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We describe a kinetic theory for shock clustering in scalar conservation laws with
random initial data. Our main discovery is that for a natural class of random data
the shock clustering is described by a completely integrable Hamiltonian system.
Thus, the problem is in a precise sense exactly solvable. Our results have impli-
cations in other areas: mathematical physics (limits of shell models of turbulence,
and forced Burgers turbulence); probability theory (explicit computations of laws
of excursions); and statistics (limit laws in the vicinity of maxima).

Our work grew out of a study of Smoluchowski’s coagulation equation. This
is a mean-field model of domain coarsening, first introduced to model coagulation
in colloids. Quite remarkably, it also describes the clustering of shocks in Burgers
equation for a class of random initial data [3, 7, 12]. This is a particular case of
Burgers turbulence– the study of shock statistics in Burgers equation with random
initial data or forcing. Our goal was to understand if this link between a mean-field
model of coalescence and shock clustering was an isolated example, or part of a
more general theory. It is in fact, a consequence of the theory outlined below.

The problem. We consider the scalar conservation law

(1) ∂tu + ∂xf(u) = 0, x ∈ R, t > 0,

with a C1 convex flux function f and random initial data u(x, 0) = u0(x). The
entropy solution to (1) is given by the Hopf-Lax formula. Thus, (1) induces the
evolution of the law of u0. The problem is to determine this evolution.

The main assumption we make is that u0 is a Markov process (in x) with only
downward jumps. This assumption is motivated by some remarkable exact so-
lutions in Burgers turbulence. Burgers considered white noise initial data in his
pioneering work on statistical hydrodynamics [4, 5, 6]. The same problem also
arose in statistics [9], and was solved in this context by Groeneboom [10]. He
showed that for every t > 0, the process u(x, t), x ∈ R is a stationary Markov
process with only downward jumps, and he computed the generator of this pro-
cess explicitly. There are two remarkable aspects to his solution: the first is the
‘structural’ fact that the Hopf-Lax formula respects the Markov property of u0.
The second is that the law of u(x, t) can be computed explicitly. We now explain
how both features hold in generality.

Kinetic theory and Lax equations. This part is joint work with Ravi Srinivasan [13].
The following closure theorem holds: if u(x, 0) is a Markov processes with only
downward jumps, then so is the entropy solution u(x, t), t > 0.

Markov processes with some regularity (Feller processes) are characterized by
their generators. For example, if u(x, t) is a stationary, spectrally negative Feller
process in x, its generator A(t) acts on test functions ϕ ∈ C1

c (R) via

(2) Aϕ(y) = b(y, t)ϕ′(y) +

∫ y

−∞

(ϕ(z) − ϕ(y)) n(y, dz, t).
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These terms correspond to the drift and jumps (i.e. rarefactions and shocks) of u.
The closure theorem reduces the problem of evolution of shock statistics to

a study of the evolution of the generators. One of our main results is that the
evolution of A is given by the Lax equation

(3) ∂tA = [A,B] = AB − BA.

Here B is defined by its action on test functions as follows:

(4) Bϕ(y) = −f ′(y)b(y, t)ϕ′(y) −

∫ y

−∞

f(y) − f(z)

y − z
(ϕ(z) − ϕ(y)) n(y, dz, t).

It requires considerable insight to realize that this approach is fruitful, and our
work was greatly inspired by Duchon and his co-workers [7, 8]. In particular, (3)
simplifies and generalizes their work. The Lax equation (3) expands (using (2)) to
yield kinetic equations of shock clustering for b and n. All known exact solutions
to Burgers turbulence satisfy (3).

Hamiltonian structure and geodesic flows of Markov operators. Lax pairs are syn-
onymous with completely integrable systems. We also noted other ‘integrable
properties’ in [13] (a Painlevé property, connections with random matrices, and
more). Much of our work since the discovery of (3) has been devoted to under-
standing this structure. The following picture has emerged, though many aspects
remain to be pinned down.

To show that (3) is a Hamiltonian system we must introduce a phase space,
a symplectic structure and a Hamiltonian. This is done by discretization and a
passage to the limit. We restrict u(x, t) to a Markov process on an n-dimensional
state space. In this case A is an n × n matrix (say A), and (3) yields a matrix

evolution equation Ȧ = [A, B] where Bij = FijAij is a natural discretization of
(4). This is a Hamiltonian system with the symplectic structure of Kostant and
Kirillov and a quadratic Hamiltonian H(A) =

∑
ij AijBij . In the limit n → ∞,

we find that (3) is a Hamiltonian flow on a Lie algebra of generators of Markov
processes. When f ′ > 0, (3) formally describes geodesic flows on a space of Markov
processes with metric determined by f .

The spectral curve and algebraic complete integrability. The fact that (3) is com-

pletely integrable appears to follow from the following simple observation. Let M
and N denote multiplication operators acting on the domain of A, defined by

(5) Mϕ(y) = yϕ(y), Nϕ(y) = f(y)ϕ(y).

It is clear that M and N are diagonal operators. We now use the definitions (2),
(4) and (5) to find

(6) [A,N ] − [M,B] = 0.

This observation allows us to introduce a spectral parameter µ ∈ C in the Lax
equation. We use (3) and (6) to obtain

(7) ∂t (A− µM) = [A− µM,B + µN ], µ ∈ C.
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If A, B were n × n matrices, it would follow that the spectral curve (Riemann
surface)

(8) Γ = {(λ, µ) ∈ C
2 |det(A− λid − µM) = 0},

is fixed by the evolution. This is the crucial observation that yields the existence
of additional integrals for Euler’s equations in so(n), n ≥ 4 in Manakov’s treat-
ment of Euler’s equations [11]. These integrals are simply the coefficients of the
characteristic polynomial above.

This observation shows that the discretizations of (3) describe completely in-
tegrable flows on the ‘Markov’ group {A ∈ gl(n)|

∑n

j=1
Aij = 1, i = 1, . . . , n} in

precise analogy with Manakov’s work. More broadly, it reveals a close relation
with a large class of completely integrable systems (including KdV, the Toda lat-
tice, geodesic flows on so(n) and ellipsoids, and the integrable PDEs of random
matrix theory). The complete integrability of all these flows may be obtained in
a unified way via a general splitting theorem for Lie algebras [1]. This connection
also sets the stage for the application of powerful methods from algebraic geometry
to integrate (3) explicitly for every convex f [2].
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[7] L. Carraro and J. Duchon,Équation de Burgers avec conditions initiales à accroissements
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