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Abstract: We consider dynamic scaling in gravity driven miscible viscous fingering.
We prove rigorous one-sided bounds on bulk transport and coarsening in regimes of
physical interest. The analysis relies on comparison with solutions to one-dimensional
conservation laws, and new scale-invariant estimates. Our bounds on the size of the
mixing layer are of two kinds: a naive bound that is sharp in the absence of diffusion,
and a more careful bound that accounts for diffusion as a selection criterion in the limit
of vanishingly small diffusion. The naive bound is simple and robust, but does not yield
the experimental speed of transport. In a reduced model derived by Wooding [20], we
prove a sharp upper bound on the size of the mixing layer in accordance with his exper-
iments. Wooding’s model also provides an example of a scalar conservation law where
the entropy condition is not the physically appropriate selection criterion.

1. Introduction

We study pattern formation and mixing generated by the gravity driven instability of an
interface between two fluids in a porous medium. We may distinguish three stages in the
evolution of the flow: (a) an early stage governed by the linear instability, (b) an inter-
mediate stage with scaling behavior, and (c) a late stage. The linear stability analysis is
classical [2, 9, 18] and describes the evolution in stage (a) well. The late stage (c) may be
quite different depending on competing physical effects such as molecular diffusion or
surface tension. Saffman and Taylor’s discovery of a family of traveling wave solutions
(fingers), parametrized by λ ∈ [0, 1], has led to extensive work on finger selection [18].
Much of this work has been sophisticated linear stability and singular perturbation anal-
yses examining the role of surface tension in selecting a finger (see [1, 19] for reviews).
This analysis is directly related to the asymptotic profile (stage (c)) observed experi-
mentally by Saffman and Taylor. It also provides a formal understanding of the stability
of the coherent fingers in stage (b) . More precisely, it is assumed that even when there
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Fig. 1. Coarsening of fingers and bulk transport

are many competing fingers, these are locally described by the Saffman-Taylor solution,
and one of these (λ = 1/2 typically) is selected by an additional physical mechanism.

In most experiments there is a broad range of active modes and in view of the insta-
bility, one may expect the evolution in stage (b) to be unpredictable. Yet experimental
and numerical work shows that despite the unpredictability of fine details, certain statis-
tics (size of the mixing layer, finger width) satisfy robust scaling laws. Little is known
analytically about this fully nonlinear and physically interesting regime.

Our goal is to obtain rigorous results on dynamic scaling for the simplest nontrivial
model problem. We simplify matters by considering the gravity driven transport of a
dilute solute s by convection and diffusion (miscible fingering). Then one may assume
that the mobility is uniform, and after suitable non-dimensionalization (see [20] for a
derivation) we have the system

∂t s + u · ∇s = #s, s ∈ [0, 1], (1)
∇ · u = 0, (2)

u + ∇p = −sez. (3)

The domain is x = (y, z) ∈ [0, L]n−1 × R, n = 2, 3. Equation (3) is Darcy’s law: the
velocity is linearly proportional to the driving force which comprises a pressure gradient
and buoyancy (−sez). The Peclet number, L, is a measure of the strength of diffusion. It
is the only external parameter. We are interested in scaling behavior that is independent
of L and boundary effects, and in particular the behavior as L → ∞. For convenience
we use periodic boundary conditions in y. We consider initial conditions that are small
perturbations of the flat unstable stratification. Figure 1 shows four snapshots of the
evolution. After an initial transient, the system develops a mixing zone with an intri-
cate network of fingers on a mesoscopic scale. The details of fingering are sensitive to
intial data, but there is a remarkable statistical regularity observed in physical [20] and
numerical experiments [10]:
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Fig. 2. Caricature of a(t) and b(t)

(a) The end-to-end width of the mixing zone is independent of L for large L, and it is
typically t .

(b) The fingers broaden at the rate O(
√

t).

Two features of these scaling laws are astonishing on closer inspection.

(a) Diffusive slowdown (or the missing factor of 2): The fastest exact solutions in the
absence of diffusion (Saffman-Taylor fingers with λ = 0) have speed 1, and would
give a mixing zone of size 2t (not t). In particular, all Saffman-Taylor solutions with
λ ∈ [0, 1/2) cannot be selected by a vanishing diffusion limit.

(b) Coarsening is limited by diffusion, but experiments and numerical simulations show
it is primarily driven by the convective coalescence of nearby fingers. Thus, the

√
t

width of fingers is not based on transverse spreading by diffusion.

A rigorous formulation of dynamic scaling involves a definition of vertical and horizon-
tal length scales (denoted a(t) and b(t) respectively as in Fig. 2), followed by upper and
lower bounds of the form

1 − o(1) ≤ a(t)

t
≤ 1, c ≤ b(t)√

t
≤ C, t ) 1 (4)

for some constants C ≥ c > 0, under minimal assumptions on initial data. The estimates
on a measure the size of the mixing zone, and the constant is crucial. The estimates on b
are a statement about the rate of coarsening, and the constant is not as important. But in
such generality, (4) is false: the unstable stratification s0 (defined in (5) below), evolves
diffusively without fingering. Therefore, for this solution a(t) ∼

√
t , and there is no

coarsening since there are no fingers.We may use continuity in initial conditions to then
construct solutions that coarsen arbitrarily slowly. It is a subtle problem to precisely
eliminate such “unphysical” initial data using assumptions of genericity or randomness.
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We sidestep this issue altogether, and focus on physically meaningful estimates that are
simple, natural and robust. What we prove are upper bounds on the potential energy,
mean perimeter, and mixing entropies that scale in the natural way with time. Though we
obtain only one-sided estimates, these are robust and free of any ansatz on the structure
of the flow. This perspective has been used profitably in a wide range of problems [4, 6,
12, 17], and is similar in spirit to the now classical work of Howarth [11].

2. Statement of Results

2.1. Definition of bulk quanitities. Let Q denote the spatial domain x := (y, z) ∈
[0, L]n−1 ×R := D ×R, n = 2, 3. We consider periodic boundary conditions in y. The
unstable stratification

s0(z) =
{

0, z < 0
1, z ≥ 0 (5)

will serve as the main reference configuration. We are interested in estimates indepen-
dent of the length scale L. It is thus natural to consider the horizontal average of a scalar
field f : Q → R

f̄ (z) = 1
|D|

∫

D
f (y, z) dy, (6)

and normalized integrals of the form

−
∫

f dx :=
∫

R

1
|D|

∫

D
f (y, z) dy dz =

∫

R
f̄ dz. (7)

The gravitational potential energy of s(t, x) is defined by

E(t) = −
∫

(s0(z) − s(t, x)) z dx =
∫

R
(s0(z) − s̄(t, z)) z dz. (8)

To be more precise, E is the negative of the gravitational energy. Observe that since
s ∈ [0, 1] we have E ≥ 0, and E = 0 if and only if s = s0. E is also a measure of
mass transported, and we shall define a = 2

√
6E (the choice of constant is explained in

Remark 1 below). In order to measure the width of fingers, we define the mean perimeter

P(t) = −
∫

|∇s(t, x)| dx =
∫ 1

0
Hn−1[s−1(c)] dc. (9)

The second inequality is the co-area formula ( [21, Thm 2.7.1]) and justifies the termi-
nology mean perimeter. One effect of diffusion is to smooth sharp transitions and create
“mushy zones” where 0 < s < 1. The size of these mixing zones can be measured by
“mixing entropies” that vanish in the pure phases where s ∈ {0, 1}. We will work mainly
with the entropies

H(t) = −
∫

s(1 − s) dx, S(t) = − −
∫

(s log s + (1 − s) log(1 − s)) dx. (10)
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2.2. Uniform estimates on bulk quantities. The following estimates are independent of
L and provide an upper bound on a(t) and a lower bound on b(t).

Theorem 1. Let s(t, x) be a classical solution to (1)–(3), with energy E(t), mixing
entropy H(t), and perimeter P(t). Then

lim sup
t→∞

E(t)

t2 ≤ 1
6
, lim sup

t→∞

H(t)

t
≤ 1

3
, (11)

and

lim sup
t→∞

1
t2

∫ t

0
P 2(τ )dτ ≤ π

9
. (12)

Remark 1. In a loose sense, the energy estimate (11) bounds s(t, x) by comparison to
the rarefaction wave (entropy solution) to the following Riemann problem:

∂t su − ∂z(su(1 − su)) = 0, su(0, z) = s0(z). (13)

More explicitly, su(t, z) = s∗(z/t), where

s∗(ξ) =






0 ξ < −1,
1+ξ

2 −1 ≤ ξ ≤ 1,
1 ξ > 1.

(14)

Thus, the end-to-end size of the mixing zone is a(t) = 2t . The energy associated to the
profile su(t, z) is E(t) = t2/6 = a2/24. A similar (and more general) comparison of
s(t, x) with an entropy solution for a suitable Riemann problem appears in earlier work
by one of the authors [16]. However, notice that the estimate a(t) ≤ 2t is twice the
experimental result a(t) ≤ t . Here our interest is in understanding this unexpected gap.

Remark 2. Estimate (12) is an integrated version of the (unproven) pointwise inequality

P(t) ≤
√

2π t

3
. (15)

More precisely, the largest C and α in a scaling ansatz P(t) = Ctα compatible with
(12) are the values in (15). The bound on α may be interpreted as a lower bound on the
width of fingers as follows. If we assume the typical form of s is as shown in Fig. 2, we
see that

P(t) ≈ −
∫

|∂ys| dx ≈
∫

|z|≤a/2
N(z) dz = aN̄ = a

b
, (16)

where N(z) is the number of fingers per unit width on any horizontal level z = const,
N̄ is the mean number of fingers, and b = 1/N̄ is the mean wavelength of fingers. The
upper estimate (15) now yields,

b(t) ≥ a(t)

P (t)
≥ 3

√
t√

2π
(17)

if a(t) = t . It is in this weak (but also robust) sense, that (12) is an estimate on coarsening.
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2.3. Sharp pointwise estimates in a reduced model. The crux of the problem is the
focusing mechanism of convection and the subtle role of diffusion in arresting singu-
larity formation. This is manifested experimentally as diffusive slowdown. A similar
phenomenon is seen experimentally and numerically in the Rayleigh-Taylor instabil-
ity [5, 7] though this is harder to analyze. The scaling a(t) ∼ Ct (or a(t) ∼ Ct2 for
the Rayleigh-Taylor instability) is clear on physical grounds. However, deeper insight
is needed to find the sharp constant (the terminal speed or acceleration in experiments).
We have been unable to improve Theorem 1 for the system (1–3) or to formulate an
appropriate result on singularity formation. However, the following reduced 2-d model
derived by Wooding [20] is more tractable to analysis:

∂t s + u · ∇s = #s, s ∈ [0, 1], (18)
∇ · u = 0, (19)

u = (v, w), w = s̄ − s. (20)

Equation (20) is formally obtained from Darcy’s law when the horizontal and vertical
scales separate (a(t) ) b(t)). Equations (2) and (3) imply

.w = −∂2
y s.

If the height of fingers is much greater than their width (a(t) ) b(t)), it is natural to
assume |∂2

yw| ) |∂2
z w|, and formally we have

∂2
yw = −∂2

y s,

which is integrated to yield (20) (see [20] for details). The proof of Theorem 1 extends
to the reduced system, and we have as before

Theorem 2. Let s(t, x) be a classical solution to (18)–(20), with energy E(t), mixing
entropy H(t), and perimeter P(t). Then

lim sup
t→∞

E(t)

t2 ≤ 1
6
, lim sup

t→∞

H(t)

t
≤ 1

3
, lim sup

t→∞

1
t2

∫ t

0
P 2(τ )dτ ≤ π

9
. (21)

Theorem 2 is completely analogous to Theorem 1, and suggests the mixing zone grows
as a(t) = 2t . But this is false.

Theorem 3. Let s(t, x) be a classical solution to (18)–(20) with continuous initial data
s(0, x) : Q → [0, 1] such that

lim
z→−∞

max
y

s(y, z) = 0, lim
z→∞

min
y

s(y, z) = 1. (22)

Then for any c > 1
2 ,

lim
t→∞

max
y

s(t, y, −ct) = 0, lim
t→∞

min
y

s(t, y, ct) = 1. (23)

Remark 3. The pointwise estimates (23) show that the mixing zone does not spread faster
than a(t) = t under mild localization assumptions on the initial data (22). Numerical
calculations suggest that this estimate is sharp [15, p.88]. The mean speed of the finger
tips in Wooding’s experiments is 0.446, or a(t) = 0.892t [20, Eq.15].

Remark 4. The slowdown of the finger speed by a factor of 1/2 is reminescent of finger
selection by surface tension [19], and it is natural to say, the Saffman-Taylor finger of
width λ = 1/2 is selected by diffusion. However, we stress that Theorem 3 is free of
any assumptions on the structure of the solutions except for the localization assumption
(22).
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2.4. Connections with scalar conservation laws. The connections with the Riemann
problem (13) may be clarified further for the reduced model (18)–(20). Let us first neglect
the effect of diffusion and formally pass to the sharp interface limit s ∈ {0, 1} a.e. We
drop .s in (18), and substitute for w from (20), to obtain

∂t s + ∂y(vs) + ∂z((s − s)s) = 0. (24)

Equation (24) possesses a remarkable closure property. In the absence of diffusion, the
pointwise constraint s ∈ {0, 1} a.e. is preserved. Thus, when we average in y we find

ws = (s − s)s = s2 − s2 = s2 − s, (25)

since nonlinearity does commute with averaging if s ∈ {0, 1} a.e. Since we are consid-
ering small perturbations of the flat interface, it is natural to choose initial data s(0, z) =
s0(z). In this formal limit, the evolution of s is determined by the Riemann problem

∂t s − ∂z (s(1 − s)) = 0, s(0, z) = s0(z). (26)

The entropy solution to this Riemann problem is the rarefaction wave in (14). But this
is ruled out by Theorem 3. In fact, the proof of Theorem 3 suggests that the physically
appropriate self-similar weak solution to (13) is s̄(t, z) = s#(z/t) := s#(ξ), where

s#(ξ) =






0 ξ < − 1
2 ,

1
2 − 1

2 ≤ ξ ≤ 1
2 ,

1 ξ > 1
2 .

(27)

The main heuristic idea behind the proof of Theorem 3 is that there is always a sharp
gradient at the fingertips. This is made precise by comparing solutions of (18)–(20)) to
viscous shocks of Burgers equation. Thus the physically appropriate solution to (14)
consists of two “unphysical” shocks propagating outwards at speed 1/2 (unphysical
meaning that the shocks fail to satisfy Lax’s entropy condition, [13, p.9]).

3. Proof of Bulk Estimates

3.1. Main lemmas. Theorem 1 is based on energy balance, control of gradients using
mixing entropies, and an interpolation argument linking the mixing entropies and energy.
We formalize these ideas in the following lemmas.

Lemma 1 (Energy balance). Let s(t, x) be a classical solution to Eqs. (1)–(3) with
energy E(t) and mixing entropy H(t). Then

Ė =
∫

R
s(1 − s) dz − H(t) − −

∫
|∇p|2 dx + 1. (28)

Lemma 2 (Growth of mixing entropies). Let s(t, x) be a classical solution to (1)–(3)
with mixing entropies H and S. Then

Ḣ = 2 −
∫

|∇s|2 dx, Ṡ = −
∫ |∇s|2

s(1 − s)
dx. (29)
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Lemma 3 (Interpolation). Let s : R → [0, 1] be measurable and let E =
∫
R(s0 −

s) z dz. Then
∫

R
s(1 − s) dz ≤

√
2E

3
, (30)

−
∫

R
(s log s + (1 − s) log(1 − s)) dz ≤ π

√
2E

3
. (31)

3.2. Proof of Theorem 2. We combine Lemma 1 and Lemma 3 to obtain,

Ė ≤
∫

R
s(1 − s) dz + 1 ≤

√
2E

3
+ 1. (32)

This estimate may be integrated to yield (11). The details are as follows. Let e(t) solve

ė =
√

2e

3
+ 1, e(0) = E(0). (33)

We may integrate (33) explicitly to obtain the solution
√

2e(t)

3
−

√
2e(0)

3
− log

( √
2e(t)/3 + 1√
2e(0)/3 + 1

)
= t

3
. (34)

We claim that for every t ≥ 0,

E(t) ≤ e(t). (35)

Indeed, if ε > 0 let eε(t) be the solution to (33) with eε(0) = E(0) + ε. We combine
(32) and (33) and integrate to obtain

eε(t) − E(t) ≥ ε +
√

2
3

∫ t

0

(√
eε(τ ) −

√
E(τ )

)
dτ.

Let T = inf{t ≥ 0 : eε(t) < E(t)}. We claim that T = ∞. Since ε > 0 we have T > 0.
If T is finite, then we have eε(T ) = E(T ), which implies the contradiction 0 ≥ ε > 0.
This proves (35). To estimate H , we observe that

∫

R
s(1 − s) dz − H(t) = −

∫
(s(1 − s) − s(1 − s)) dx = −

∫
(s − s)2 dx ≥ 0.

Thus, we apply Lemma 3 again to find

H(t) ≤
∫

R
s(1 − s) dz ≤

√
2E(t)

3
. (36)

The estimate (11) now follows from (34), (35), and (36). To prove (12) we apply the
Cauchy-Schwarz inequality and (29) to obtain,

P(t) = −
∫

|∇s| ≤
(

−
∫

s(1 − s)

)1/2 (
−
∫ |∇s|2

s(1 − s)

)1/2

= H 1/2(Ṡ)1/2. (37)
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We integrate in time to obtain

∫ t

0
P 2(τ )dτ ≤

∫ t

0
H(τ )Ṡ(τ )dτ ≤ H(t)S(t) ≤ 2π

3
E(t). (38)

In the second inequality we have used the monotonicity of H and S. In the third inequal-
ity we used (30) and (31). We combine (38) and (11) to obtain (12). This completes the
proof of Theorem 1.

3.3. Proof of Lemma 1. Lemma 1 is a statement of energy balance. For any scalar field
s̃ : R → R (s̃ = s̃(z)) such that s − s̃ ∈ L2(Q) the elliptic system

∇ · u = 0, u + ∇p̃ = (s̃ − s)ez

is a Helmholtz decomposition of the vector field (s̃−s)ez, and we have the orthogonality
relations

−
∫

|u|2 dx + −
∫

|∇p̃| dx = −
∫

(s − s̃)2 dx, −
∫

u · ∇p̃ dx = 0. (39)

Observe that there is no convection unless s oscillates in y: if s(y, z) = s(z), then u = 0.
The velocity u is uniquely determined by s, but p̃ depends on the background field s̃.
We choose s̃ = s to obtain

−
∫

|u|2 dx = −
∫

(s − s)2 dx − −
∫

|∇p|2 dx

=
∫

R
s(1 − s)dz − −

∫
s(1 − s) dx − −

∫
|∇p|2 dx. (40)

We substitute (8) in (1), integrate by parts, and use (3), (39) and the boundary conditions
to find

Ė = − −
∫

sez · u dx + −
∫

∇s · ez dx = −
∫

|u|2 dx + 1. (41)

Lemma 1 follows from (40) and (41).

3.4. Proof of Lemma 2. Lemma 2 is a particular consequence of the growth of concave
entropies. Let g : [0, 1] → [0, ∞) be a smooth concave function such that g(0) =
g(1) = 0. Let s(t, x) be a classical solution to (1). We multiply Eq. (1) by g′(s) and
integrate to obtain

d

dt
−
∫

g(s(t, x)) dx =− −
∫

∇ · (g(s)u) dx − −
∫

g′(s)∇ · ∇s dx =− −
∫

g′′(s)|∇s|2 dx,

after integration by parts.
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3.5. Proof of Lemma 3. Lemma 3 is a corollary of the following general scale-invariant
interpolation inequality.

Theorem 4. Assume g : [0, 1] → [0, ∞) is a concave, symmetric (that is g(s) =
g(1 − s)) entropy that satisfies the growth condition

g(s) ≤ Cαsα, for some α >
1
2
. (42)

Then if s : R → [0, 1] is measurable we have

∫

R
g(s(z)) dz ≤ Cg

(∫

R
(s0 − s)z dz

)1/2

= CgE
1/2. (43)

The sharp constant Cg is given by

Cg =
(

2
∫ 1

0
g′(s)2 ds

)1/2

. (44)

The inequality is strict unless s(z) = sg(z/t) for some t > 0, where sg(ξ) is the optimal
profile defined implicitly by

g′(sg(ξ)) = ξ, ξ ∈ R. (45)

Remark 5. A growth condition such as (42) is necessary. If g =
√

s(1 − s) we may
consider a profile such that |s − s0| = (|z| log |z|)−2 for large z. Then E is finite, but∫
R g(s)dz is not.

Remark 6. The optimal profiles in (45) are the rarefaction waves (entropy solutions) to
the following Riemann problem:

∂t s − ∂z(g(s)) = 0, s(0, z) = s0(z).

If g = s(1 − s), then Cg =
√

2/3 and the optimal profile is the linear rarefaction wave
in (14). If g = − (s log s + (1 − s) log(1 − s)), Cg = π

√
2/3.

Proof. 1. Symmetrization. Given s : R → [0, 1] define its symmetrization

ssymm(z) = 1
2

(s(z) + 1 − s(−z)) . (46)

Observe that ssymm is symmetric about the origin in the sense that

ssymm(z) = 1 − ssymm(−z). (47)

E is unchanged under symmetrization, that is
∫

R
(s0 − ssymm) z dz =

∫

R
(s0 − s) z dz. (48)

On the other hand, since g is concave and symmetric we have

g(ssymm(z)) ≥ 1
2

(g(s(z)) + g(1 − s(−z))) = 1
2

(g(s(z)) + g(s(−z))) .
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Therefore,
∫

R
g(ssymm(z)) dz ≥

∫

R
g(s(z)) dz. (49)

2. Rearrangement. We now consider the increasing rearrangement srearr of ssymm. Rear-
rangement does not change the distribution function of ssymm ( [14, Ch.3]) and we have

∫

R
g(srearr (z)) dz =

∫

R
g(ssymm(z)) dz. (50)

On the other, rearrangement decreases the potential energy. This is easily seen when
ssymm is a simple function, and the general case follows by approximation.
3. Henceforth, we will suppose that s(z) = srearr (z). We will first show that there is
some constant C such that

∫
R g(s)ds ≤ CE1/2 and then find the sharp constant and

optimal profile. In the following, C denotes a constant that depends only on α and g
that may increase from line to line. By the symmetry of s and g it suffices to consider∫ 0
−∞ g(s(z))dz. Let θ > 0. We then have

∫ 0

−∞
g(s(z))dz =

∫ 0

−θ
g(s(z))dz +

∫ −θ

−∞
g(s(z))dz

≤ θ‖g‖∞ + C

∫ −θ

−∞
sα(z)dz

≤ θ‖g‖∞ + C

(∫ 0

−∞
|z|s(z)dz

)α (∫ −θ

−∞
|z|−α/(1−α)dz

)1−α

≤ θ‖g‖∞ + CEαθ1−2α. (51)

We optimize and substitute θ = ‖g‖−1/2α
∞ E1/2 in (51) to obtain

∫

R
g(s(z))dz ≤ C‖g‖1−1/2α

∞ E1/2. (52)

4. The best profile and constant: The sharp constant is

Cg = sup
s

∫
R g(s(z)) dz

E1/2 , (53)

where the supremum is taken over all s : R → [0, 1] measurable. As we have seen, we
may restrict attention to increasing, symmetric s. In this case, we may identify s as a
probability distribution function, and consider Lebesgue-Stieltjes integrals with respect
to the positive measure s(dz) [8]. We will now consider the right inverse of s(z) written
as z(s). Then we have

E =
∫

R
(s0 − s(z)) z dz =

∫

R

z2

2
s(dz) = 1

2

∫ 1

0
(z(s))2 ds. (54)

Moreover, we may also write
∫

R
g(s(z)) dz =

∫ 1

0
g(s)

dz

ds
ds = −

∫ 1

0
g′(s)z(s) ds.
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It follows from the Cauchy-Schwarz inequality and (54) that

∫

R
g(s(z)) dz ≤

(∫ 1

0
g′(s)2 ds

)1/2 (∫ 1

0
(z(s))2 ds

)1/2

=
(

2E

∫ 1

0
g′(s)2 ds

)1/2

.

The inequality is sharp if and only if z(s) = tg′(s) for some t > 0. 12

4. Diffusive Slowdown

4.1. Bulk estimates and diffusion. The upper estimate a(t) ≤ 2t in Theorem 1 does not
account for the effect of diffusion. The same estimate is obtained if we neglect diffusion,
and rewrite Eq. (1) as

∂t s + u · ∇s = 0.

Mass is now transported only by convection, and (41) changes to Ė = −
∫

|u|2. We now
use (40) to obtain

Ė =
∫

R
s(1 − s) dz − H −

∫
|∇p|2 ≤

√
2E

3
, (55)

which we integrate to obtain E(t) ≤ t2/6 as earlier. Moreover, this naive upper bound is
sharp if we consider a weak solution obtained as the limit of a periodic array of Saffman-
Taylor fingers. A similar analysis on the reduced model (18)–(19) yields the analogous
(and simpler) estimate

Ė = −
∫

(s − s)2 dx =
∫

R
s(1 − s)dz − H ≤

√
2E

3
. (56)

One effect of diffusion is to produce molecularly mixed “mushy zones” where 0 < s < 1.
If these zones are sufficiently large, then they act as drags on the bulk motion. More
precisely, the existence of lower bounds of the form

lim inf
t→∞

H(t)

t
≥ c, or lim inf

t→∞

∫
|∇s|2 dx ≥ c, (57)

for some c > 0, coupled with (28) shows that lim supt→∞ 6E/t2 < 1 (strict inequality).
However, neither inequality in (57) is true in full generality (initial data s0 serves as a
counterexample again). We have been unable so far to prove diffusive slow down in (1)–
(2) by this argument. It is worth noting that obtaining similar bounds is a key obstruction
in mathematical studies of turbulence [3, Sect. 3]. Nevertheless, the estimates in (57)
provide a valuable heuristic hint about the role of gradients and diffusion.
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4.2. Proof of Theorem 3. We construct upper and lower solutions that bound the spread-
ing of solutions to (18)–(20). The main heuristic idea is the gradients are always sharp
at fingertips. This suggests comparing s(t, x) with a suitable viscous shock profile. By
the symmetry of the problem, it suffices to bound the downward spreading by an upper
solution. The upper solutions are viscous shock profiles for Burgers equation (more
precisely, Burgers equation with a concave flux −s2/2), that is

∂t s∗ − ∂z

(
s2
∗
2

)
= ∂2

z s∗. (58)

We consider viscous shocks that connect the states ε > 0 and 1 + ε at ∓∞ respectively.
ε > 0 may be chosen arbitrarily small. The viscous shock profiles are found by making
the traveling wave ansatz s∗(t, x) = sε(z + cεt) := sε(ζ ) in (58). The only admissible
speed cε is determined by the Rankine-Hugoniot condition,

cε = 1
2

(1 + ε)2 − ε2

1 + ε − ε
= 1

2
+ ε. (59)

The shock profiles solve the differential equation

dsε

dζ
= 1

2
(1 + ε − sε) (sε − ε) . (60)

Thus, sε is strictly increasing and given explicitly by

sε(ζ ) = ε + 1
2

(
1 + tanh

(
ζ − z0

4

))
, (61)

where z0 is an arbitrary constant that reflects the invariance of (58) under translations in
z. In order to find lower solutions, we transform (58) under the symmetry s∗ → 1 − s∗,
z → −z, to obtain,

∂t (1 − s̃∗) + ∂z

(
(1 − s̃∗)2

2

)
= ∂2

z (1 − s̃∗). (62)

The viscous shock profile that connects the states ε, 1+ε at ∓∞ is s̃∗(t, x) = sε(z−cεt).
The speed cε and profile sε are given by (59) and (61) respectively. Theorem 3 now fol-
lows from the following lemma.

Lemma 4. Assume s(t, x) is a classical solution to (18)–(19) with continuous initial
data s(0, x).

(a) If s(0, x) < s∗(0, x), then s(t, x) < s∗(t, x) for all t ≥ 0.
(b) Similarly, if s(0, x) > s̃∗(0, x), then s(t, x) > s̃∗(t, x) for all t ≥ 0.

Proof (of Theorem 3). Fix c > 1/2. Let ε be arbitrary with

0 < ε ≤ 1
2

(
c − 1

2

)
.

Then by (59)

c − cε ≥ ε > 0. (63)
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Since limz→−∞ maxy s(0, y, z) = 0, we may choose z0 in (61) such that s(0, x) <
s∗(0, x) for all x. By Lemma 4 we then have

s(t, y, −ct) < s∗(t, −ct) = sε((cε − c)t).

In view of (61) and (63), this yields

lim sup
t→∞

max
y

s(t, y, −ct) ≤ ε.

Since ε was arbitrary, we obtain as desired

lim
t→∞

max
y

s(t, y, −ct) = 0.

The proof of the lower estimate in (23) is similar, and is omitted. 12

Proof (of Lemma 4). The proof is a direct application of the maximum principle. We
write (18) in non-divergence form

∂t s + v∂ys + (s − s)∂zs − .s = 0, (64)

and compare it with (58) rewritten as

∂t s∗ + v∂ys∗ + (s − s∗)∂zs∗ − .s∗ = s∂zs∗. (65)

Let θ = s∗ − s. We subtract (64) from (65), and rearrange terms to obtain

∂tθ + v∂yθ + w∂zθ − θ∂zs∗ − .θ = s∂zs∗. (66)

We notice that by the strong maximum principle for (18) we have s > 0 for t > 0 and
thus also s > 0 for t > 0. On the other hand, ∂zs∗ > 0 as can be seen from (61). Hence
the r. h. s. of (66) is strictly positive

s∂zs∗ > 0 for t > 0. (67)

We now argue by the maximum principle. Assume θ ≥ 0 was not true. Since θ(0, x) ≥ 0
and limz→±∞ θ(t, y, z) = ε uniformly in (t, y), there exists a (t∗, x∗) ∈ (0, ∞) × R2

such that

θ(t∗, x∗) = 0 and θ(t, x) ≥ 0 ∀(t, x) ∈ (0, t∗) × R2.

In particular,

∂tθ(t∗, x∗) = ∂yθ(t∗, x∗) = ∂zθ(t∗, x∗) = 0 and .θ(t∗, x∗) ≥ 0. (68)

Hence by (66) we would obtain s∂zs∗(t∗, x∗) ≤ 0 — in contradiction to (67). The proof
of the lower estimate is identical. Redefine θ = s − s̃∗. We then have

∂tθ + v∂yθ + w∂zθ − θ∂zs̃∗ − .θ = (1 − s)∂zs̃∗, (69)

and (68) holds again at a point of minimum. 12
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