near each matrix with distinct eigenvalues. Lemma 4 shows that set of such
matrices is dense. In fact, Weyl’s formula shows that the set of M € Symm(n)
with repeated eigenvalues has measure zero with respect to DM.

2.4 Independence and Invariance implies Gaus-
sian

Fix M € Symm(n) with spectrum o(M). Fix an interval (a,b) C R and let

Symm(n) ) denote the set of M € Symm(n) with spectrum o(M) C (a,b).

Each function f : (a,b) — R extends naturally to a map Symm(n)q; —
Symm(n) as follows:

FM)=Qf(M)QT, M=QAQT, f(A)=diag(f(\1),....f(\)). (2.4.1)
Clearly, Tr(f(M)) = Tr(f(A) = X270, f(A;). Each f : R — R that grows
sufficiently fast as x — +o0o defines an invariant distribution on Symm(n)

uw(DM) = %exp (—Tr(f(M))) DM. (2.4.2)

This is the most general form of an invariant probability distribution.

By contrast, a Wigner distribution relies on independence of the entries of
M. This means that if a Wigner distribution has a density, then it must be of
the form

M(DM)Z% 1140 T fie (M) | DM (2.4.3)
j=1 1<j<k<n

Theorem 16. Assume a probability measure p on Symm(n) is both a Wigner
distribution and an invariant distribution. Assume further that p(DM) has a
strictly positive, smooth density of the form (2.4.2) and (2.4.3). Then u(DM)
is a Gaussian ensemble,

w(DM) = %e—zﬁTﬂM—“V, (2.4.4)

with variance 0% and mean vI, for some v € R.

Proof. We first illustrate the essential calculation for 2 x 2 matrices. Suppose
1
/J,(DM) = p(M) DM = Zf(Mll)g(Mgg)h(Mlg)dMlldMlnggg (245)

We compute the variation in p along an isospectral curve (see Remark 15).
Consider the curve M(t) = Q(t)MQ(t)T with

Qt)=¢e", R= ( _01 (1) ) : (2.4.6)
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The matrix R spans so(2). We differentiate M () with respect to ¢ to obtain

. B B —2M;io My — Moo
o) = rm = (2 M I ) )

Thus, the infinitesimal change in the density p(M (t)) is

Ldp|  POM) L g(My) W (M)
Pty T Oh0 M T M R (245
_ f/(Mll) B 9/(M22) _ h/(M12)
20 (f(Mu) f(M22)> (M= M) G

dp

| =0 (2.4.9)

t=0

We equate (2.4.8) and (2.4.9), and separate variables to obtain

1 (f/(Mu) _ 9/(M22)> .o ! W (Miz) (2.4.10)
My — Moo \ f(M11)  f(Ma2) 2Mio h(Mis)’ o
for some constant ¢ € R. Equation (2.4.10) immediately implies that
h(Mis) = h(0)ecMr. (2.4.11)

Separating variables again in (2.4.10), we find with a second constant b € R,

f g
7 =cMi1+b, = =cMs+b, (2.4.12)
g
which integrates to
cM}, cM3,
f(Miy) = f(0)e 2 "M g(Mas) = g(0)e 2 "2, (2.4.13)

We combine all the terms to obtain

Tr(M?)
p(M) = f(0)g(0)h(0)e™ 2 T (2.4.14)
Since p(M) integrates to 1, we must have ¢ < 0, say ¢ = —1/0%. The scalar b is

arbitrary and contributes a shift in the mean that is a scalar multiple of I. The
combination of constants f(0)g(0)h(0) may be absorbed into the normalization
constant Z 1. We have thus proved Theorem 16 for n = 2.

In order to prove Theorem 16 for arbitrary n we generalize the above argu-
ment as follows. Fix a pair of off-diagonal indices 1 <1 < m < n. We consider
a rotation in R” that rotates the x;x,, plane as above, and leaves the other co-
ordinates invariant. This entails replacing the matrix R in the argument above
with the matrix R'™ € so(n) with coordinates R?,? = 0;10km — 0jmOki. The
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argument above now shows that the density of p in the My, M, and M.,
coordinates is a Gaussian distribution of the form (2.4.14):

v Imy\2
p(M"™) = e - )ebT‘(Mlm),

where M'™ denotes the 2 x 2 matrix

Im __ Mll Mlm

At this stage, the constants ¢ and b depend on [ and m. But now note that
since the same argument applies to every pair of indices 1 < I < m < n, the
constants ¢ and b must be independent of [ and m. O

2.5 Integration on Her(n) and U(n)

The space of Hermitian matrices Her(n) is a vector-space of real dimension n?,

as may be seen by the isomorphism Her(n) — R"z,

M — 5 = (Mlla ey Mnna ReMlg, ey ReMn,l,n, |I'T'I]\4127 ey |mMn,1,n) .

(2.5.1)
The Hilbert-Schmidt inner product on Her(n) is
Her(n) x Her(n) - C, (M,N)+— Tr(M*N). (2.5.2)
The associated infinitesimal length element is
ds* = Te(dM?) = > dM7}+2 > dReMj, +dImMj,. (2.5.3)
j=1 1<j<k<n

Thus, in the coordinates &, the metric is an n? x n? diagonal matrix whose first
n entries are 1 and all other entries are 2. We apply (2.2.1) to obtain the volume
form on Her(n)

n
DM =2V TTam;; ]  dReMj,dlmMjy. (2.5.4)

j=1 1<j<k<n

The unitary group, U(n) is the group of linear isometries of C™ equipped
with the standard inner-product (z,y) = x*y. Thus, U(n) is equivalent to the
group of matrices U € MS, , such that U*U = I. The inner-product (2.5.3)
and volume form (2.5.4) are invariant under the transformation M — UMU*.

The Lie algebra u(n) is computed as in Section 2.1. We find

u(n) =TiU(n) = {AeMs,, |A=-A"}, TyU(n)={UA,Acun)}.
(2.5.5)
The transformation M +— iM is an isomorphism between Hermitian and anti-
Hermitian matrices. In fact, the map Her(n) — U(n), M ~— ' is onto and
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locally one-to-one. The inner-product A, A — —Tr(AA is invariant under left-
translation. Thus, we obtain the volume form for Haar measure on U(n)

DU =2tV T dA3; ] dRedjrdimAjy. (2.5.6)
j=1 1<j<k<n

However, when viewing diagonalization M +— UAU* as a change of variables
on Her(n), it is necessary to quotient out the following degeneracy: For each
0 = (61,...,0,) € T", the diagonal matrix D = diag (¢'*,...,e""") is unitary
and M = UAU™ if and only if M = UDAD*U*. Thus, for Her(n), the measure
DU must be replaced by Haar measure on the quotient Lie algebra U(n)/T™.
The form of Haar measure on U(n)/T" follows from the following assertion,
which is proved as in Section 2.1.

Lemma 5. Each matriz M € TyHer(n) is of the form
M=U (A + [U*U,A]) U*, AeTy\R", UeTyU(n),diagl)=0. (2.5.7)

The matrices diag(A) and [U*U, A] are orthogonal under the inner-product (2.5.2).

Thus, the volume form on the quotient U(n)/T™ is locally equivalent to a
volume form on the subspace of Her(n) consisting of matrices with zero diagonal:

DU =2"""D72 T dRedj) dimAjy. (2.5.8)

1<j<k<n

2.6 Integration on Quart(n) and USp(n)
The field of quaternions, H, is the linear space
T =co+cre; +coes+c3e3, ¢ €R,7=0,1,2,3, (2.6.1)
equipped with the non-commutative rules of multiplication
e =e3=¢3 =erege3 = —1. (2.6.2)

These rules ensure that the product of any two quaternions is again a quaternion.
Each z € H has a complex conjugate T = ¢y — c1e1 — cae2 — c3es, and its absolute
value |z| is determined by

|x‘2 :.’i‘x:C(Q)—i—C%‘i‘CS‘FCa (263)

Each non-zero x € H has a multiplicative inverse 1/x = z/|z|?. Thus, H is
indeed a field.

The normed linear vector space H" consists of vectors = (1, ..., 2,)’ with
inner product (z,y) = Z?:l z;y;. The adjoint, MT of a linear transformation
M : H™ — H"™ is defined by the inner-product

(MTz,y) := (x, My). (2.6.4)
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It follows that the entries of M1 are My, = My;. We say that an operator is self-
adjoint if M = MT. It is anti self-adjoint if M = —MT. The space of self-adjoint
operators is denoted Quart(n). We equip this space with the Hilbert-Schmidt
norm as before.

The group USp(n) is the set of linear transformations of H™ that preserve
this inner product. We thus require that for each z,y € H"

(z,y) = (Uz,Uy) = (U'Uz,y). (2.6.5)

Thus, USp(n) is equivalent to U € M. such that UTU = I. As for U(n) we
find that its Lie algebra usp(n) is the space of anti self-adjoint matrices. The
inner-product on usp(n) and Haar measure are defined exactly as in Section 2.5,

as is the analogue of Lemma 5 and the Weyl formula.

2.7 Exercises

1. Show that
1 |
A e An
A(A) =det | . . . (2.7.1)
Vi Ant

2. The Pauli matrices,

0 1 0 — 1 0
0'1:<1 O), 02:<i 0), O'3=<O _1>, (272)

allow a representation of the quarternions in terms of Hermitian matrices.

(a) Show that the Pauli matrices together with the identity matrix span Her(2).
(b) Show that the matrices {io1,i09,i05} form a basis of su(2). (This is the
subalgebra of u(2) consisting of trace-free matrices).

(c) Verify that if ¢; = io;, the rules (2.6.2) hold (replace 1 by I5).

8. The canomnical symplectic matriz of size 2n x 2n denoted J,, or simply J, is

the matrix
0 I
J = ( I o0 ) , (2.7.3)

where 0 and I denote the n xn zero and identity matrices. The symplectic group
Sp(2n,R) (not to be confused with the unitary symplectic group USp(n)!) is

Sp(2n,R) = {SeM;,, [STIS=J}. (2.7.4)

Verify that Sp(2n,R) is a group and compute its Lie algebra sp(2n,R).

4. Use the Gaussian integral

||
/e 2 dxy...dz,.
n
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to compute the n — 1-dimensional volume w,,_; of the unit sphere S"~!. Deter-
mine the asymptotic behavior of w,_1 as n — oc.

Hint: Do the integral two ways— once in Cartesian coordinates, and once in
polar coordinates.

5. Assume given a C! function f : (a,b) — R, and extend it to a function
f:Symm(n) — Symm(n) as in (2.4.1). Compute the Jacobian of this transfor-
mation. Apply this formula to the function f(x) = €** to compute the analogue
of Weyl’s formula on U(n) (note that each U € U(n) is of the form e for some
M € Her(n)).

6. Prove Lemma 4.

7. Assume f: R — (0,00) satisfies the functional equation

flx+y) =f@)f(y), zyeR (2.7.5)

It is easy to check that for each a € R functions of the form f(z) = e
solve (2.7.5). Show that these are the only solutions to (2.7.5) assuming only
that f is continuous. (Do not assume that f is differentiable).

Remark 17. The use of row operations in Problem (1) underlies the intro-
duction of orthogonal polynomials. Problems (2) and (3) may be combined to
show that Sp(2n,C) NU(n) = USp(n). The approach in Problem (4) yields
the volume of O(n), U(n) and USp(n) when applied to GOE, GUE and GSE.
The assumptions of Problem (7) may be weakened further — measurability is
enough! You could try to develop a similar approach for the functional equation
implicit in the proof of Theorem 16. That is, can you establish a stronger form
of Theorem 16 that does not assume differentiability ?

5. Every V € U(n) is of the form V = exp(iM) for M € Her(n) (you can as-
sume this fact, but try and prove it). Thus, show that V = Udiag(e®*,. .., e )U*
for real numbers a, ..., a;,. Combine this with problem (4) to derive
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CHAPTER 2. INTEGRATION ON SPACES OF MATRICES



Chapter 3

Jacobil matrices and
tridiagonal ensembles

3.1 Jacobi ensembles

The space of real n x n tridiagonal matrices is denoted Tridiag(n). A typical
matrix in Tridiag(n) is written

aq bl 0
b1 a9 bg

T=| 0 by a3 - 0 : (3.1.1)
0 0 bn—l Qp

Jacobi matrices, and their closure within the space Tridiag(n) are the manifolds

Jac(n) {T € Tridiag(n) | b; > 0,1 <j <n}, (3.1.2)

Jac(n) = {T € Tridiag(n)|b; >0,1<j<n}.

Jacobi matrices, or more generally Jacobi operators, are of fundamental impor-
tance in spectral theory. They also play an important role in approximation
theory, the theory of orthogonal polynomials, and in numerical linear algebra.
An essential step in the symmetric eigenvalue problem is the reduction of a full
symmetric matrix to an isospectral tridiagonal matrix (tridiagonalization) by
a sequence of orthogonal reflections. Under this procedure, the Gaussian en-
sembles push forward to ensembles of tridiagonal matrices whose laws have the
following simple description.

Definition 18 (Dumitriu-Edelman [4]). For each 8 > 0, the Hermite(3) ensem-
ble consists of T' € Tridiag(n) such that ap, 1 < k < n, are iid normal random
variables with mean zero and variance 3, and by, 1 < k < n—1 are independent
Xk random variables.

31
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The point here is that while the Hermite(3) ensembles are the push-forwards
of the Gaussian ensembles when 8 = 1, 2 or 4, they interpolate Dyson’s clas-
sification of ensembles to every 5 > 0. When combined with classical spectral
theory, they provide a distinct, and important, perspective on the limit theorems
of random matrix theory. Our immediate goal in this chapter is the following

Theorem 19. Fiz 8 > 0 and assume T ~ Hermite(3). Then the marginal
distribution of its eigenvalues is

1

2
pHermite(ﬁ)DA: 7 eiTr(A) ‘A(A”B DA. (313)

n)
The chapter concludes with a more refined version of Theorem 19 that in-
cludes the distribution of the spectral measure of matrices T ~ Hermite(0).

3.2 Householder tridiagonalization on Symm(n)

Each M € Symm(n) may be diagonalized M = QAQ™. However, the computa-
tion of A depends on the solvability of the characteristic polynomial det(zl —
M) = 0. For n > 5, there is no general closed form solution for the charac-
teristic polynomial. ! Nevertheless, every matrix always admits the following
reduction.

Theorem 20. For every M € Symm(n) there exists a tridiagonal matriz T and
Q € O(n) such that
M =QTQ". (3.2.1)

The transformation (3.2.1) is given by a change of variables
Her(n) — Jac(n) x (S"72 x 8" 7% x...S"). (3.2.2)

under which the volume form DM on Symm(n) transforms as follows:

n n—1 n—2
DM = Cy, [[ da; TT vp*"dbx [ dew (3.2.3)
k=1 =1

j=1

where dw; denotes uniform measure on the sphere S', and C, is a universal
constant.

Remark 21. The space Tridiag(n) clearly inherits the inner-product Tr(7?) =
2;21 a? +2 Z;le b3 from Symm(n). However, the volume form obtained from
this metric is not the same as the volume form in (3.3.3) above.

Remark 22. (For algebraists!) The proof will also show that 7" and ¢ may be
computed with a finite number of the following algebraic operations: addition,
multiplication and square-roots.

IPractical numerical schemes for eigenvalue decomposition are unaffected by this algebraic
obstruction, since they rely on iteration.
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Definition 23. Suppose v € R™ is a unit vector. The Householder reflection

in v is the matrix
P, =1-2wT. (3.2.4)

Lemma 6. The matriz P, has the following properties:
(a) P2 =1.
(b) P, € O(n).

Proof. Decompose R™ into the orthogonal subspaces span{v} and v*. Then
Py = —v and P,|,. = I. Thus, P? = I. This proves (a). By construction

v

PT = P,. Thus, by (a), we also have PT P, = I. O

Proof of Theorem 20. 1. The proof relies on a sequence of Householder reflec-
tions that progressively introduce zeros in a sequence of matrices similar to M.
The first such matrix is the following. Let w; = (Ma1, ..., My1)T € R*! de-
note the last n — 1 entries of the first column of M. If the first coordinate of w;
is non-negative, and all other coordinates vanish there is nothing to do. If not,
we may choose a Householder reflection (in R"~!) that maps w; to \w1|e§”_1)
(here the superscript n— 1 denotes that we consider the basis vector e; € R"71).
Geometrically, such a reflection is obtained by choosing v1 to be the unit vector

)

that lies in between w; and |w1|e§”‘1 . Explicitly, we set

- e v
v = |w1|egn b _ wy, V] = ﬁ, P = P,,. (3.2.5)

By Lemma 6, P(Y) € O(n — 1) is a Householder reflection that maps w; to

|w\e§n71). It may be extended to a Householder reflection in O(n), by defining
1 0
QW = < 0 PO ) : (3.2.6)
Then the matrix
M = QW (Qu))T — oW oW, (3.2.7)
is similar to M. By construction, the first row of M) is (M, |w],0,...,0),
and the first column is (M, |w:],0,...,0)7. Thus, we may write
n—1
MO = T ) |w1|(eg ))T ’ (3.2.8)
funlef™™ NG

where T() is a (trivial) 1 x 1 tridiagonal matrix and N € Symm(n — 1).
2. The proof is completed by induction. Assume that M*) € Symm(n)

has the form ( :
TR (e )T
M®F) = . kA1 : (3.2.9)
( el NK))
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where T®) ¢ Tridiag(k) and N®*) € Symm(n — k), 1 < k < n — 1. We apply
the procedure of step 1 to N*) to obtain a vector vy, a Householder reflection
pk) = P,,, and an orthogonal transformation of M®),

I, O
QW = ( 0 p® ) €0(n), M*HH = QW M®Q®. (3.2.10)
Note that Q*) leaves the first k& rows and columns of M®*) unchanged, thus
it does not destroy the tridiagonal structure of the first k£ rows and columns.
Thus, M*+1) has the form (3.2.9) with the index k replaced by k + 1.

The procedure terminates when k = n — 2, and yields

M=QTQ", Q=" 2Q"3 . QW. (3.2.11)

3. Tt is simplest to prove (3.3.3) probabilistically. Informally, the k-th
step of the procedure above is a change to polar coordinates in R”~*, with
br > 0 playing the role of the radius, and the factor bszfldbkdwn,l,k being the
pushforward of Lebesgue measure in R"~* to polar coordinates. More precisely,
assume that M ~ GOE. We note that the first step of the above procedure
leaves M7; alone. Thus, a; = My; ~ N(0,1). Moreover, the term b; is the
length of the first column of M, not including the diagonal term Mi;. Since a X2,
random variable has the same law as the length of a vector in R whose entries
are iid A(0, 1) random variables, we see that by ~ x,,_1. Further, the vector w;
is uniformly distributed on S™~2. We next observe that by the independence and
invariance of the Gaussian ensembles, the matrix N in (3.2.8) ~ GOE(n —1).
Indeed, M, the lower-right (n — 1) x (n — 1) block of M, is a GOE(n — 1)
matrix, and the reflection P is independent of M;. Thus, NU = p() pf; p()
has law GOE(n — 1). Thus, as ~ N(0,1) and by ~ xp,—2. An obvious induction
now shows that if M ~ GOE then T ~ Hermite(1), and the vectors wy, are
uniformly distributed on S”~17% 1 < k < n — 2. Comparing the two laws, we
find (with g =1)

o2 o2 n—1 n—2
e DM = Cem ™ day [ by by [ den (3.2.12)
k=1 =1
The exponential weights cancel, and yield the Jacobian formula (3.3.3). O

3.3 Tridiagonalization on Her(n) and Quart(n)
Theorem 20 admits a natural extension to Her(n) and Quart(n).

Theorem 24. For every M € Her(n) (resp. Quart(n)) there exists a tridiagonal
matriz T € Jac(n) and Q € U(n) (resp. USp(n)) such that

M = QTQ*. (3.3.1)
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The transformation (3.3.1) is given by a change of variables
Her(n) — Jac(n) x (Sg™2 x Sp™® x ... S), (3.3.2)

where S]f; denotes the unit sphere in F', with F = C (resp. H). The volume form
DM on Her(n) (resp. Quart(n)) transforms as follows:

n n—1 n—2
DM = Cy, [ [ da; T b~ "dbe [] de (3.3.3)
j=1 k=1 =1

where dw; denotes uniform measure on the sphere S]%, and C,, is a universal
constant.

Remark 25. Note that the matrix T is always real, whereas the entries of M
and @ are in C or H.

The proof of Theorem 24 is in the same vein as that of Theorem 20. It is
only necessary to replace the Householder projections in O(n) with projections
in U(n) and USp(n). For example, given v € C" with |v| = 1, the associ-
ated Householder projection in U(n) is P, = I — vv*. Step 3 in the proof of
Theorem 24 also explains the role of the parameter § in the definition of the
Hermite-3 ensembles. The k-th step of the Householder transformation maps a
standard Gaussian vector in C"* to its magnitude and direction. The law of
the magnitude is now xa(n—x) (Or Xg(n—k) With # = 2). Similarly, the direction
of the Gaussian vector is uniformly distributed on the unit sphere in C*~*~1.

3.4 Inverse spectral theory for Jacobi matrices

Bounded Jacobi operators admit a complete and beautiful spectral theory that
is intimately tied to orthogonal polynomials and continued fractions. We first
introduce this theory for finite Jacobi matrices, since it underlies Theorem 19.
As usual, write

T =UAUT, UeO(n), (3.4.1)

for the diagonalization of T'. We also define the Weyl chamber
Wr={AeR" |\ <X <...< A\ }. (3.4.2)
For each A € W" | its isospectral manifold is the set
My = {T € Jac(n) | T = UAU", for some U € O(n) }. (3.4.3)

The following theorem shows that the interior of the isospectral manifold is
diffeomorphic to the positive orthant of the unit sphere.

Theorem 26. The spectral mapping
S:lJac(n) = W' x ST, T (A, U ey), (3.4.4)

s an analytic diffeomorphism.
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The isospectral manifold admits several distinct parametrizations. First, it
is clear that we may use the simplex Y, instead of the orthant Sfﬁl. Indeed,
let w = UTe; denote the first row of the matrix of eigenvectors and define
¢j =ui, 1 <k <mn. SinceU € O(n), Y p_,ui = 1. Thus, u € S ! and
¢ € ¥,. Lemma 7 below shows that u; can be chosen to be strictly positive,
which allows us to restrict attention to the positive orthant S_’fl

Theorem 26 may also be viewed as a mapping to the spectral measure

T p=> uldy, =3 c;dy,. (3.4.5)
j=1 j=1

It is often more convenient to work with the Cauchy transform of the spectral
measure, . Define the 7-function,

n 2
w—T1(z) = / L wu(dz) = i , 2z€C\{\,....\} (3.4.6)
RT— 2 yeec Aj—z
The inverse 7 — g is obtained by computing the poles and residues of 7.
The 7-function may also be written as a ratio of polynomials of degree n — 1
and n respectively. Let T} € Jac(k) denote the lower-right k x k submatrix of
T, 1<k <n. It follows from Cramer’s rule that

n—1,4(n—1)
() = (T — o) tey = QT =D)Ly = 2)
det(T — 2I) H?:I(/\g,”) —2)

. (347)

where A®) denotes the diagonal matrix of eigenvalues of T}, and A = A. We
will show that the ordered eigenvalues of T,,_1 and T,, interlace, i.e.

A AT A e A ) (3.4.8)

Thus, interlacing sequences provide another parametrization of Jac(n). A conve-
nient visal description of interlacing sequences, called diagrams, was introduced
by Kerov and Vershik [13]. The importance of these alternate parametrizations
(spectral measures, 7-function, diagrams) is that they provide a transparent
framework for the analysis of the limit n — oo.

The surprising aspect of Theorem 3.4.4 is that the spectral data (A, u) pro-
vides enough information to reconstruct the matrix T'. There are two reconstruc-
tion procedures. The first involves orthogonal polynomials, the second uses the
theory of continued fractions. We explain the use of orthogonal polynomials
below, and outline the theory of continued fractions in the exercises. In order
to develop these procedures, it is first necessary to establish basic properties of
the eigenvalues of Jacobi matrices.

Lemma 7. Assume T € Jac(n). Then

1. The first entry of each non-zero eigenvector is non-zero. In particular, we
may normalize the eigenvectors to ensure up, >0 for 1 <k <mn.
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2. The eigenvalues of T are distinct.

Proof. We write the eigenvalue equation Tv = zv in coordinates.
bp_1vp_1 + (ak — Z) Vg + bkl}k+1 =0, 1<k<n, (349)

with the convention by = b, = 0. Since the off-diagonal terms by are strictly
positive, we may solve this linear system recursively. Given vy, we find

v1(z — ay) U1

. v3=——— ((a2 — 2)(a1 — 2) — b}), etc. (3.4.10)
by bibo

Vg =
Thus, v = 0 € R" if v; = 0. Further, the solution space to the eigenvalue

equation Tv = A\v has dimension at most 1. O

Lemma 8. The characteristic polynomials di(z) = det(zl — Ty) satisfy the
recurrence relations

dipi1(2) = (2 — ap_p)dp(2) =02 _pdp_1(2), 1<k<n-—1, (3.4.11)
with the initial condition do(z) =1 and the convention b, = 0.

Proof. Expand the determinant det(zI — T} ) about the k-th row, and compute
the minors associated to z — a,,—; and b,,_j. O

Lemma 9. The eigenvalues of Ty, and Tyy1 interlace, 1 < k <n — 1.
Proof. We consider the T-functions for the minors T},

_ det(Th —=I)  di(2)
TK(2) = (T =20~ dea(e) (3.4.12)

By the recurrence relation (3.4.11), we have

1

— = Zz—ay,_ 2 _1(2). 4.1
) z— Gp—j + b5 _1T-1(2) (3.4.13)

We claim that on the real line, 7 (z) is strictly increasing between the zeros
of 7. Indeed, it is clear that 7i(z) = (a,, — x)~! has this property, and upon
differentiating (3.4.13) we find that

i277; =1+b) 7y >0,
Tk
except at poles. The claim follows by induction.

Since 7y, is strictly increasing between poles, by the intermediate value theo-
rem, it has exactly one zero between any two poles. By (3.4.12), the zeros of 7y
are the eigenvalues of T}, and the poles of 74 are the eigenvalues of Tx1. Thus,
they interlace. O
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A remarkable feature of the spectral theory of Jacobi matrices is that the
orthogonal polynomials associated to the spectral measure u(7") may be used to
reconstruct 7. In order to state this assertion precisely, let us recall some basic
facts about orthogonal polynomials. Assume given a probability measure p on
R that has finite-moments of all orders, i.e.,

/ |z|¥ p(de) < oo, o> 0. (3.4.14)
R

We may apply the Gram-Schmidt procedure to the monomials {z*}£°, to con-
struct a sequence of polynomials that are orthogonal in L?(R, ). There are two
standard normalizations that one may adopt.

Orthonormal polynomials, denoted {pg}32 ,, have the property that py is
of degree k, k =0,1,2,..., and

/R P (@)pi(2) pld) = B (3.4.15)

Monic polynomials, denoted {m}72, have the property that my(z) is of
degree k and the coefficient of z* is 1. Further,

/ka(x)m () p(dz) =0, Ek#L (3.4.16)

Lemma 10 (Three-term recurrence for orthogonal polynomials). Given (A, u) €
W x ST et p(Au) = Y 0_, uda,. Then the associated monic orthogonal
polynomials {my}7_,, satisfy the three-term recurrence (3.4.17)

me(2) = (2 — ap)mp_1(2) — b1 Th_2(2), 2<k<n, (3.4.17)
where the coefficients ay and by are given by

:M b2 :fRCUWqu(m)u(da;)
Jami@) pldz)” TN fom (o) plda)

and by = 0. The recurrence (3.4.18) defines a Jacobi matriz T ().

ak k=1,...,K, (3.4.18)

Remark 27. If y is not a discrete measure of the form (3.4.5), but has bounded
support, the recurrence (3.4.17) defines a bounded Jacobi operator on [2(C).

Proof. Given any p as in (3.4.14), we obtain the sequence {7} using the Gram-
Schmidt procedure. When p is of the form (3.4.5), the vector space L*(R, 1)
has dimension n and the Gram-Schmidt procedure yields an orthogonal basis
{0, 71, ..., Tn1} for L*(R, ).

The three-term recurrence for the orthogonal polynomials is obtained as
follows. Since a7 (x) is a polynomial of degree k 4+ 1 it can be expressed as a
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: . k41 . .
linear combination zm(x) = jiO ¢;,xm;(x). Since the 7; are monic, we must

have ci41,, = 1. Moreover, for 3 =0,...,k —2

[ om@m @) utdo) = [ mufe)om; @) ude) = o

R

since z7; lies in the span of {mq,...,mx—1}. Thus, ¢j =0 for j =0,...,k—2
and we find

:mrk(fc) = 71'k+1($) + Ck7k7rk(x) + Ck_Lk’/Tk_l((ﬂ). (3419)

It remains to show that c;_1 5 > 0. By orthogonality, fR 27 (2) 41 () p(dz) =
Jg T41 () p(dx). Thus, ¢ rx—1 > 0 for all k such that 7,_1(z) does not vanish
in L2(R, p). This is (3.4.17) aside from a change in notation. O

Proof of Theorem 26. We have defined a forward map T +— u(T') as follows.

The matrix T defines a 7-function 7(z) = el (T — zI)~te;, which is expressed

as a ratio of characteristic polynomials in (3.4.7). The poles of 7(z) are the

eigenvalues of 7. The norming constrants are the residues at the poles, and are
given by )
2 dnfl(Ak

ug = T 0n) 1<k<n. (3.4.20)

The inverse map p — T'(p) is given by Lemma 10. The orthogonal polynomials

defined by p satisfy a three-term recurrence whose coefficients determine 7.
We only need to show that the map pu +— T'(u) — pu(T(p)) is the identity.
Let 11 2 (A, u) be given and define T'(u) by the recurrence relations. We will

show that

eT(T — 2D ey :/Rx ! p(dx) :Z Y, (3.4.21)

We expand both sides of this equation for large z, to see that all we have to
establish is the relation

eIThe, = / 2 u(dr), 0<k<n-—1 (3.4.22)
R

The remainder of the proof is left as an exercise to the reader. O

Remark 28. Observe that the recurrence relation (3.4.17) may be rewritten as
the matrix equation,

a1 — 2 1 0 0
b3 az — z 1 0 7o(2) 0
m1(2) 0
0 b3 asz — 2 0 . = )
: : .. . 1 Wk—.l(z) —771;(2’)
0 0 cen B2 ap—z

(3.4.23)
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Since mo(z) = 1, each zero of m,(z) is an eigenvalue of the matrix above. Thus,
mi(2) = det(zI — T}) where Ty, denotes the upper-left k x k submatrix of T
(compare with T}, and di(z) = det(zI — T})).

Thus, given u, the entries of T' are obtained from “top to bottom”. However,
given T, the 7-function is the limit of 7-functions —dj(z)/dg+1(z) computed
‘bottom-to-top’.

3.5 Jacobians for tridiagonal ensembles

We can now combine Theorem 26 with the definition of Hermite-3 ensembles
to state a refined version of Theorem 19.

Theorem 29. For each 8 > 0, the law of the Hermite-3 ensembles in spectral
variables (A, u) € W™ x Sfﬁ_l is given by the density

1 Borpia2 .
PHermite (A, u) = Tg <€_4TI(A )|A(A)|ﬁDA> H U}B duj | . (35.1)
n, j=1

In particular, A and u are independent.

Theorem 29 follows from a computation of the Jacobian of the spectral map
S :Jac(n) — W x STL

Theorem 30. The volume forms on Jac(n) and W™ x S~ are related by

n n—1 n

DT =[] da; [T o5 % " dbr = Co AN DA T u; du;. (3.5.2)
j=1 k=1 k=1

where C,, 1s a universal constant.

Remark 31. We have suppressed the explicit form of the universal constants
in the statement of the lemma to focus on the marginals on W™ and S_’f__l re-
spectively. The computation of the constants is an interesting exercise (see [4]).

While Theorem 30 is an analytic/geometric assertion, the simplest proof uses
probabilistic reasoning, as in step 3 of the proof of Theorem 20. Since we have
computed the Jacobian for the diagonalizing map Symm(n) — R"x0O(n) (Weyl’s
formula) and the tridiagonalizing map Symm(n) — Jac(n) (Theorem 20), the
ratio of these Jacobians may be used to compute the Jacobian of the spectral
map Jac(n) — W™ x S77'. The main point is that by the O(n) invariance
of GOE, the top row of the eigenvector matrix must be uniformly distributed
on S~ ! and is independent of A. This gives the term [[,_, u;jdu; in equa-
tion (3.5.2). As Dumitriu and Edelman remark, this is a ‘true random matrix
theory’ calculation. Another approach to (3.5.2) uses symplectic geometry.
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Lemma 11 (Vandermonde determinant in (a,b) coordinates).

n—1 bk

AA) = H()‘j —Ag) = Hflu’]

j<k

(3.5.3)

Proof. 1. Recall that A() denotes the diagonal matrix of eigenvalues of T} and
that m(z) = H;Zl( A;l)) Therefore, we have the identity

-1

ﬁ ]:[ (Ag” —)\,(f’l)’ - f[m_l (Ag.”) -
j=1k=1 j=1

-1

H m (/\,(lel)) .

k=1

(3.5.4)

Since m;_1 and m; are related through the three-term recurrence

m(z) = (x — a)m-1(z) — b _ym_a(x),

we have

A =TT mea ()

-2
=t O [ mea (A
j=1

We apply this identity repeatedly, starting with [ = n to obtain

nl)

Q(n 1) Hﬂn— )\(n 2)

_ b2(n l)b n2 2)

— n—1

-3 2(n—k—1
HWH(A; D= =TTu""".
k=1 k=1

2. The coefficients u? are the residue of 7,(2) at the poles \;, i.e.

_ '/Tn—l()\k)

1<k<n. 5.
o) n (3.5.5)

Observe also that
() = [Ty = M), and T 7, (00) = A(A) (3.5.6)
k=1

Therefore,

Huf: A E H\wn L)) A(/\) . (3.5.7)
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Proof of Theorem 30. 1. Our goal is to compute the Jacobian of the spectral
mapping S,

_ 9(T(a,b))
DT = WDADU, (3.5.8)

where Du = [[’_, du; . Rather than compute the change of variables directly,

Jj=1
we will compute the push-forward of GOE onto Jac(n) and W™ x Si71 sepa-
rately, and obtain the Jacobian above.

2. Consider the push-forward of GOE under the map M +— (A, u), where
M = UAUT is the diagonalization of M. Since A and the matrix of eigenvalues
U are independent, A and v = UTe; are independent. Since U is distributed
according to Haar measure on O(n), the vector w is uniformly distributed on

S™! and the push-forward of GOE is the measure
p(A,u)DADu = cne*%Tr(AfA(A)DADu. (3.5.9)

3. Next consider the push-forward of GOE under the map M +— T, where
M = QT QT denotes the tridiagonalization of M. As we have seen in the proof
of Theorem 20, T" and U are independent, and the marginal distribution of T is
given by

B(T) DT = Cpe~ 21T Hda] H bk dby.. (3.5.10)
j=1

4. Since T € Jac(n) and (A,u) € W™ x S~ are in bijection, we have

DT

p(A,u) = p(T'(A, U))m-

(3.5.11)

We compare the expressions in (3.5.9) and (3.5.10) and use Lemma 11 to obtain

DT _ Cullizybr
= 3.5.12
D(A,u) Cn szl uj ( )

The constants are computed in [4]. O

Proof of Theorem 29. The law of We change variables using the spectral map-
ping and Theorem 30 to obtain the following identity for the law of the Hermite—
[ ensembles

Cyp g™ TT(T?) Hbﬁ(” "=l pr (3.5.13)
k=1
- n,ﬁ( A AN D ) Du Huﬁ Y. (35.14)

Since the distribution factors, A and u are independent with the laws stated in
Theorem 29. O
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3.6 Exercises

1. Write a numerical code to sample matrices from both GOE and the Hermite—
1 ensemble. Verify numerically that a suitably normalized density of eigenvalues
for the GOE matrix approaches the semicircle law as n increases (n = 100 should
be ample). Is the same true for the Hermite — 1 ensemble? Why or why not?

2. Consider the tridiagonal matrix T € Jac(n) that has entries a; = 0,1 < j <
n,bkzl,lgkgn—l.

(a) Compute explicitly the spectral measure using Chebyshev polynomials
(compare T with the recurrence relations for the Chebyshev polynomials).

(b) Plot histograms of two distributions related to T for n = 100: (i) the em-
pirical distribution of eigenvalues ( 2 "7 8y, ); (ii) the spectral density
Sor_,uidy,. Can you identify the limit in (i)?

(This exercise will be relevant for an enumeration problem relating Brownian
excursion to the Riemann-¢ function).

3. Establish uniqueness and smoothness in the proof of Theorem 26.

4. Use equation (3.4.12) to recursively expand 7, as a continued fraction. Com-
bine this with the uniqueness step in Q.2 to deduce an alternative approach to
Theorem 26 that avoids the theory of orthogonal polynomials.

5. The following property of the function —z~? is relevant in the continued frac-
tion scheme. Symmetric matrices have a partial order: Given A, B € Symm(n)
we say that A > B if uT Au > u” Bu for every u € R™. Suppose A > B > 0.
Show that —A~1 > —B~1.

6. This problem is a follow-up to exercise 5 in HW 1. Given a map f as in that
exercise, compute an (explicit) expression for its derivative Df.

7. Compute the following normalization constants:

(a) The normalization constants Z, g in the standard definitions of GOE,

8 )
GUE and GSE with exponential weight e~ 1),
(b) The constant C,, 5 in (3.5.13).

(¢) The constant C,, in the Jacobian for ensembles (3.3.3) (compare with your
calculation of the volume of the unit sphere in HW1).

8. The proofs of Dumitriu and Edelman finesse the following issue: given
T € Jac(n) it requires some care to find a decomposition for the tangent space
TrJac(n), especially the isospectral manifold, My , that is analogous to Lemma
2. As in that lemma, we may split TrJac(n) into orthogonal subspaces that
correspond to diagonal matrices A and QTQ ¢ o(n). However, while each
QTQ € o(n) generates a curve in TrSymm(n) , not all QT Q give rise to curves
in TrJac(n). Verify this. Explore this issue further by trying to find a basis for
the isospectral manifold Mt (see equation (3.4.3)).
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3.7 Exercises

3.8 Notes

To include in improved version.
1. Tridiagonal matrices as weights in enumerations problems.

2. Example: Chebyshev polynomials, Brownian excursion as a scaling limit
of Dyck paths and relation with ¢-function.



Chapter 4

Determinantal formulas:

From Vandermonde to
Fredholm

Our purpose in this section is to present the elegant determinantal formulas of
Dyson, Gaudin and Mehta for invariant matrix ensembles on Her(n). These
formulas combine three distinct elements: (i) the Weyl formula on Her(n); (ii)
the theory of orthogonal polynomials; (iii) Fredholm determinants. We first
introduce these formulas for GUE. We then use the asymptotic properties of
Hermite polynomials to establish their scaling limits (Theorem 2, Theorem 5
and Theorem 8). While the eigenvalues of GOE and GSE do not have a deter-
minantal structure, they have a related Pfaffian structure, which is described in
a later chapter.

4.1 Probabilities as determinants

In what follows we will adopt the following notation. In order to avoid confusion,
we let x = (z1,...,2,) € R"™ denote the unordered eigenvalues of M, and
A= (A1,...,An) € W™ denote the ordered eigenvalues of M. The probability
density of z, denoted P,(x1,...,x,), is obtained from the Weyl formula.

1 1
P™(z1,... 2,) = —A(x)2e” 3 Zh=1 7, (4.1.1)
Zn,
Observe that P(") is invariant under permutations (21, . ..,%,) — (T, ..., T4, ),

o € S,. In practice, our interest lies not in the joint density of all n eigenval-
ues, but statistics such as the law of the largest eigenvalue. Thus, what is
required is an analytical technique to extract such information from (4.1.1) by
integrating out degrees of freedom to obtain information on the joint distribu-
tion of m-eigenvalues, 1 < m < n. More precisely, given m and a Borel function
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f:R™ — R that is symmetric under permutations,

flxe,...yzm) = f(@oy, -, T0,,), O E S, (4.1.2)
we consider random variables of the type
Ny = > flxg . xs,). (4.1.3)

(J1,--3dm ) E[1,n]™, jrdistinct
Expectations of random variables of the form (4.1.3) are given by
E(Np)= [ f(x1,. 2m) R (21, ... 2p) day . .. d2p, (4.1.4)
Rm
where we have defined the m-point correlation function

R (xy, ... 2m) (4.1.5)

n!

:m/ P(”)(xl,...@m,xmﬂ,...,xn)dme...dxm.

The combinatorial factor in (4.1.3) arises as follows. There are (') ways of
picking subsets of m distinct indices from [1,n]. On the other hand,

Rﬁ;? (T1,...,xm) = ng) (Toys Togy -3 Xo,, )y O € S (4.1.6)

and the integral on the right hand side of (4.1.6) appears m! times when in-
tegrating over the complementary n — m variables for each choice of indices

{j1,---,Jm} € [1,n]™.
Theorem 32. The joint density and m-point functions for GUE(n) are

n 1 n
POz, ) = — det (K< >(xj,xk)1§j,k§n), (4.1.7)
RO (21, ) = det (K(n)(xjvxk)lﬁj,kﬁm> ; (4.1.8)

where the integral kernel K™ is defined by the Hermite wave functions

Kalty) = 3 tu()ey). (41.9)

k=0

Remark 33. The kernel K,, may be simplified using identities for the Hermite
polynomials. The Christoffel-Darboux formula (B.2.6) allows us to write

Ko(2,y) = \/ﬁw"(x)wnfl(y; = zny)wnl(y) , (4.1.10)
Further, eliminating v,,_; with the identity (B.2.4) yields

Kn(z,y) = %(xm;(y;__?(m)w"'(y) - %wn(x)wn(y). (4.1.11)
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A particular consequence of Theorem 32 is the following fundamental for-
mula. Assume S is a bounded Borel set, let 1 denote its indicator function, and
let A,,(S) denote the probability that the set S contains precisely m eigenvalues
for M € GUE(n).

Theorem 34. The generating function of {An(S)}55_, is given by the formula
det ( — 2K ")15) Z An(S) 1 -2, zeC, (4.1.12)

where det (I - zK(”)IS) denotes the Fredholm determinant of the kernel

K™M1g(z,y) Z 1s(x U (y)Ls(y)- (4.1.13)

Theorem 32 and Theorem 34 illustrate the general spirit of determinantal
formulas in random matrix theory. The density of a joint distribution is ex-
pressed as a determinant of an integral operator with finite rank. One may then
use the theory of orthogonal polynomials, in particular, results on the asymp-
totics of orthogonal polynomials, to establish the basic limit theorems outlined
in Chapter 1 (see Theorems 35 and Theorem 36 below).

Appendices B and C provide brief introductions to Hermite polynomials and
Fredholm determinants respectively.

4.2 The m-point correlation function

Proof of Theorem 32. We form linear combinations of the rows of the Vander-
monde matrix to obtain

bo(w1) bo(xz2) ... bo(zn)...

Az) = det []1(:331) [J1(:332) e hl(xtl) e . (4.2.1)

b1 (21) Booa(@2) oo Boi(@a).

The calculations above would apply to any set of monic polynomials of degree
0,1,2,...,n — 1. The Hermite polynomials and wave functions are relevant
because they satisfy the orthogonality relations

/h; )b (z dfc = 0;,k!, (4.2.2)

and allow the inclusion of an exponential weight. Precisely, the Hermite wave-
functions
1 e—xz /4

Ui(z) = ﬁpk(x)w7 (4.2.3)
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satisfy the orthogonality relation
[ vyt ds = a5, (4.2.4)
R

and form a basis for L*(R). Let H denote the matrix with entries Hj), =
Yj_1(xg). It follows from (4.2.1) and (4.2.3) that

=2

e 2 Ax)? =det H> =det H' H = det (K(") (ffj,xkhgj,kgn) , (4.2.5)

using the identity
HTH ZHlelk = Z¢l l'j ’l/)l xk K(")(xj,xk). (426)

Therefore, the joint density P(”)(x) is proportional to det K(™). To determine
the constant of proportionality we evaluate the integral

2
/n det(H)*dx; ...dx, = /n (det [’L/)jfl(‘rkﬂlgj,k-gn) dzy...dzy

= Z sgn(o)sgn(r / H VYo, ~1(xj)r, —1(xj) doy .. . day,

(4.2.7)

sgn H 05T — Z 1{027} =nl.

o, TES,

We combine (4.2.7) and (4.2.6) to obtain the first assertion in Theorem 32:

Il
192}
aQ
5

1
P(n) (xl, cee ,xn) = m det (K(n) (xj, l‘k)1§j7k§n> .

The formulas for the correlation functions may be obtained by induction,
beginning with

R™ (z1,... 2,) = det {K(”) . } . 42.8

(@1, n) = dot [KOojan)] (1.28)

First, the orthonormality relations (4.2.4) imply
/ K™ (z,2) =n, / K™ (2, 2) K™ (2,y) dz = K™ (z,y). (4.2.9)
R R
Assume (4.1.8) holds for an index m + 1 < n. We then have

1
Rgg)(xla-"»xm) = m/Rﬁ:}rl(iﬂl,...,$m7$m+1)dl’m+1
- R

det [KW y ] dap
”—m/m ¢ (@5, ) L < hmpr ComE

1

n—m

Z sgn(o) / K™ (2, 25,) ... K™ (g1, Toiy) ATy
R

0ESm+1
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If 041 = m+ 1 in this sum, then the first equality in (4.2.9) implies

/ K(")(aﬁl, Zgy) K™ (Tmt1, Topr) ATmgr (4.2.10)
R
= nK(")(xhxgl) . K(N)(xm,mgm).

If 041 # m+ 1, there exists j < m and k < m such that o; = m + 1 and
Om+1 = k. We then use the second equality in (4.2.9) to find

/ K™ (21, 20,) - K™ (@41, 2o, y) dZmia (4.2.11)
R
= K(")(acl, 1"03) LK) (Zm» Tor )

where ¢’ is a permutation of {1,...,m} such that o} =k and o] = 0y if | # j.
Each permutation ¢’ € S,,, may come from m permutations o € Sy, 1. Further,
sgn(o’) = —sgn(o) since these permutations differ by a single swap. Therefore,
using equations (4.2.10) and (4.2.11) we have

ot [ apl]_ doms = (oo [ ap)]
-/Re (x5, k) T Tmt1 = (n —m)de (x5, 2K) L<inem

O

4.3 Determinants as generating functions

Proof of Theorem 84. The Fredholm determinant det (I —zK (")1) is an entire
function of z. Thus, equation (4.1.12) is equivalent to the statement

An(S) = ~ <—i)mdet (I—zK(”)1>

- (4.3.1)

z=1

We first prove formula (4.3.1) in the case m = 0. Let 1 denote the charac-
teristic function of the set S. The probability that all eigenvalues lie outside S
is given by

/’ ﬁ(1_1(xj)) P (zy,... x,)dey ... dxy, (4.3.2)

3

=) (-1) i(1(x1), ..o, ()P (21, 2y) day - dy,
=0 /”p

where p}l(aﬁl, ..., Ty) is the j-th symmetric function in n variables. For example,

n n n
pia)=1, p@)=) w, )= war, i) =]]a
j=1 j=1

j<k
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Since each term in p} consists of j products of the form 1(z,;) for some per-

mutation o € S,,, we integrate over the remaining n — j variables, and use the

(n)

permutation invariance of R;™ to obtain

/n P?(l(azl),...,1(zn))p(n)(x17 o xy)dry .. dxy, (4.3.3)
_(n=gt(n . 2R (2 o) da -
T pl (j)/le( 1) 1 j)Rj (1,...,xj)dxy ... dx;j,

1
= ﬁ det (K(n)l(itk,xl)lngSJ) dxy .. dx] (434)
- JRI

In the last equality, we have used (4.1.8) and multiplied the kernel on the left
and right by the diagonal matrix D = diag(1(z1),...,1(z;)), so that

L(z1)... Ua)) R (e, ... 25) = 12(21) ... 12(25) R (21, .., 2))

= det (D(zk) K (xk, 21)D(21)1<k,1<;) = det (K(")l(ffk, xz)lsmsy) )

where K ("1 is defined in (4.1.13). We now combine (4.3.2) and (4.3.4) to obtain

n

> (-1y /R pi(1(x1), .., (@) P (2, ... 2,) oy . . day,

=0
=det(I — K™1),  (4.3.5)

using the infinite series (C.1.8) for the Fredholm determinant (only n terms are
non-zero, since K™ has rank n).

We now turn to the case m > 1. Equation (4.3.2) must now be modified to
allow exactly m eigenvalues within S and n — m eigenvalues ouside S. Since
there are (:1) ways of selecting m distinct eigenvalues, we find

?
:

n(S) = (4.3.6)
n)/ Hl xj) H (1-1 xm+k)P( )(asl,.. X)) day ... day,
m R™

J=1 k=1

) / P (A @mgn), -5 () PO (2, ) day . day,
— .

As in (4.3.3) and (4.3.4) we use the fact that p,~"™ consists of a product of k
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terms all of which integrate to the same value. Thus, the sum above is

n—m m+k
() Zm ( ") [T s pn i
M/ =0 n
1 n—m m+k
=i 2 G [ TR mdon . dra
m. k=0 Rm+k o
LS ()
- Ll det (K1(zp, Tq)1<p.q<mtk) dT1 .. ATy
© k=0 © Rk
1 d\"™"
=\~ ) dett —zK1)|._,. (4.3.7)

In the second equality, we have simplified the combinatorial factors as follows:

In the last line, we have used formula (C.1.11) for the derivative of a Fredholm
determinant. O

4.4 Scaling limits I: the semicircle law

The empirical measure of the eigenvalues

n

1
L, (dx) = - E 0z, (dx) (4.4.1)
k=1
has the expected density
1
EL, (dz) = — K (z,z) dx. (4.4.2)
n

The above expression is somewhat more transparent in its weak form. For every
f € Co(R), we have

E(L,, f) = / F@)R"(z)dz = = / f(z (4.4.3)

by Theorem 32 and equation (4.1.8). The value of the kernel K, on the diago-
nal is determined by the Christoffel-Darboux relation (4.1.10) and L’Hospital’s
lemma:

() = vt (4 (@)n1(2) — Y@}y (1)) (1.4.4)
The scaling limit of EL,, is the semicircle law defined in (1.2.1).

Lemma 12.

nlirr;o TK (zv/n,zv/n) = pec(z), z€R. (4.4.5)

Further, for any € > 0, the convergence is uniform on the set {x ||z — 2| > ¢}.
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Proof. The lemma follows from the Plancherel-Rotach asymptotics for the Her-
mite wave functions (see Cases 1 and 2 and equations (B.4.1)—(B.4.4)) in Ap-
pendix B). Define the rescaled wave functions

\Ijn+17(m) = n%wner(x\/ﬁ)v p= 723 717 0. (446)

We use the identity (B.2.4) to eliminate ¢, and v}, _; from (4.4.4) and find after
a few computations that

1 n—1
%Kn (zvn,zv/n) = U2 _ (z) — 4/ - U, _o(z)¥,(2). (4.4.7)

We now use the asymptotic relations (B.4.2) and (B.4.4) depending on whether
|x| < 2 or |z| > 2. Since the region |z| > 2 corresponds to exponential decay
with a rate proportional to n, we focus on the region |z| < 2. In order to simplify
notation, let

1 T

1
f=n <<,0 ~3 sin2cp> —3¥ (4.4.8)

(This is the argument of the cosine in (B.4.16) when p = —1.) Then (4.4.7) and
(B.4.2) yield

%Kn (zv/n,z/n)

~

(cos? 0 — cos(0 + @) cos(0 — p)) = %\/ 4— 22,

T sin @

using = = 2 cos ¢ and the trigonometric formula cos 2cc = 2 cos? o« — 1. A similar
calculation with (B.4.4) shows that the limit vanishes outside the set |z| > 2.
The assertion of uniformity in the convergence follows from the assertion of
uniform convergence in the Plancherel-Rotach asymptotics. O

4.5 Scaling limits II: the sine kernel

Recall from Definition 4 that Kgpne is the integral kernel on R x R given by

sinw(z —y)

Ksine(xa y) = 71'(17 — y)

, xFy, (4.5.1)
and Kgne(z,7,) = 1. It defines an integral operator on L?(S) for every bounded,
measurable set S. We can now prove a stronger version of Theorem 5.

Theorem 35. For each integer m = 0,1,2,... and bounded, measurable set S

lim P (M € GUE(n) has m eigenvalues in v/n.S)

n—oo

1 d\"
= % (dz) det (I - ZKsinelS)‘Zzl . (452)
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The proof of Theorem 35 is a consequence of the following

Lemma 13. Let S be a bounded measurable set. Then

K, (\fﬁ \%) - Ksine(x,y)‘ = 0. (4.5.3)

Proof. Let us define the rescaled wave function

U, (2) = niy(

lim sup
=00 x yeS

%). (4.5.4)

The identity (B.2.4) now takes the form

o1 (2) = W (2) + 50 (@), (4.5.5)

and the rescaled kernel takes the form

KA U, (2)0 (y) — W’ (2)0,, (y) 1 .
K <\/ﬁ’ ﬁ) U, (2)W,(y).  (4.5.6)

r—y 2n
We now use (B.3.4) (when n is even) and (B.3.4) (when n is odd) to obtain

(4.5.1). O

Proof of Theorem 35. Let K, (x,y) denote the rescaled kernel ”(ﬁ> %) It

follows from Lemma 13 and the definition of the Fredholm determinant that
lim det (1 - zf(n15) — det (I — 2Ksnels), z€C, (4.5.7)

and that the convergence is uniform in n for z in a bounded set. In particular,
the derivatives at z = 1 converge for all m, that is

: a\" ~ a\"
Tim. (—dz) det (I - an1S) = (‘d;;) det (I — 2Kgnels)],_, -
(4.5.8)
By Theorem 34, this is equivalent to (4.5.2). O

4.6 Scaling limits III: the Airy kernel

Recall from Definition 7 that Kaj is the continuous integral kernel on R x R
given by
Ai@) AT (y) — A (2)Ai(y)
Kairy(2,y) = pra—y , TFyY. (4.6.1)
The fluctuations at the edge of the spectrum are described as follows. Let
(1,...,zy) denote the unordered eigenvalues of a matrix M € GUE(n) and let
us consider the shifted and rescaled points

Sk =nb (x—=2vn), k=1,...,n. (4.6.2)

For each nonnegative integer m and bounded, measurable set S, let B,(# )(S)
denote the probability that exactly m of the points si,...,s, lie in S when
M € GUE(n).
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Theorem 36.

"lLH;C B (8) = % <_ddz) det (I — 2Kairyls)|,_; - (4.6.3)
Remark 37. The assumption that S is bounded is necessary for Kgne. The
sine-kernel has a (weak) rate of decay |r|~! as |#| — oo and the Fredholm
determinant det(I — zKnelg) is not finite unless S is bounded. However, the
Airy function, and the thus the Airy kernel, has strong decay as = and y — oo.
The Fredholm determinant det(/ — zKaiylg) is well-defined in L?(S) for sets
S that are bounded below, but not above, such as S = (a,0) for any a € R.
Such sets will be considered when we compute the Tracy-Widom distribution.
See Exercise 5.

The proof of Theorem 36 follows from the Plancherel-Rotach asymptotics for
the Hermite polynomials, in particular the Airy asymptotics in the transition
zone (see Case 3 and (B.4.5)—(B.4.6) in Appendix B). The following lemma
plays a role analogous to that of Lemma 13 in the proof of Theorem 35.

Lemma 14. Let S be a bounded measurable set. Then

1
lim sup |—+K, (2\/5—1— a 2v/n + y) — KAiry(x,y)‘ =0. (4.6.4)

1 1
n—00 g yeS | NG ne ne

Proof. Let us define the rescaled wave-functions
U, () = nizy, (2\/ﬁ+ fﬁ) . (4.6.5)

We then use identity (B.2.4) to find

nt K, (2\/ﬁ+ 2/ + y1>
ne

T

@) - V@) 1
B r—y omns U (2) U (y)- (4.6.6)

As noted in Appendix B, as n — oo, ¥, (x) converges to Ai(z) and the conver-
gence is uniform for = in compact subsets of C. Thus, in addition, ¥/ (z) —
Ai'(z) uniformly in compact sets, and (4.6.4) follows.

4.7 Exercises

1. Prove the Christoffel-Darboux identity (B.1.7) for Hermite polynomials.
(This is a standard relation and it is easy to find a proof in many texts, but try
to do it on your own.)

2. Use the method of steepest descent to establish the asymptotic formula
(A.3.1) for the Airy function. This is an easy application of the method of
steepest descent.

8. In order to appreciate the power of the Plancherel-Rotach asymptotics,
some numerical calculations will help.
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(a) Develop a numerical scheme to compute all the roots of the n-th Hermite
polynomial b,,. Plot the empirical distribution of roots for n = 100. Can
you determine the limiting density of suitably rescaled roots?

(b) Numerically compute the Hermite wave functions for large n, say n =
100, and compare the rescaled wave function with the Plancherel-Rotach
asymptotic formulas in all three regions (oscillatory, decaying and transi-
tion).

4. Use the method of steepest descent to establish the Plancherel-Rotach
asymptotics in the region of exponential decay (equation (B.4.4)). This requires
more care than Q.2.

5. Establish the following a priori bound on the Airy kernel. For any a € R,

sup " Y| Kpiy (7, y)| < 00. (4.7.1)
@y

Let S be the semi-infinite interval (a,c0). Use the above estimate to establish
that the Fredholm determinant det(l — zKaiy1lg) is an entire function.

4.8 Notes

To include in improved version.
1. Moment estimates to strengthen convergence to semicircle law.
2. Definition of determinantal processes.

3. Pair correlation function for the sine kernel.
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Chapter 5

The equilibrium measure

In this section we establish properties of the equilibrium measure for general
invariant ensembles. We also relate the equilibrium measure to the classical
theory of orthogonal polynomials and Fekete points.

5.1 The log-gas

Let V : R — R denote a potential such that V(z) — oo sufficiently rapidly as
|| — oo. The log-gas with size n and potential nV is a system of n identi-
cal charged particles constrained to the line interacting via pairwise Coulomb
repulsion and the potential nV' (we have scaled the potential V' by n in order
to ensure a scaling limit). The total energy of the system in any configuration
z € R" is given by

E(x) :nZV(xj)—&—%Zlog'x;. (5.1.1)

j — Tk

A fundamental postulate of equilibrium statistical mechanics is that the
probability density of finding the system in a state x at inverse temperature
5 >01is

1
__ T ,—BE(x)
e ) 5.1.2
Zn,V(ﬁ) ( )

where Z,, v is the partition function

Znv(B) = / e PE@) Dy, (5.1.3)

The log-gas provides us with a physical caricature of eigenvalue repulsion. On
one hand, we see that the energy F(z) has two complementary terms: the
logarithmic potential drives charges apart, but the potential V' confines them
in space. On the other hand, let V' define an invariant probability measure of
the form (1.1.3) on Symm(n), Her(n) or Quart(n). As a consequence of Weyl’s

57
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formula (Theorem 13), the equilibrium density (5.1.2) is precisely the joint law
of the eigenvalues for these ensembles at 8 = 1, 2 and 4 respectively. It is in
this sense that the ‘eigenvalues repel’.

We have scaled the energy V' with n in (5.1.1) in order to obtain a simple
description of the scaling limit when n — oco. In order to study this limit, we
view the energy function as a functional of the empirical measure, L,,, rather
than a configuration = € R™. For (r,s) € R? let

1 1 1
e(r,s) = 5V(r) + §V(s) + log s (5.1.4)

and given a probability measure y on the line, define the functional

Iu] = /R/Re(r,s),u(dr) wu(ds). (5.1.5)

Observe that if L,, is the empirical measure associated to x € R™, then

1 -
.22 , =n?
B(x) =n* | ~ ; V() + = j;log Ea—— n?I[L,), (5.1.6)
and we may rewrite the partition function in the form
Znv(B) = / e BIILnl Dy, (5.1.7)

Here I[L,] denotes the renormalized functional

T = [ [ st ) i), (5.1.8)

that takes into account all interaction terms in I[u], except the singular self-
interaction term from I[u]. The logarithmic singularity in e(r, s) is integrable if
u(ds) has an absolutely continuous density. Thus, if the particles in the log-gas
spread out sufficiently as n — oo, we expect that u has a smooth density, and

lim L log Z,,.v(8) = min I[y]. (5.1.9)

n—oo N2 “w

In order to establish this relation, it is first necessary to obtain a precise ana-
lytical understanding of this minimization problem. We first prove such results
under the formal assumption that there exists an R > 0 such that V(z) = 400
for |x| > R. This simply means that we first restrict attention to measures with
support within the interval [—R, R]. Once the ideas are clear in this setting, we
turn to measures with support on the line.
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5.2 Emnergy minimization for the log-gas

5.2.1 Case 1: bounded support

Let Pgr denote the set of probability measures on the interval [—R, R]. Recall
that the natural topology on Pg is the weak topology (we adopt the probabilists
convention for what is conventionally termed the weak-* topology). A sequence
of measures {u;}52, € Pr converges weakly to p € Pp if

Hm (pn, Y = (u, f), (5.2.1)
n—oo
for every function f € C(R). This topology is natural, because it yields com-
pactness by Helly’s theorem: Each sequence {yu}7°, € Pr has a subsequence
that converges weakly to a measure in Pg.

Theorem 38. Assume V is a continuous function on [—R, R]. There exists a
untque probability measure p, € Pr such that

Ipny] = min I|ul. 5.2.2

o] = min 7l (522)

The proof of Theorem 38 is a demonstration of the classical method of the

calculus of variations. There are two distinct ideas at work: existence follows

from the fact that the functional I[u] is weakly lower semicontinuous; uniqueness
follows from the fact that I[u] is a strictly convex function on Pg.

Lemma 15. Suppose the sequence {u, 2, € Pr converges weakly to u € Pg.
Then

I[p) < liminf Ip,]. (5.2.3)
Lemma 16. Let ug # p1 be two measures in Pr and let pg = (1 — 0)po + Ou
denote their convex combination for each 6 € (0,1). Then

Ilpg] < (1 = 0)I[uo] + 01y (5.2.4)

Proof of Theorem 38. Existence. Since V is bounded, the function e(x,y) is
bounded below on [—R, R]. Therefore, inf,cp, I[p] > —oo. Further, since the
logarithmic singularity is integrable, I[u] < co for any measure that is absolutely
continuous. Thus, we may assume that there is a sequence of measures {1},
such that

lim I[u] = inf I infty. 5.2.5
i T{yu] nf (1] <infty (5.2.5)

Since Pg is compact in the weak topology, we may extract a convergent
subsequence, also labeled {p}52, for simplicity. Let u, denote the weak limit
of this subsequence. We then use Lemma 15 to obtain the chain of inequalities

inf I[p] < Il < liminf T[] = inf I[u). 5.2.6
Jnf T[u) < Ip] < lminf I{pg] = inf T{p] (5.2.6)

Thus, p, is a minimizer.
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Uniqueness. Assume p, and v, are two distinct minimizers. We apply
Lemma 16 to their convex combination with # = 1/2 to obtain the contradiction

T < I+ g < 5 (Tl + ) = inf 1 (527)

O

5.2.2 Weak lower semicontinuity

We now turn to the proof of Lemma 15. We first observe that for each monomial
r7s* in the variables r and s, the quadratic functional

pe [ z / Z ldr) p(ds) = ( / err)) ( / z swds))

is weakly continuous since it is the product of two bounded linear functionals
on Pr. Since each polynomial p(r,s) in the variables (r,s) is a finite sum of
monomials, the functional

pe [ z / zpm 5)udr) u(ds)

is also weakly continuous. Finally, since each continuous function f € C([-R, R]?)
may be uniformly approximated by polynomials, the quadratic functional

R (R
po [ ssiatan) uds)
-RJ-R
is weakly continuous.

The function e(s, t) defined in (5.1.4) is not continuous on [— R, R]? since the
logarithmic term is unbounded on the diagonal s = t. However, for any M > 0,
the truncated function eps(r, s) = min(e(r, s), M) is continuous. Thus, given a
weakly convergent sequence of measures {pu}7° ; with limit u € Pr we find

/_}; /_111 en (1, )uldr) p(ds) = lim / / (r, 8) e (dr) g (ds)

< liminf/ / e(r, s)pr(ds)ux(ds) = hmmfI[,uk]

k—oo
We let M — oo on the left hand side and use the monotone convergence theorem

to obtain (5.2.3).

5.2.3 Strict convexity

Lemma 16 is a particular consequence of a general fact in potential theory. The
essential idea is to recognize that the function z — —log |z| is the fundamental
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solution to Laplace’s equation in C =2 R2. More precisely, given a signed measure
p with a smooth density p(z), supported in the ball Bg C C the unique solution
to Poisson’s equation with Dirichlet boundary condition

is given by the integral formula
v2)= [ Glawlptw) Do,z € B (5.29)
Br

where Dw denotes the two-dimensional area element in C and G(z,w) is the
Green’s function for Poisson’s equation in the ball Bg with Dirichlet boundary
conditions,

1 lw| |z — wF| r Rw
G(z,w) = —log | ——+—— w'=-—, z,w € Bpg. 5.2.10
(7 ) o g(R ‘Z—IU| ) |UJ‘2 R ( )
The function G(z,w) is obtained by the method of images: the image point w®
is the reflection of the point w € B in the circle 0By [12, §4.1]. What matters
here is that the dominant term in the Green’s function is the logarithmic term
—log |z — w], just as in equation (5.1.5), and the positivity of

|| cewnade) =~ [ wwoswids= [ 9@ Dwso
Br /Br Br

(5.2.11)
However, in contrast with (5.1.5) here we have assumed that p(dw) has a smooth
density p(w), whereas the measures of interest in (5.1.5) are concentrated on an
interval, and may have no regularity. Thus, some care is needed in formulating
and proving a theorem on positivity analogous to (5.2.11).
Recall that a signed Borel measure i on the line may be uniquely decomposed
into two positive measures py respectively such that p = p4 — p—. The Fourier
transform of a measure is defined by

f(u) = /Re_i“5 wu(ds), weR. (5.2.12)

The Fourier transform is a well-defined distribution. If p4 are finite measures
n [—R, R], the Fourier transform is a continuous function of u that decays to
zero as |u| — oo by the Riemann-Lebesgue lemma.

Br

Lemma 17. Assume = py — pi— is a signed measure on [—R, R] such that

R R
/_Rﬂ+(dr) :/ p—(dr) < oo. (5.2.13)

—R

Then we have the identity

/ / s G (ds) + - () (d) (5.2.14)
/ / P G () (e s + [ P E g,

u
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In particular, I[u] > 0 if p is non-zero and satisfies (5.2.13).

Remark 39. Equation (5.2.14) simply says that

R R 9]
/ / log%u(dr) wu(ds) :/ (W I du. (5.2.15)
—rJ-r lr—s| 0 u

for a signed measure p with ffR u(ds) = 0. This identity has been written in
the form (5.2.14) in order to ensure that there are no ill-defined terms of the
form oo — co. It is now clear from (5.1.4) and (5.1.5) that I[u] > 0 for such
measures.

Proof. This proof is from [3, p.142]. We first regularize the logarithm at 0 and
use the following integral representation. For any real s and € > 0

elsu _ 1

log(s? 4+ &%) = loge? + 21Im / e du. (5.2.16)
0

U

We apply this integral representation to the following regularization of I[u], and
use the fact that ff’R u(dr) =0, to obtain

R R
[ [ tog(r— s+ &) utaryutas)
—-RJ-R

:2Im/ / / T L) i ds) du

2 o 2
:2|m/ 75“|M( ) du:—2/ efguwdu.
0 U 0 u

We may rewrite this identity in terms of pu4 as follows:

(ds) + p—(dr)p—(ds)) (5.2.17)

R R 1

[ o s i
:/R /R 1og;(“ (dr)p—(ds) + p_(dr)p (ds))—|-/ —su\u( )[? i

—rJ-r T (r—s)?+e* + + ; -

We now let ¢ | 0 and use the monotone convergence theorem to obtain (5.2.14)
O

Finally, let us prove Lemma 16. Suppose pg and g1 be two measures in Pr
as in (5.2.4). The difference

(1=6) I[so] -6 y11]) —I[pi0] = O(1=6) / / log ﬁ (o — 1) (dz) (a0 — ur) (d)

in the sense of signed measures. Thus, it is strictly positive when g # up by
Lemma 17.
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5.2.4 Case 2: Measures on the line

Having explained the main ideas behind Theorem 38 for finite measures, let us
turn to the measures on the line. The proof of uniqueness requires no change,
since it is easily verified that Lemma 17 holds for measures in Pg. However,
it is necessary to modify the proof of existence to account for a possible loss
of compactness: a sequence of measures in Pg may drift off to infinity (e.g.
pr = Ok, k € Z). The appropriate condition required for compactness here is
the following.

Definition 40. A sequence of measures {ux}52,; € Pr is tight if for every € > 0
there exists M, > 0 such that

ilipl) pi (R\[-M,, M,]) < e. (5.2.18)

Compactness of measures in Py is provided by the Prokhorov-Varadarajan
criterion: the sequence {ux}3>, € Pr has a subsequence that converges to a
measure ;1 € Pr if and only if the sequence {ux}32, is tight [22]. In practice,
application of this criterion requires a uniform estimate on the tails of the mea-
sures {pr}pe,. Such a bound is possible only if the growth of the confining
potential V(z) as |z| — oo is faster than the divergence of log|z| as |z| — oo.
We formalize this requirement as follows. For any € > 0, observe that

r—s|l=lr—1—(s=1)| <Vr2+1vVs2+1. (5.2.19)

Therefore, we have the lower bound

1 1 1 1
1 > = (1 1 . 5.2.20
Ogr—s"2<ogﬂ—kl+(g82+l) ( )

Let us define the function

L v, (5.2.21)

1
l(s)zilogTJrl 5

If I(s) is bounded below, then by adding a constant to V if necessary, we can
ensure that [(s) > 0 for all s. Clearly, this does not change the nature of the
minimization problem.

Theorem 41. Assume V(s) is a continuous function such that I(s) is bounded
below and l(s) — oo as |s| — oo.

(a) There exists a unique probability measure p,. € Pr such that

Ip.] < ;?6117% Ify). (5.2.22)

(b) The support of the measure . is contained within a finite interval.
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Proof. (a) Since V' is bounded below and the addition of a constant to V' does
not change the minimization problem, we may assume that [(s) > 0. Then

1 1 1
e(r,s) = log ] + iV(r) + §V(s) >1(r)+1(s) >0, (5.2.23)
and ¢ := inf,ep, I[¢] > 0. Suppose pip; is an infimizing sequence: i.e.
limg— oo I[px] = c. Without loss of generality, we may assume that I[ug] < c+1
for all k. Tightness of the sequence {y}7° ; follows from the following (Cheby-
shev) inequality. For any M > 0,

c+1>I[ug] = /R/Re(r,s)uk(dr)uk(ds) (5.2.24)

Z 2/ l(s)uk(ds) Z QZM uk(ds) = 2l]yjﬂk(R\[7M, MD,
R |s|>M

where Iy = inf| > [(s). Since lim g o () = 00, Ipr — 00 as M — oo. Thus,
for any € > 0, we may choose M = M, large enough so that (5.2.18) holds. The
rest of the proof of part (a) follows that of Theorem 38.

(b) For any M > 0, let Sy; denote the set (—oo, M) U (M, 00). We will show
that p.(Sy) = 0if M is large enough. The proof relies on varying the measure
s by adding more mass proportional to u, in the set Sy;. More precisely, let
v denote the restriction of p. to the set Sps, and for any ¢ € (—1,1), define the
measures

o + tv
= — 5.2.25
He 1+ tl/(SM) ( )
We then find that I[u.] is a differentiable function of ¢, with
dI
o= dmll 2/ v(ds) / i (dr)e(r, s) — 20(Sa) I[pe).  (5.2.26)
dt t=0 Sm R
The estimate (5.2.23) and positivity of I yields the lower bound

2/ v(ds) / i (dr)e(r, s) (5.2.27)

S R

Z/SMZ(S)V(ds)+/Rl(T)u*(dr) z/SMz(s)u(ds) > L(Sur).

As in part (a), lpy — 00 as M — oo. Thus, for M sufficiently large, we have
Ipg — Ifps]) > 0 and since v is a positive measure, we have the (trivial) estimate

2(lns — I[p))v(Sar) = 0. (5.2.28)

On the other hand, the inequalities (5.2.26) and (5.2.27) yield the opposite
inequality
2(lpr — I[ps])v(Sar) < 0. (5.2.29)
]

Thus, v(Syr) = 0 for all M such that Ipr > I[p. O
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5.3 Fekete points

A second approach to the energy minimization problem relies on a study of the
minimizers of the function E(z) defined in (5.1.1) for # € R™, and a potential
V that satisfies the assumptions of Theorem 41. For any such potential, 0 <
E(z) < oo for any x € R™ such that z; # xx, j # k. Thus, for each n, there
exists a set of points F;, C R™, such that

E(z,) = min E(z), z.€ F,. (5.3.1)

TER™

The set F,, is called the set of n-Fekete points. The Fekete points are natu-
rally connected to the minimization problem for the functional I[u] through the
modified functional H[L,], where L,(z) is the empirical measure associated to
a point z € R™. Let J,, denote the rescaled energy of Fekete points

1 n
On = mE(Jc( ). (5.3.2)

The main result is then the following

Theorem 42. Assume V satisfies the assumptions of Theorem 41. Let {x(™}52,
be a sequence of points (") € F,, and Then

(a) The rescaled energy of Fekete points increases monotonically to I[u.].

0 < 6 < npr < Il (5.3.3)

(b) The empirical measures L(x™) converge weakly to pi..

Proof of (a). We first prove the estimates (5.3.3). The uniform upper bound on
E(x(")) is obtained as follows. Fix a positive integer n and a point (™ € F,.
By definition, for any s = (s1,...,8,) € R™,

DN =

E@™) < = (V(sj) + Visi)) Z log i (5.3.4)

J,k=1 J#k=1

Let p(ds) be any probability measure on the line. We integrate (5.3.4) with
respect to the n-fold tensorized probability measure p ® p--- ® p on R™ to
obtain

E(z™) (5.3.5)
< /n % > (V(sy) + Visk)) Z 10% ol p(ds1)p(dsz) - - - p(dsn)
Gik=1 JF#k=1

— n(n—1) / /R e(r,s)u(ds)u(dr) = T[],

since for each value of the indices j and k only the integrals over p(ds;) and
p(dsg) give contributions that are not unity and there are n(n — 1) possible
unordered pairings of j and k. In particular, E(x(™) < n(n — 1)I[u.].
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The monotonicity of 8, follows from the following argument. Suppose z("t1) =
(21,...,Zny1) is point in the Fekete set F, 1. We fix an index m, 1 < m < n+1
and use the definition of E in (5.1.1) to obtain

1
n(n+1)
B 1 21D V(z;) V(zg)
o AT BETTY) _ I o —ale 2 e 2 (5.3.6)
1<j#k<n+1

2 L
Vi) Vi) | " Vi) v | "

H|xjfxm|e_ 2 2 H 2 —aple” 2 e 2

J#Fm J.k#m
_2
n(n+1)
7V(Ij) _ (T ) -5 n—1
< H|xj—xm|e 2 e 2 e "ntl
Jj#Fm

since the second term is the energy E(Z) of the point & € R™ obtained from
z(") by projecting out the coordinate x,,.
Since m is arbitrary, we take the product over 1 < m < n 4+ 1 to obtain

_2
n(n+1)

7; (n+1) __ _ i)V \&Tm)
e n BT o —(n-1)8n H H |zj — Tl 2 2
1<m<n+11<5<n+1,j#m

2 n
= e~ bn Tl 2 (53.7)

This inequality simplifies to &, < d,41. O

Proof of (b). While the self-energy of all the Fekete points is infinite, inequality
(5.3.3) shows that a suitably renormalized energy is finite, and bounded above
by I[u]. This inequality, in combination with an easy modification of the
Chebyshev inequality (5.2.24) also shows that the empirical measures L(2(™))
are tight. Thus, there exists a convergent subsequence and a limiting probability
measure v € Pg such that the empirical measures L™ defined by the Fekete
points z(™ converge weakly to v as n — oo.

For any M > 0, we introduce the cut-off energy e (r,s) = min(M,e(r, s))
and observe that

1

= BE) = L e(r,s) L (dr) L™ (ds
o = n(nfl)E( ) n(n—1) /R/Rl#s (7, )L™ (dr) L™ (ds)
M

n—1

TL2
> YA /R /R ear(r,s) L™ (dr) L™ (ds) —

Since the function eps(r, s) is continuous and 0 < eps(r, s) < M, we may inter-
change limits as n — oo, and use Theorem 42(a) to obtain

n—oo

I[ps] > liminf §,, > /R/ReM(r,s)V(dr)u(ds). (5.3.8)
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We now let M — oo and use the monotone convergence theorem and the fact
that p, is a minimizer to obtain

1] = Ip] = I{pa]- (5.3.9)

Since py is unique, it follows that p, = v.
This argument proves that every subsequential limit of L™ is p,. Thus, the
entire sequence converges t0 fiy. O

5.4 Exercises

The first three questions are related. The goal is to formulate and analyze the
equation for the equilibrium measure p. associated to the potential V(z). In
order to simplify your calculations, assume that p, has a continuous density 1,
in all the problems below. The last two questions discuss enumeration problems
related to the Catalan numbers.

1. Basics of the Hilbert transform. Let G(z) denote the Stieltjes transform

6= [~ ) = [T v, ze Cmpplu). (540

The Hilbert transform of v is the limit of the Stieltjes transform as z — = € R.
The Hilbert transform also differs from the Stieltjes transform by the inclusion
of a factor of 7 (since this makes the Fourier transform of the operator H
particularly simple). That is, given u. as above, we set

e T—8

Hy(x) = %p.v. /:’0 % ds := lim ———— ¥(s)ds. (5.4.2)

e—0 oo (.’IJ — 8)2 + 82
(a) Show that H1) is a bounded function when v (z) is continuous.

(b) Show that u, may be recovered from G by evaluating the jump in the
imaginary part of G across the support of p,:

lim —— (G(a + ie) — G(x — ic)) = ¥(x). (5.4.3)

(¢) Compute the Hilbert transform of the following functions to obtain a feel
for it (answers are on wikipedia):

ei:C7 60(:E)7 1[a,b] (.’L’)

2. Integral equation for 1. Assume V is differentiable and satisfies the assump-
tions of Theorem 41 so that u, has compact support. Show that if u, has a
density 1 as above, then it satisfies the integral equation

Hiy(z) = %V/(:C) on supp(p). (5.4.4)

3. Fized point equation for the resolvent. One solution to (5.4.4) uses the
Stieltjes transform G(z). Assume that V(z) is a polynomial of degree d > 2.
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Show that G satisfies the quadratic equation
G?*(2) +V'(2)G(z) + P(2) = 0, (5.4.5)

where P(z) is a polynomial of degree d — 2 whose coefficients are deter-
mined by the moments of u, of degree lower than d. The solution branch
is determined by the requirement that G(z) ~ —1/z as z — oo which is
immediate from (5.4.1).

Equation (5.4.5) may be solved by making further assumptions on the
form of p,. In particular, assume that V(z) is even, that the support of
1y 1Is a single interval [—2a, 2a], and show that (5.4.5) simplifies to

G(2) = Q(2)V/2% — 4a? — %V’(z) (5.4.6)

where Q(z) is a polynomial of degree d — 2 whose coefficients are deter-
mined by the condition that G(z) ~ —1/z as z — oo.

Apply these ideas to compute the equilibrium measure for the quartic
potential

1
V(z) = 5332 + %1‘4. (5.4.7)
Show that
1 1
G(z) = (2 + ng + ga2> Va? —da? = 2 (a 4+ g2®) (5.4.8)

where a? solves the quadratic equation

3ga* +a* —1=0. (5.4.9)

(d) Compute the associated density ¥ (x) and plot it as g varies.

4. Establish the identity (1.3.11).

5.

Show that the Catalan numbers enumerate the number of Dyck paths as

discussed below equation (1.3.12).

5.5 Notes

To include in improved version.

1.
2.
3.

Fixed point equation for equilibrium measure.
Properties of Hilbert transform.

Convergence of k-point distribution to tensor product of equilibrium mea-
sure.



Appendix A

The Airy function

A.1 Integral representation

There are several different conventions for the definition of the Airy function.
The standardization adopted here follows [1]. The Airy function, Ai(x) is defined
as the oscillatory integral

I t3 1 b 3
Ai(z) = 7/ cos (3 + xt> dt = — lim cos (3 + azt) dt.  (A.1.1)
0 0

™ T b—oo

This is an improper integral, that is, the integral converges conditionally, not
absolutely. In order to obtain an absolutely convergent integral, it is necessary
to work in the complex plane. Let C denote a contour in the complex plane
that starts and ends at the point at infinity, and is asymptotically tangent to
the rays e /3 and et""/3 respectively. Then first setting t = —iz and then
deforming the contour, we have

Ai(z) = L /C>o e<§_zz> dz = ! e(g_m> dz. (A.1.2)

= 5mi =5 /.

— 00

The integral is absolutely convergent for every & € C on the contour C. Indeed,
with z = re',

(5-+)
o\

< 6|:1:\T67'r3 cos(30)/3 €7r3/36r|x\ (Alg)

as z — oo along the rays § = +7/3. Thus, Ai(x) is an entire function.
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A.2 Differential equation

We differentiate under the integral sign (justified by (A.1.3)) and integrate by
parts to obtain

3
1 Z 2
A" (z) = 5 2’2€< 3 ) dz (A.2.1)
T Jco
1 d 2 1 2 d
=5 d763 e T dy = 5= e3 d—e*“dz:xAi(x).
i Jo dz ™ Jc z

Thus, Ai(x) satisfies the Airy differential equation
y' =xy, x¢€C. (A.2.2)

This differential equation has a scaling invariance: if y(z) is a solution, so are
y(wz) and y(w?z) where w = e2™/3 is a cube root of unity. Thus, both Ai(wz)
and Ai(w?z) solve (A.2.2). Each of these solutions is linearly independent of
Ai(z). A solution to (A.2.2) that is real when z is real, and is linearly indepen-
dent from Ai(x), is obtained from the linear combination

Bi(z) = e™/CAi(wz) + e V/OAi(w3x). (A.2.3)

A.3 Asymptotics

The functions Ai(z) and Bi(x) have the following asymptotic properties.

Asymptotics as x — oo.

1
3 =< 1
¢=22%, Aiw) ~ S Bil) ~ Il (A3)
2xa/T VT

Asymptotics as x — —o0.

¢ = ;(—:c)%7 Ai(x) ~ x;\/E sin (C+ %) ;. Bi(z) ~ ———cos <C+ E) .




Appendix B

Hermite polynomaials

In this chapter, u denotes the weight function
1 2

% da. B.0.1
ol (B.0.1)

The Hermite polynomials {h}72 , are the monic family of polynomials of degree
k orthogonal with respect to the weight u.

p(dw) =

B.1 Basic formulas

2 ko s
he(z) =e™ <jx) e 2 . (B.1.1)
i) = = [ (ig)he T e (B.1.2)
\/% /R hk(x)hl(a’)(f% der = \/ﬂk!(gkl. (B.1.3)
2hi(z) = brg1(z) + khp—1(x), k>1. (B.1.4)
by (x) = kbg—1(z). (B.1.5)
by (x) — xb)(x) + kbg(z) = 0. (B.1.6)

k—1
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Relation (B.1.1) may be treated as an alternate definition of the Hermite poly-
nomials. On the other hand, since we have defined the Hermite polynomials
as the monic orthogonal polynomials obtained by applying the Gram-Schmidt
procedure to the set {1,z,2?%,...} in L?(R, u), equation (B.1.1) may be verified
as follows. First, it is clear from (B.1.1) that hi(z) is a monic polynomial of
degree k and that ho(z) = 1, h1(z) = . By induction, if it has been established
that property (B.1.1) defines the Hermite polynomials for j < k — 1, then it is
only necessary to show that the monic polynomial

2 d\" -2
Py(x)=e7 <d> ez |
x

is the same as b. The polynomial Py, is orthogonal to ;, 0 < j < k—1 because

| Pty @ntin) = | (;) b (w)u(dz) =0,

since H; has degree less than k. Since P} is monic, it must be h,. The same
calculation serves to establish (B.1.3).
The integral representation (B.1.2) follows from the formula for the Fourier

transform of a Gaussian
= i/eifwefé d¢ (B.1.8)
Vor Jr ’
and the identity (B.1.1).

The two-term recurrence relation follows from (3.4.18) and (B.1.3) (see also
Remark 27). The coefficient aj vanishes because equation (B.1.1) shows that
b7 is an even polynomial for all k. The coefficient b7 may be rewritten

2 S @he@dn) [ e a(@)be(ouldr) B
k — - - )

S b7 p(dx) J 7 u(dx) J 07 p(dz)

22
2

(B.1.9)
by (B.1.3).
The differential equation (B.1.5) is obtained by rewriting (B.1.1) in the form

2 k :E2
o) = (0 () e 7.

differentiating both sides, and then multiplying by eé. Equation (B.1.6) is ob-
tained by differentiating (B.1.5) and using (B.1.4). The proof of the Christoffel-
Darboux identity is left as an exercise to the reader.

B.2 Hermite wave functions

The Hermite wave functions {1}72, are defined by

1 eo’/4
Yp(x) = ﬁwf)k(l‘), k=0,1,2,... (B.2.1)
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The following properties of the Hermite wave-functions follow immediately from
the corresponding properties of the Hermite polynomials.

/szk(x)wl(x) dz = by (B.2.2)

e (@) = VE + W (@) + Vip_1 (2). (B.2.3)
Vr(z) = —gwm) + Vi1 (2). (B.2.4)

K (z) + <k + % —~ f) () = 0. (B.2.5)

ﬁwn(an_l(y; - fn_m)wn(a:» (B.2.6)

z_: V(@) e (y) =
k=0

B.3 Small x asymptotics

The following classical formulas capture the asymptotics of the Hermite poly-
nomials near the origin [1, §22.15].

lim (_W@ o <$> =L cosa. (B.3.1)

. —-1H" T 2
nh_)rréo % Bon+1 <\/%> = \/; sinz. (B.3.2)

Further, the convergence to the limit is uniform over z in a bounded interval.

In comparing equations (B.3.1) and (B.3.2) with a standard reference such
as [1], the reader should note that there are two conventions in the definition of
Hermite polynomials. The exponential weight in earlier sources was chosen to
be e"”2, which differs from our choice (B.0.1). The relation between the Hermite
polynomials, {H,(x)} in [1], and those used here are:

Ho(x) = 2% b,(av2), ba(x) =27 % H, (ji) . (B.3.3)

These formulas may be immediately translated into asymptotic formulas for
the Hermite wave functions, using Stirling’s approximation for the factorial.

nIEI;O(QH)l/Al(*l)nwzn (\/%) = % cos . (B.3.4)
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Tim (20)1/4(=1)" a0t (\/%) = % sinz. (B.3.5)

The asymptotic formulas (B.3.1) and (B.3.2) are proved by applying Laplace’s
method to the integral formula (B.1.2). We only explain how to prove (B.3.1)
since equation (B.3.2) is similar. Since (i)?" = (—1)", we take the real part

of (B.1.2) to find
_1\2n x _ /2 2 o g €
= ”2"<m>‘\£e | e COS(m) “

2n+1nn+%
VT
by rescaling £ = /nt. We now apply Laplace’s method to the integral above.

The function g(t) = t* — 2logt has a single minimum on the interval (0, c0) at
t = 1. At this point

e (17 =2l08t) (g dt, (B.3.6)

g)=1, ¢(1)=0, ¢"(1)=4 (B.3.7)

Laplace’s approximation now yields

/ e~ cosat de ~ e "y T cosz, (B.3.8)
0 2n

which when combined with (B.3.6) implies

X

Von

Equation (B.3.9) is equivalent to (B.3.1) by Stirling’s approximation. Further,
it is easy to check that the error is uniformly small for = in a bounded set.

(—1)*"han ( ) ~ 2" Epe T cos . (B.3.9)

B.4 Plancherel-Rotach asymptotics

Another asymptotic regime is obtained when we consider z = O(y/n) and let
n — oo. The limit is oscillatory or exponential depending on the range of x. This
is to be expected: for each n, the polynomial b, (x), and thus the wave function
¥n(x), has n zeros. The largest and smallest of the zeros are approximately
+./(n + 1/2). The oscillatory regime is obtained when z(n 4 1/2)~/2 lies well
within the interval (—1,1). Outside this interval, the Hermite wave function
decays exponentially fast. A more delicate calculation, using the Airy function,
is required to understand the transition from oscillatory to exponential behavior.

We will prove a weaker version of the Plancherel-Rotach formulas, that suf-
fices for our needs. These formula are as follows.
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Case 1. Oscillatory behavior.

x = 2cos p, 0< <. (B.4.1)
1 1 1
niwnﬂ, (Jf\/ﬁ) ~ W COS |:’I’l <g0 — 5 51n2<p) + (p+ 2) @Y — Z:| .
(B.4.2)
The convergence is uniform for ¢ in a compact subset of (0, 7).
Case 2. Exponential decay.
|z| = 2 cosh o, 0 < o. (B.4.3)
(p+3)e Wl o2
N3y (zv/n) ~ c e B (7 H1-20) (B.4.4)

V2w sinh ¢

The convergence is uniform for ¢ in a compact subset of (0,00). Observe
that €2 + 1 — 2 > 0 when ¢ > 0, ensuring exponential decay.

Case 3. The transition region.

z=2/n+— seC, (B.4.5)
ne

T () ~ Ai(s) + O (n—) . (B.4.6)
The convergence is uniform for s in a compact subset of C.

All three asymptotic relations are obtained by the method of steepest descent.
Assume x € R. We fix an integer p, use the integral identity (B.1.2) with
k = n + p, and rescale £ = nt to obtain

oo
by () = (-ivi)" ™75 [ e it (B.47)
oo

= (_i\/ﬁ)nﬂ? \/Z (/O e B(t—in)® gy 4 (—1)"+» /OOO o~ 5 (t+iz)? dt)
= (—ivn)"" \/g (Intp(@) + (=)™ P Ly p(—2)) - (B.4.8)
The integral I,,4,(x) may be rewritten in the form
Insp(z) = /O  ppena®) dt, g(t) = %(tfi:v)Q —logt. (B.4.9)

As is usual, the first step is to determine the critical points where ¢’(t) = 0.
This reduces to the quadratic equation t? — izt — 1 = 0. The three distinct
asymptotic limits arise from the three distinct possibilities for the roots.
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(a) |z| < 2. The function g has two critical points on the unit circle, given by

ivrEvV4—a*
— =le

B.4.10
2 ? ( )

ty =

where x and ¢ are related through (B.4.1).

(b) |z| > 2. The two critical points lie on the imaginary axis, and may be
written in the form

+ 22 —4
tr =1 <x2x> = isgn(z)et?, (B.4.11)

where each branch of ¢ is defined through the relation (B.4.3).

(¢) |z| = 2. The two critical points coalesce into a single value t = 1. A
further blow-up is necessary to obtain the Airy asymptotics (B.4.6).

Let us first consider the integral I,,1,(x) in case (a), and let us assume that
x > 0 to be concrete. We deform the integral over (0,00) into an integral
through the steepest descent contour, I', through the critical point ¢} as shown
in Figure ??7. The existence of such a contour may be deduced by continuity,
beginning with the observation that when z = 0, T" is simply the segment (0, co)
along the real line. While in general, T" is given by the equation Im(g(t)) = 0, it
is not important for us to solve for the contour explicitly: all that is required is
to understand the phase of ¢”(¢) in order to check that the integral over (0, 00)
can be deformed to an integral over I' as x varies. It is easy to check that when

|z| < 2
g'(ty) =1+ t% =1-¢€* = (—ie"?) (2singp) . (B.4.12)

+

Thus, we have

oo
Loiy(a) = / P90 gp — g—a(ts) / penla®—g(t) gy
0 r

dt
~ ot
~ e n( +)tzii

ds

— 00

/ e 319"l g (B.4.13)
ty

In the second line, we have used the fact that Im(g(¢)) = 0 on I', and we have
further approximated the integral over I' by an integral over the tangent to I'
at t;. More precisely, the approximation here is

gt )t —t4)? = |g" (t4)|s%,
which implies

2 —ei(3-%) B.4.14
d8t+ e'\172), (B.4.14)
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‘We now combine the values
eQwJ

with (B.4.13) and (B.4.14) to obtain
Lsp(z) ~ B cos2p T ei(g sin 2¢-+(n+p+3)(5—¢)) (B.4.15)

nsin @

Finally, since x is real, we have I, 4,(z) = I,4,(—z). We combine (B.4.8) with
(B.4.15) to obtain

Bntp(2v/10) ~ n%p\/ ﬁegc‘““’ cos [n (@ - ;sin&p) + (p+ ;) © — Z] ;
(B.4.16)
where = and ¢ are related via (B.4.1). We now use (B.2.1) and Stirling’s ap-
proximation to obtain (B.4.2).
The asymptotics in case (b) are obtained as follows. We make the change of
variables (B.4.3), and deform the domain of integration for I,,1, to the contour

consisting of two straight lines shown in Figure ??. The remaining calculations
are left to the reader. The final asymptotic relations are

nie € 2 (p+})e—2(sinh(20)—2¢)
nip(TV/Nn) ~n"2 ————e\PT2 2 , B.4.17
which combines with (B.2.1) and Stirling’s approximation to yield (B.4.4).
We now turn to case (¢). We only present the main change of variables
that underly the result. We begin with the integral representation(B.4.7) and
substitute

f=it— w=2yn4 (B.4.18)
ns3 ne

moving the integral over R to an integral over the line i + R, to obtain

o) = (-ivi)" = / et gy, (B.4.19)

h(r)—log<i+7;> ;((HT” i<2+:§)>2

1 .8 1/, 1 52
~ 5 + logi + T + - <zsr + 3r3> + PR (B.4.20)

where

n

using the Taylor series for the logarithm. The terms that depend on s may be
pulled out of the integral and we are left with

b ( ) n%+é n g3 /OO isr+Lir3 d (B 4 21)
xT) ~ ez2e e 3T, ar e
" V2T — 0

1
=V2mnET5e% e Ai(s).
We now use the definition (B.2.1) and Stirling’s approximation to obtain (B.4.6).
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Appendix C

Fredholm determinants

C.1 Definitions

Our purpose in this section is to explain the notion of a Fredholm determi-
nant and resolvent in a simple and concrete setting. The ideas presented here
originated in Fredholm’s attempt to find a solution formula akin to Cramer’s
rule for linear integral equations. The notion of a determinant for an infinite-
dimensional linear operator is, of course, of independent interest and has at-
tracted the interest of many mathematicians. Simon’s book provides an excel-
lent overview of current knowledge [20].

Assume given a bounded, measurable kernel K : [0,1] x [0,1] — R and a
continuous function A : [0,1] — R. Fix a spectral parameter z € C and consider
the linear integral equation

o) — = / K(x,9)o(y) dy = hiz), =€ [0,1] (C11)

The integral equation (C.1.1) may be written in the more compact form
(I —zK)p = h, (C.1.2)

where I — zK denotes the bounded linear operator on L?([a,b]) defined by

b
o (I 2K)p. (1= K)ple) = ¢l@) — 2 [ K.p)el)dy o lab
(C.1.3)
Integral equations such as (C.1.1) may naturally be viewed as continuum
limits of linear equations. More precisely, we fix a positive integer n, con-
sider a uniform grid x; = j/n, define the vector h§-n) = h(x;), matrix KJ(-’T,? =
n 'K (z;,z5), 1 <j,k <n and discretize (C.1.1) by the linear equation

Pl =23 KoM =hlM 1< <n. (C.1.4)
k=1
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Equation (C.1.4) has a unique solution if and only if det(I,, — 2K (™) # 0. By
linearity, the solution for arbitrary k(") is determined by the resolvent R(™ =
(I, — zK (™)~ which is given by Cramer’s rule.

det(Mjk)

(n) _ j+k
RY =(-1Y7"F o2
e A e A < I

(C.1.5)
where M}, denotes the matrix obtained from I,, — zK (") by removing the j-
th row and k-th column. Further, if z;, 7 = 1,...n, denote the zeros of the
polynomial det(I,, — zK()), the eigenvalues of K™ are given by 1/z;. Both
these notions may be extended to (C.1.1) via the Fredholm determinant. The
basic observation that allows passage to the limit is the identity

det(I, — zK™) = (C.1.6)

N 2
z z K(xj,,zj,) K(xj,zj,)
1—— KCC‘,Q?‘ + —— J1r 71 Jirvj2 + ...
nle:l ( Ji Jz) ! j1j22:1 K(xj2,l‘j1) K(IjQ,IjQ)
The coefficient of z* in the expansion above may be computed by differentiating
the left hand side k times with respect to z, and setting z = 0. Since K is
continuous, as n — 00, the k-th term in the sum above converges to the integral

Y
( k') / det (K (zp, 2q)1<p,g<k) dz1 ... dzp. (C.1.7)
b

Definition-Theorem 43. The Fredholm determinant of the operator I — zK
is the entire function of z defined by the convergent series

> (_\k
( k') /[O 1] (det(K(xlh xQ)lﬁp,qSk)) dzy - - dxg.

(C.1.8)

Proof. 1t is only necessary to show that the series(C.1.7) is convergent for all z €
C. The determinant of a k x k matrix A with columuns ay, ..., ax is the (signed)
volume of the parallelopiped spanned by the vectors aq, ..., ax. Therefore,

D(z) :=det(I —z2K) =

k=0

k

et(A)] < fosoa] - ox] < (o o) (©19)

We have assumed that K is bounded on [0, 1] x [0,1], say max |K| < M < oo.
By the inequality above,

(et (K (2, 24)1<p.g<k))| < kA2 ME. (C.1.10)

Thus, the k-term in the series (C.1.8) is dominated by

’(‘Z)k/ (Aet(K (29, 2)1pges)) das - -d
: € Zp, Tq)1<p,q<k)) AT1 Lk
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where we have used Stirling’s approximation in the last step. O

Since D(z) is entire, we may differentiate term-by-term to obtain

(i)kdet(l 2K) (C.1.11)

0o (—Z k
Z k'> /[0 b (det(K (zp, q)1<p,q<m+k)) dT1 -~ AT
k=0 Al

Recall that the zeros of a non-zero entire function form a discrete, countable
set. The entire function det(/ — A~ K) is an infinite-dimensional generalization
of the characteristic polynomial of the matrix K™ in the following sense:

Theorem 44 (Eigenvalues of K). Assume that K is a continuous kernel. The
complex number X is an eigenvalue of K if and only if D(A™1) = 0.

For more on Fredholm determinants, see [14, Ch.24].

C.2 Some context

C.3 Separable kernels
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Appendix D

Notation

D.1 Indices

The integers m and n are reserved for the number of rows and columns of a
matrix. For square matrices, we use n. The letters j and k are used to denote
indices. The letter ¢ is reserved for /—1.

D.2 Fields

R real numbers.

C complex numbers with imaginary unit i = v/—1.

H quaternions with imaginary units e, es, e3.

F general notation for one of the above fields.

T™ the n-dimensional real torus.

Y., the n-dimensional simplex, x € R", Zzzl rp=12,>0,1<k<n.
For x € C and = € H we use T to denote the complex and quaternion conjugate
respectively. The absolute value of a number z € F is always denoted |z|.
The same notation is used for the Euclidean length of a vector in F”, but the

distinction between the two uses of | - | will be clear from the context. For
example, for x € F*, z = (21,...,2y), ; € F, 1 < j <n, we write

|z|? = Z |z5]°. (D.2.1)
j=1
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D.3 Matrices

The fundamental spaces of matrices are denoted as follows:

MF

mxn M X 1 matrix with entries from a field F.

ME . n x n matrix with entries from a field F.

Symm(n) real, symmetric n X n matrices.
Her(n) complex, Hermitian n x n matrices.
Quart(n) real, self-dual quaternion n x n matrices.

Jac(n)

We write M for the adjoint of a matrix M € M, Matrices in Symm(n),

mxXn-*

Her(n) and Quart(n) are self-adjoint: M = MT, but the notion of duality is
distint in each setting, since the underlying field is different. For M € Symm(n),
MV = MT; if M € Her(n), then MT = MT = M*; and if M € Quart(n), then
MT = MT. All these matrices have real eigenvalues, and the matrices are said to
be positive definite if all eigenvalues are strictly positive. We denote the subset
of positive definite matrices by Symm_ (n), Hery (n) and Quart, (n) respectively.
The Hilbert-Schmidt norm of a matrix M € ME  is denoted

M = Te (MTM) > (M 4] (D.3.1)
7,k=1

B, (M) denotes the ball of radius r centered at M in the norm || - ||.

D.4 Lie groups

The following notation is adopted for the classical groups and their Lie algebras.
O(n), o(n) the real, orthogonal group.
SO(n), so(n) the special orthogonal group.
U(n), u(n) the unitary group.

USp(n), usp(n) the group of unitary symplectic matrices, or the compact
symplectic group.

D.5 Banach spaces

The following notation is used for standard Banach spaces.

C(J) The space of continuous functions on an interval J equipped with
the supremum norm.
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‘P; The space of probability measures on an interval J equipped with the
weak topology.

(i, f) The duality pairing between measures and continuous functions on
the interval J given by

Ge.f) = [ $@ (). (D5.1)

Co(R) The space of continuous function on R that vanish at infinity,
equipped with the supremum norm.

Cy(R) The space of bounded continuous function on R that vanish at
infinity, equipped with the supremum norm.
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