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1 Introduction

Model problems in turbulence play an important role in guiding the anal-
ysis of complex stochastic systems. Our purpose in this paper is to illus-
trate the utility of a class of exact solutions in Burgers turbulence – the
study of Burgers equation with random initial data – as a means to develop
and benchmark numerical methods to study the evolution of ensembles of
solutions to complex systems. The exact solvability of finite-dimensional
truncations of Burgers equation has been used to illustrate strategies for
model-reduction and coarse-graining (e.g. [12, 15]). The exact solutions
that underlie this work are infinite-dimensional, as explained below, and
require a different coarse-graining strategy. Our work combines two recent
advances– (a) the development of equation-free numerical schemes for mul-
tiscale problems [1, 14]; and (b) the development of a kinetic theory for shock

clustering in scalar conservation laws with random initial data [16, 18, 19].
The essence of the equation free method is to extract the evolution of

coarse macroscopic statistics for a system of microscopically evolving parti-
cles by designing many brief parallel “bursts” of short-time evolution for the
microscopic system. Equation-free schemes are of most value when the mi-
croscopic evolution is fast and complex (given for example, by a detailed, but
expensive, multiphysics code), but the evolution of macroscopic variables is
slow and their evolution equations unknown. The fact that the closed evolu-
tion equations for the macroscopic statistics are unknown, or not known in
closed form, is what makes these methods “equation-free”. Nevertheless, as
in all numerical methods, it is important to validate these schemes on model
systems that are reasonably complex, but for which closed form equations
for the coarse-grained problem are available.

The work presented here bridges this gap. We focus on the macroscopic
statistics of the entropy solution to scalar conservation laws with random
initial data. To fix ideas, consider the problem of determining the statis-
tics of the solution to Burgers equation with a random velocity field, such
as Brownian motion or white noise. The initial velocity field immediately
develops a profile consisting of infinitely many shocks separated by steep
rarefaction waves, which cluster and decay as time increases (see Figure 1).
As one may expect, the process of shock clustering is complex (Burgers was
motivated by turbulence [4]). Nevertheless, for certain classes of random
data (including Brownian motion and white noise), the evolution of shock
statistics is closed, and in fact, exactly solvable. In recent work, one of the
authors (G.M.) and R. Srinivasan, derived kinetic equations that describe
the clustering of shocks for any scalar conservation with convex flux f , and
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random initial data within a large class [19]. Burgers turbulence is an inter-
esting, but particular, instance of this theory.

The combination of the equation-free method and the kinetic theory of
shock clustering can now be explained. Each microscopic state here is a
spatial random field – the random velocity field u(x, t)x∈R at any instant
in time, and the microscopic interaction is the rapid clustering of many
shocks in a short time frame. The macroscopic statistics are the probability
distribution of u(x, t)x∈R (its n-point distribution functions). We compare
the statistics computed via the equation-free scheme with the exact solutions
given by the kinetic theory.

Our aims in this work are two-fold: (a) to demonstrate the utility of the
equation-free methodology for computing dynamic scaling in shock cluster-
ing; (b) to present the exact solutions in shock clustering as a useful bench-
mark problem for other practitioners in multiscale methods. For these rea-
sons, this paper is organized as follows. We first review the exact solubility
of scalar conservation laws with Markov process initial data, and the kinetic
theory of shock clustering in Sections 2.1 and 3.1. We interpret these sys-
tems in the context of the equation-free methodology in Sections 2.2 and 3.3.
Finally, we turn to a set of numerical experiments that illustrate the method
on a basic test case: the statistics of shocks to Burgers equation with Lévy
process initial data in Section 4. In this case, the kinetic equations of [19]
reduce to a basic model of clustering – Smoluchowski’s coagulation equation
with additive kernel. The equation free method provides a new numerical
scheme for Smoluchowski’s coagulation equation. This method is shown to
accurately and efficiently compute all self-similar solutions, including those
with fat tails. Finally, it should be noted that the use of dynamic rescaling in
the method presented here allows us to accurately compute these solutions
with fewer particles in the system – a naive long-time evolution requires a
prohibitively large number of particles.

2 Background

2.1 Resolving the closure problem

One of the central obstructions in studies of turbulence (e.g. in homogeneous
isotropic turbulence in incompressible fluids) is the closure problem: the
evolution equations for n-point statistics involve n + 1-point statistics. The
results presented in [19] resolve the closure problem for a tractable, but
fundamental, class of nonlinear partial differential equations. Consider a

3



v

x

u(x, t )

u

w

+

x

u

v

u(x, t  )

Figure 1: A caricature of shock clustering in Burgers equation. The left and
right figure illustrate the velocity field just before and just after a collision at
time t. Two shocks connecting states u and w, and w and v, with v < w < u
merge to give a shock connecting states u and v.

scalar conservation law on the line

∂tu + ∂xf(u) = 0, −∞ < x < ∞, t > 0, (1)

u(x, 0) = u0(x), (2)

with a convex, C1 flux f . The unique entropy solution to (1) is given by
the Hopf-Lax formula (e.g. [19, §1.1]). The two main results in [19] are as
follows:

1. Closure theorem: If u0(x) is a Markov process (in x) with only down-
ward jumps (a spectrally negative Markov process), then so is the so-
lution u(x, t) for each t > 0.

2. Kinetic theory: The infinitesimal generator of u(x, t) satisfies a Lax
equation (equation (5) below) that describes the kinetics of shock clus-
tering.

The closure theorem shows that a large class of random processes is left
invariant by the Hopf-Lax formula. Since the n-point function for a Markov
process on the line factors into 1 and 2-point distribution functions, the
closure theorem tells us that the evolution of these functions determines the
evolution of n-point statistics exactly. The generator provides an efficient
representation of 2-point statistics: informally, it is the derivative of the
2-point distribution function as the gap between the 2-points shrinks to
zero. It is simplest to explain its form under the assumption that u(x, t) is
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Figure 2: The structure of a Markov process (in x) with generator given by
(3). Each sample path has the form above, with rarefactions interspersed
with jumps. Each rarefaction wave on an interval (xl, xr) is the unique
solution to the ordinary differential equation du/dx = b(u(x)) with end-
states ul and ur as shown. The jump measure N(u, dv) describes the rate
of jumps from states u to v; the only admissible jumps are to states v < u.

a stationary Markov process (in x) with mean zero. In this case, for each
t > 0, the generator A(t) is an integro-differential operator that acts on test
functions ϕ ∈ C1

c (R) via

A(t)ϕ(u) = b(u, t)ϕ′(u) +

∫ u

−∞

(ϕ(v) − ϕ(u)) N(u, dv, t). (3)

The jump kernel N(u, dv, t) describes the rate of jumps (shocks) from state
u to state v at time t. Observe that the velocity field u(x, t) jumps only
downwards as x increases (i.e. u > v). However, this does not mean that
u(x, t), x ∈ R is decreasing – it can increase continuously through rarefac-
tions – this is described by the drift coefficient b(u, t). Figure 2 illustrates the
interaction between the form of the generator and the graph of the solution
u(x, t)x∈R for fixed t > 0.

We use the flux function f and the drift and jump measure of A to define
a second operator

Bϕ(u) = −f ′(u)b(u, t)ϕ′(u) −
∫ u

−∞

f(u) − f(v)

u − v
(ϕ(v) − ϕ(u)) N(u, dv, t).

(4)
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Then the Lax equation derived in [19] is

∂tA = [A,B] = AB − BA. (5)

The compact form of (5) is equivalent to (lengthy, but intuitive) Vlasov-
Boltzmann equations for the drift b(u, t) and jump kernel N(u, dv, t) ob-
tained by substituting the definitions (3)–(4) in the Lax equation (5) (see [19,
equations (26)–(30)]). These are the kinetic equations for shock clustering.

2.2 An equation free approach to shock clustering

The equation-free methodology is applicable to systems with evolution on
two decoupled scales – fast evolution of microscopic states and slow evolu-
tion for macroscopic statistics that describe averages over the microscopic
states. The evolution of the microscopic states is assumed to be known.
The evolution of macroscopic statistics is assumed to satisfy a closed equa-
tion, but the precise form of this equation is not assumed to be known,
and is computationally approximated via a coarse evolver as follows. The
macroscopic statistic at time t is (i) “lifted” into an ensemble of microscopic
states consistent with this macroscopic statistic; (ii) each microscopic state
in the ensemble is evolved by the fast evolution over a time step ∆t; (iii)
the macroscopic statistic at time t + ∆ is obtained by averaging over the
ensemble of microscopic states at time t + ∆t.

We now combine the kinetic theory of shock clustering with the equation-
free methodology. Assume t > 0 is fixed. A microscopic state is a spatial
random field u(x, t)x∈R. The microscopic evolution is the clustering of shocks
and the decay of rarefactions. The macroscopic statistics are its 1 and 2-
point functions. Since the 1 and 2-point functions can be computed once
A(t) is known, an equivalent macroscopic statistic is the generator A(t),
and the closed macroscopic evolution is given by the Lax equation (5). This
(exact) evolution is contrasted with the computational coarse evolver that
uses only the microscopic evolution of shocks and rarefactions.

Thus, for this particular application, the coarse evolver of the equation-
free scheme consists of three steps:

1. Sample P realizations of the Markov process u(x, 0) given its generator
A(0). Call these uj(x, 0), j = 1, . . . , P .

2. Evolve each realization uj in parallel for a short burst of time ∆t by
the PDE (1). This has a simple particle interpretation – the shocks
behave like sticky particles – with a rule of ‘stickiness’ determined by
f .
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3. Estimate the generator A(∆t) from the P realizations uj(x,∆t), j =
1, . . . , P . In practice, this is the most difficult step.

At the end of the short time burst, ∆t, we have progressed from A(0) to
A(∆t). In general, the time evolution of A(t) may now be accelerated by
using the difference (A(∆t) − A(0))/∆t as an estimate of Ȧ at t = 0. For
example, this estimate can be fed into a forward Euler integration scheme
with a time-step ∆T ≫ ∆t.

In the examples treated in this paper, the shocks cluster into larger and
larger shocks as time evolves, and the natural long-time limit to consider
is self-similar shock statistics. We use two distinct techniques to accelerate
the time evolution to capture the self-similar solutions. The first is dynamic

renormalization. After time ∆t we suitably rescale A(∆t) before using it
as the input to the next step of the microscopic evolver. This approach can
only be used to compute self-similar solutions that are dynamically stable
(in rescaled variables). In the second approach, the self-similar solution is
reformulated as a coarse fixed point problem. Self-similar solutions are then
determined via a Newton-GMRES scheme. The advantage of this approach
is that the method will converge quadratically (given a sufficiently good
initial guess) regardless of the stability of the desired self-similar solution.
Both these approaches have been explored in previous work by one of the
authors (I.G.K) and his co-workers (see e.g. [11]). The main novelty here
lies in the application of these techniques to shock-clustering. In order to
describe the implementation of these ideas, we now describe some exact
solutions to shock clustering in greater detail.

3 Exact solutions: theory and computation

3.1 The Burgers-Lévy case

The work [19] builds on two sets of results for Burgers equations: pioneering,
but formal, calculations of Duchon and his students [5, 6]; and an important
closure theorem of Bertoin [2]. It is simplest to describe these results in the
following situation.

Consider the entropy solution to Burgers equation on the half-line [0,∞):

∂tu + ∂x

(

u2

2

)

= 0, 0 < x < ∞, t > 0 (6)

u(x, 0) = u0(x) ≤ 0, (7)

where u0(x) is a piecewise constant, decreasing Lévy process. (A boundary
condition at 0 is not needed since characteristics only flow out of the domain

7



[0,∞)). In this context, Bertoin’s closure theorem asserts that the process
u(x, t)−u(0, t),x ≥ 0 remains a piecewise constant, decreasing Lévy process
for each t > 0. Lévy processes are Markov processes with increments that
are independent and identically distributed. Consequently, their jump kernel
N(u, dv) depends only on the difference u−v. By Bertoin’s theorem, at any
t > 0, the generator A(t) is of the form 1

A(t)ϕ(u) =

∫ ∞

0
(ϕ(u − s) − ϕ(u)) f(s, t) ds. (8)

The general Vlasov-Boltzmann equation (5) now simplifies to Smoluchowski’s

coagulation equation with additive kernel :

∂n

∂t
(s, t) =

1

2

∫ s

0
s n(t, s − s′)n(s′, t)ds′ −

∫ ∞

0
(s + s′)n(s, t)n(s′, t)ds′, (9)

where the number density n(s, t) is related to the Lévy density f(s, t) by

n(s, t) =
f(s, t)

∫ ∞

0 rf(r, t) dr
. (10)

We briefly review an intuitive description of the link between (6) and
(9) [18, §2.1]. First, note that by restricting attention to piecewise constant,
decreasing velocity fields, we have prevented the appearance of any rarefac-
tion waves in the system. Let m0(t) =

∫ ∞

0 f(s, t) ds denote the expected
number of jumps for the Lévy process u(x, t) in a unit interval and assume
m0(0) < ∞. Then m0(t) ≤ m0(0) < ∞ for each t > 0 since the total num-
ber of shocks can only decrease by collisions. For each t ≥ 0, the process
u(x, t) − u(0, t) with jump density f(s, t) has the following form:

1. The shock locations 0 = x0(t) < x1(t) < x2(t) < . . . xj(t) < . . . form a
Poisson process with rate m0(t).

2. The size of the shocks sj(t) at the jump locations xj(t) are indepen-
dent, identically distributed (iid) random variables with probability
density m0(t)

−1f(s, t).

3. The velocity difference u(x, t)−u(0, t) is a piecewise constant function
that takes the values

uk(x, t) = −
k−1
∑

j=1

sj, xk−1 < x < xk, k ≥ 1. (11)

1We have assumed that the Lévy measure of u(x, t) has a density f(s, t) for convenience.
See [18, 2] for the completely general statement
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In order that such a velocity field constitute a weak solution to (6), the
speed of shocks is given by the Rankine-Hugoniot relation

ẋk = −
k−1
∑

j=1

sj −
sk

2
, (12)

When two shocks meet, they stick and the speed recomputed from the
Rankine-Hugoniot relation with the new left and right limits. We com-
pute the rate of growth and decay of individual shocks by summing over all
possible collision events to obtain (9) (see [18, §2.1] for details).

3.2 Long time asymptotics

The behavior of (9) is well understood [17]. Consider the pth moment

Mp(t) =

∫ ∞

0
spn(s, t) ds, (13)

and call M0(t) the total number and M1(t) the total mass 2. Then equation
(9) has a unique global solution for any initial measure with M1 < ∞ [17,
Thm 2.8] (other moments, including M0 may be infinite). Further, the
solution preserves mass, and without loss of generality, we may rescale the
initial data n0 so that

M1(t) =

∫ ∞

0
sn(s, t) ds = 1, t ≥ 0. (14)

For each ρ ∈ (0, 1], equation (9) has a self-similar solution

n(s, t) = e−2t/βnρ(e
−t/βs), (15)

where β = ρ/(1 + ρ), and

nρ(s) =
1

π

∞
∑

k=1

(−1)k−1skβ−2

k!
Γ(1 + k − kβ)sin πkβ. (16)

In the case ρ = 1, the formula above simplifies to

n1(s) =
e−s/4

√
4πs3

. (17)

2This terminology is motivated by the origins of Smoluchowski’s coagulation equation
in physical chemistry [8]
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Each self-similar solution has mass 1. However, they differ in their asymp-
totics as s → ∞. Only the solution for ρ = 1 has an exponential tail; for
each 0 < ρ < 1, we find the algebraic decay (“fat tail”)

nρ(s) ∼
ρ + 1

|Γ(−ρ)|s−(2+ρ)
s → ∞. (18)

As a consequence, for any 0 < ρ < 1, the ρ+ 1-st moment diverges logarith-
mically:

∫ s

0
r1+ρnρ(r) dr ∼ ρ + 1

|Γ(−ρ)| log s, s → ∞. (19)

All initial densities with M2 < ∞ converge to the self-similar solution
with ρ = 1. The approach to the fat-tailed self-similar solutions is delicate.
Roughly speaking, an initial density n(s, 0) lies in the domain of attraction
of nρ if and only if the tails of n(s, 0) diverge in the same manner as (18)
(see [17, Thm 7.1] for necessary and sufficient conditions). This analytical
subtlety is reflected in numerical calculations of self-similar solutions: a typ-
ical fixed point method for finding self-similar solutions usually converges to
n1(x), not to any of the fat-tailed solutions. Since the divergence in (19) is
only logarithmic, we will impose the condition M1+ρ < ∞ as a “pinning con-
dition” in both the dynamic renormalization and Newton-GMRES schemes
to compute the fat-tailed self-similar solutions nρ, 0 < ρ < 1.

3.3 Implementing the coarse evolver

As described in Section 2.2, implementation of the equation-free method
requires an efficient scheme to estimate the jump kernel of a Markov process,
given P paths. This estimation problem is considerably simpler for the
Burgers-Lévy case. In order to understand the issue, imagine approximating
the initial velocity field u(x, 0) in (2) by a Markov process with M states
v1 < . . . < vM . In this case, the generator AM (0) is an M × M matrix and
it is easy to sample N velocity fields uj(x) generated by AM (0). Similarly,
it is easy to evolve each random velocity field by (1) using the Hopf-Lax
formula, since a convex hull of N points can be computed in O(N log N)
steps. Thus, after time ∆t we have P random velocity fields uj(x,∆t), and
our task is to form the best estimate of the generator AM (∆t) from these
samples. In general, the matrix AM (∆t) has O(M2) terms. However, in
the Burgers-Lévy case, as a first approximation, the generator is a Toeplitz
matrix with only M terms. Thus, for fixed M , it can be estimated with
higher accuracy even with relatively few realizations (smaller P ). For these
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reasons, we focus on the Burgers-Lévy case in this article. We expect to
analyze the general Lax equation (5) in future work.

We fix a maximal number of particles N0 and a time step ∆t. The coarse
evolver in our numerical computation takes the following form.

1. Assume the initial Lévy measure has a density f(s, 0) with m1(0) = 1
and m0(0) < ∞.

2. Generate the first N0 jumps of a decreasing Lévy process u0(x) with
jump density f(s, 0). The initial length of the computational domain
is L(0) = xN0

.

3. Evolve the Lévy process by Burgers equation up to time ∆t. This is
done in one-step, either by the use of the Hopf-Cole formula, or by the
sticky particle algorithm of [3]. As noted above, this step involves the
computation of a convex hull, and requires O(N0 log N0) steps (i.e. it
is fast).

4. Let N(∆t) denote the number of particles in the system and let L(∆t) =
xN(∆t) − x1(∆t). Compute the empirical Lévy measure

f (e)
e (s,∆t) ds =

1

L(∆t)N(∆t)

N(∆t)
∑

k=1

δsk(∆t)(ds). (20)

This is the coarse evolver for one trial. In fact, P trials can be run in

parallel, and if the empirical Lévy density of each of these is f
(e)
j , we further

average over the P trials to obtain the coarse evolution

f (e)(s,∆t) ds =
1

P

P
∑

j=1

f
(e)
j (s,∆t). (21)

In practice, the scheme above has to be modified to streamline the computa-
tion. First, we further smooth the empirical density in (21) to simplify the
task of sampling a Lévy process with this empirical density when f (e)(·,∆t)
is used as input. Second, all the self-similar solutions have divergent total
number (i.e.

∫ ∞

0 nρ(s) ds = ∞). The divergence arises from the number of

small clusters (e.g. n1(s) ∼ s−3/2 as s → 0). At each step of the renor-
malization, the number m0(∆t) increases. The computation is terminated
when m0 crosses a fixed threshold (the maximal number we use is 2× 107).
We finally note that the Lévy density (8) completely specifies the generator
A(t). Thus, we have demonstrated, as explained in Section 2.2, that the
coarse evolution is a map from A(0) to A(∆t).
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4 Numerical experiments

4.1 Fixed point equations

In the numerical experiments, we find it more convenient to work with the
Smoluchowski density n, which is related to the Lévy density f through
(10). It is helpful to denote the coarse evolver as follows: the procedure of
Section 3.3 provides a map: n 7→ G(n) for a Smoluchowski density n(s) on
(0,∞). This allows us to recognize the self-similar profiles as fixed points of
a suitable map. Explicitly, we use (15) to see that for each ρ, if aρ = e2∆t/β

and bρ = e∆t/β , with β = ρ/(1 + ρ) then

nρ(s) := aρG(nρ(bρs). (22)

These profiles are numerically computed as follows. We start by fixing a
value for the parameter ρ in the range (0, 1]. Given a Smoluchowski density
n with compact support, let Rρ(n) denote the rescaling of n that satisfies
the pinning conditions3

∫ ∞

0
sRρ(n)(s) ds = 1,

∫ ∞

0
s1+ρRρ(n)(s) ds = 1. (23)

For each ρ ∈ (0, 1] and a Smoluchowski density n with sufficiently rapid
decay, we define the renormalized mapping

Hρ(n) := RρGRρ. (24)

The mapping Hρ is a synthesis of time evolution and dynamic rescaling.
When ρ = 1, the self-similar profile n1(s) is a fixed point of H1; for 0 < ρ < 1,
it is not true that nρ = Hρ(nρ). This is because nρ does not have finite
1 + ρ-th moment. Nevertheless, this moment is ‘critical’ in terms of the
asymptotic relation (19), and the divergence is logarithmic. Thus, since we
are restricted to a finite domain in computations, it is natural to seek the
fat-tailed solutions as fixed points of Hρ.

We use two strategies to find the fixed point. The first is a direct iteration
of the map above. We term this dynamic renormalization. The scheme is
as follows. We first fix 0 < ρ ≤ 1 and an initial Smoluchowski density n(0).
We then generate a sequence of Smoluchowski densities via the iteration

n(k+1) = Hρ

(

n(k)
)

. (25)

3See, for example [21] for a broder discussion of the role of such conditions in dynamic
scaling.
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A second method of solving this equation is to use a fixed point algorithm,
such as the Newton-GMRES scheme. For any density n we define the resid-
ual

r = n −Hρ(n)

and use a Newton iteration to solve this equation for a value of n that yields
r = 0. In this setting, the combination of the Newton-Raphson method
with the matrix-free GMRES scheme is particularly advantageous because
the Jacobian, ∂r/∂n does not need to be computed explicitly. Instead, a
series of “numerical experiments” is used to approximate the Jacobian in a
Krylov subspace. In the results that will follow, the Newton iteration scheme
is augmented with an Armijo line search to make the iteration scheme more
robust to the choice of initial guess.

Note that neither procedure selects ρ automatically. Further, our choice
of initial conditions is guided by ρ. We use a monodisperse initial condition
for ρ = 1 (all shocks of initial size 1), and for other ρ we choose the ini-
tial condition n(0) = s−(2+ρ). Thus, our approach is certainly guided by a

priori knowledge of the existence of a 1-parameter family of self-similar so-
lutions. In fact, earlier numerical schemes for the computation of self-similar
solutions implicitly used the pinning condition M2 = 1, and thus computer
experiments did not reveal the existence of fat-tailed solutions [13]. We view
this degeneracy as a useful cautionary note for the numerical computation of
self-similar solutions, here and in other problems, even simple model systems
such as the heat equation on the linear.

4.2 Results

Various representative results of our computations are presented here. In all
the examples below, we denote the exact self-similar solution by nρ and the
numerically computed fixed point by ñρ. We first compare the exact and
computed densities for ρ = 0.5 (fat tails) and ρ = 1 (exponential tails) in
Figure 3. Since all densities are rescaled to have unit mass, we define the
Kolmgorov-Smirnov statistic between computed and exact results:

d(nρ, ñρ) = sup
s≥0

∣

∣

∣
Fρ(s) − F̃ρ(s)

∣

∣

∣
,

where

Fρ(s) =

∫ s

0
rnρ(r) dr, F̃ρ(s) =

∫ s

0
rñρ(r) dr.
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(b) ρ = 0.5

Figure 3: Density of exact and computed self-similar solutions for ρ = 1 and
ρ = 0.5. The lines in (b) correspond to rigorous asymptotics of the number
density nρ(s) as the shock size s → 0, or s → ∞.
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Figure 4: The empirical first moment and difference |F1(s) − F̃1(s)| as a
function of shock size s ∈ (0,∞) for ρ = 1.
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Figure 5: The sup-norm difference |Fρ(s)− F̃ρ(s)| as a function of s ∈ (0,∞)
for 0 < ρ < 1 using (a) dynamic renormalization; (b) Newton-GMRES.
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The comparison between F1 and F̃1 is shown in Figure 4. Similar compar-
isons for a range of fat-tailed solutions are shown in Figure 5. The numerical
computation of the exact solutions requires some care. We use the fact that
they can be written as the density of Lévy-stable laws with a nonlinear
rescaling (see [17]). A numerical method for computing these densities may
be found in [20]. For higher ρ, the error in the tails is negligible, showing
that both the exact and computed density decay fast. However, the error
near s = 0 can be high (between 20% and 30% in the worst case observed),
but it decays rapidly with s for all ρ ∈ (0, 1). This error is caused by the
singularity near s = 0 of the exact solutions nρ, 0 < ρ < 1. It is important
to note however that the convergence of the scheme could be seen without
a priori knowledge of the exact solutions. The initial number of particles
was O(103), and the computation was terminated when the number of par-
ticles reached a maximal number 2 × 107 (fixed a priori). At each step of
the dynamic renormalization, the number of particles must increase since
the total number of particles is divergent for each of the exact solutions nρ.
While our numerical scheme could be adapted to provide higher resolution
(e.g. by incorporating special basis functions at s = 0 and near s = ∞
to account for divergences), we have refrained from doing so, in order to
demonstrate the robust convergence of the scheme used here. As noted at
the end of Section 1 the use of dynamic rescaling was critical for an accurate
computation of self-similar solutions without a prohibitely large number of
particles.

5 Discussion

Scalar conservation laws (1)–(2), have played an important role in the de-
velopment of the modern theory of nonlinear partial differential equations.
These equations illustrate important themes such as singularity formation,
non-uniqueness of weak solutions, and the role of entropy conditions that
restore the uniqueness of solutions. A complete well-posedness theory for
these equations was established in the 1950s by Hopf, Lax and Oleinik (see
e.g.[7]). However, neither Burgers nor Hopf viewed the analysis of scalar
conservation laws as an end in itself. Instead, their primary interest lay in
the use of these equations as a stepping stone to a fuller understanding of
turbulence (see e.g. [9, 22]). Burgers introduced his model equation in the
1930’s to study turbulence and spent much of his career exploring the evo-
lution of random initial data [4]. Similarly, Hopf was the first to precisely
formulate an evolution equation for the probability distribution of solutions
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to the Navier-Stokes equations [10].
We know today that the study of Burgers equation, or other scalar con-

servation laws, with random initial data does not capture the essential mech-
anisms of isotropic homogeneous turbulence in incompressible fluids. Never-
theless, it does serve as a concrete model for one aspect of turbulence – the
propagation of randomness by a deterministic dynamical system. The re-
sults summarized in Section 2.1 reflect an unexpected exact solvability of the
evolution of shock statistics for large classes of random initial data. Much
as the Hopf-Lax formula for scalar conservation laws serves as a basic model
to convey insight into nonlinear partial differential equations, it is our view
that the exact solvability for the evolution of random data, can be used to
communicate many basic ideas in the modeling of complex stochastic sys-
tems. The main thrust of this article has been to demonstrate the utility of
these exact solutions in the study of equation free methods.

Within the context of this class of problems, we have only explored the
simplest class of exact solutions – the solution to Burgers equation with Lévy
process initial data. It remains to explore other “non-Burgers” flux functions
(i.e. f(u) 6= u2/2), as well as other classes of random initial processes such
as white noise, or Markov process initial data. The clustering processes
that emerge from these data are more complex (compare the full kinetic
equations [19, Equations (27)–(30)] with equation(9)). The main challenge
in applying the equation free scheme to these exact solutions lies in the
“projection step” (i.e. step 4 in the scheme outlined in Section 2.2). In this
paper, this task reduces to estimating the Lévy measure of a Lévy process
given many samples of the process. As noted in Section 2.1, Lévy processes
are Markov processes whose jump measure N(u, dv) depends only on the
difference u−v. For general f(u) and for white noise data, this simplification
does not hold – that is, one has to estimate a jump kernel N(u, dv) that
depends on two variables, not one. This changes the complexity of the
problem substantially, and remains a challenge for future work.

More broadly, Burgers equation and scalar conservation laws, continue
to play an important role in stochastic modeling. Our work provides an
example of uncertainty quantification – the exact evolution of an initial
probability distribution is compared with a numerically computed evolution.
Our work could also be contrasted with other uses of Burgers equation in
stochastic modeling. For instance, Majda, Turkington and their co-workers
have explored the use of truncations of the Burgers equation to coarse-
grain invariant measures. In contrast with their work, our work includes no
truncation of the underlying partial differential equation, nor does it involve
a projection of a non-Gaussian probability distribution onto Gaussians [12,
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15]. The fundamental dynamics here are the interactions of shocks, not the
evolution of low-modes, whereas the goal in [12, 15] is to approximate the
transport of energy to high, unresolved modes, by a slowly-varying Gaussian
correction of the energy in low-modes. These works explore complementary
physical regimes, and it is of interest to understand the common features
and differences between them.
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