PDE, HW 5 solutions

1. Define the logarithm in \mathbb{C} with a branch cut along the negative real axis. In polar coordinates, we then have

$$u = \operatorname{Re}\left(\frac{z}{\log z}\right) = \frac{r(\cos\theta\log r + \theta\sin\theta)}{(\log r)^2 + \theta^2}.$$

The boundary $\partial \Omega = \{u = 0\}$ is given parametrically by,

$$x(\theta) = r(\theta)\cos\theta, \quad y(\theta) = r(\theta)\sin\theta, \quad r(\theta) = e^{-\theta\tan(\theta)}, \quad \theta \in (-\pi/2, \pi/2)$$

As $\theta \to \pm \pi/2$, $r(\theta) \to 0$, thus $\partial \Omega$ is a closed curve defined on $[-\pi/2, \pi/2]$. Observe also that the tangent vector is continuous at $\pm \pi/2$ since

$$\frac{dx}{dy} = \frac{dx/d\theta}{dy/d\theta} = \frac{\cos\theta \frac{dx}{d\theta} - r\sin\theta}{\sin\theta \frac{dr}{d\theta} + r\cos\theta}$$
$$= \frac{-2\tan\theta - \theta\sec^2\theta}{-\tan^2\theta - \theta\tan\theta\sec^2\theta + 1} \to 0, \quad \text{as} \quad \theta \to \pm \frac{\pi}{2}.$$

Finally, since u is harmonic in the interior, we have

$$u(x,0) = \frac{x}{\log x}$$
, and $u_x(0,0) = 0$.

2. Let us denote the linear operator by

$$L = \triangle + b \frac{x_i x_j}{|x|^2} D_{ij} u, \quad b = -1 + \frac{n-1}{1-\lambda}.$$

First check that L is uniformly elliptic. For any $\xi \in \mathbb{R}^n$ we have

$$\xi^t A(x)\xi = |\xi|^2 + b\frac{x \cdot \xi}{|x|^2} \ge |\xi|^2,$$

since

$$b = -1 + \frac{n-1}{1-\lambda} = \frac{n+\lambda}{1-\lambda} \ge 0,$$

provided $\lambda < 1$ as assumed. This may also be written as the condition $2(2 - \lambda) > 2$. Now verify that u_2 is a solution. Differentiate to find

$$D_{ij}u_2 = \lambda(\lambda - 2)|x|^{\lambda - 4}x_ix_j + \lambda|x|^{\lambda - 2}\delta_{ij}, \quad \triangle u = \lambda(\lambda - 2 + n)|x|^{\lambda - 2},$$

and substitute to see that $Lu_2 = 0$. In order that $u_2 \in W^{2,2}$ we require (see HW 4, #3) $\lambda - 2 > -n/2$ or $n > 2(2 - \lambda)$.

This does not contradict the uniqueness theorem, because the equation Lu = 0 is *not* in divergence form with L^{∞} coefficients.

6, Evans, 1 ed., p. 346. A warning: Evan's definition of L is really -L in Gilbarg and Trudinger's definition.

Some smoothness assumption on $\partial\Omega$ is necessary to make sense of terms such as $\partial u/\partial \nu$. It will suffice to assume $\partial\Omega$ is C^1 (C^2 would imply an interior ball condition, which is too strong). The main observation is that a barrier yields both a sub and supersolution. Let $M = ||f||_{\infty}$ and consider $v_{\pm} =$ $u \pm Mw$. We then have $Lv_{\pm} \geq 0$ in Ω , and $v_{\pm} \geq 0$ on $\partial\Omega$. Similarly $Lv_{\pm} \leq 0$, and $v_{\pm} \leq 0$ on $\partial\Omega$. By the weak maximum and minimum principles, this implies $v_{\pm} \geq 0$, and $v_{\pm} \leq 0$ in Ω . Since the maximum and minimum are attained at x^0 , we also have the inequalities

$$\frac{\partial v_+}{\partial \nu} \le 0, \quad \frac{\partial v_-}{\partial \nu} \ge 0, \quad \text{or} \quad M \frac{\partial w}{\partial \nu} \le \frac{\partial u}{\partial \nu} \le -M \frac{\partial w}{\partial \nu}.$$

We may also apply the weak minimum principle to w to obtain $w \ge 0$ in Ω and $\partial w/\partial \nu \le 0$. Finally, since $\partial \Omega$ is C^1 and u = 0 on $\partial \Omega$ we have $|Du| = |\partial u/\partial \nu|$.

7, Evans, 1ed, p. 346. This is routine. A proof may be found in the notes on Laplace equation from last semester. $\hfill \Box$

4. Here is the proof of (c), which is the most interesting. Without loss of generality, suppose $|\Omega| = 1$ and $\int_{\Omega} |u|^{p_0} dx < \infty$, some $p_0 > 0$. The function

$$p \mapsto \int_{\Omega} |u|^p \, dx = \int_{\Omega} e^{p \log |u|}$$

is then an analytic function of p on $(-\infty, p_0)$ (the convention is $e^{-\infty} = 0$). It is only necessary to justify the first derivative but this follows by taking finite differences and the dominated convergence theorem. We have

$$\frac{d\int_{\Omega}|u|^p\,dx}{dp} = \frac{1}{\int_{\Omega}|u|^p\,dx}\int_{\Omega}|u|^p\log|u|\,dx.$$

We now consider $\Phi_p(u)$ as a function of p defined on the interval $(-\infty, p_0]$. We write

$$\Phi_p(u) = \exp\left(\frac{1}{p}\log\int_{\Omega}|u|^p\,dx\right),$$

and observe that the limit $p \to 0$ is the same as evaluating the derivative at p = 0.

5. Fix r > 0. The oscillation $\omega(r) = \max_{\theta_1, \theta_2} u(r, \theta_1) - u(r, \theta_2)$. As always the basic inequality uses the fundamental theorem of calculus,

$$|u(r,\theta_1) - u(r,\theta_2)| \le \int_{\theta_1}^{\theta_2} \left| \frac{\partial u}{\partial \theta} \right| d\theta.$$

Since the maximum distance between two points on the circle is π , we have

$$\omega(r) \le \sup_{\theta_1} \int_{\theta_1}^{\theta_1 + \pi} \left| \frac{\partial u}{\partial \theta} \right| \, d\theta \le \sqrt{\pi} \left(\int_0^{2\pi} \left| \frac{\partial u}{\partial \theta} \right|^2 \, d\theta \right)^{1/2}$$

This inequality holds for every 0 < r < R and may be integrated to yield

$$\int_{r}^{R} \frac{\omega(r')^{2}}{r'} dr' \leq \pi \int_{r}^{R} \int_{0}^{2\pi} \frac{1}{r'} \left| \frac{\partial u}{\partial \theta} \right|^{2} d\theta dr' \leq \pi \int_{B_{R}} |Du|^{2} dx := \pi D(R).$$

If we further assume that $\omega(r)$ is non-decreasing, the left-hand side is no greater than $\omega(r)^2 \log(R/r)$ and we obtain the desired inequality.

(b) Let $a(r)=\min_\theta u(r,\theta),\,b(r)=\max_\theta u(r,\theta).$ By the maximum principle b(r) is non-decreasing, and a(r) is non-increasing so that $\omega(r)=b(r)-a(r)$ is non-decreasing. Suppose $M(R):=\int_{B_R}|D\log u|^2\,dx<\infty$ (redefine R as R/2 if necessary). Then

$$M(R) = \int_{B_R} \frac{|Du|^2}{u^2} \, dx \ge \frac{D(R)}{b(R)^2} \ge \frac{\omega(r) \log(R/r)}{\pi b(R)}$$

for any 0 < r < R by part(a). Since $\omega(r) = b(r) - a(r)$ we obtain after simplifying and using 0 < a(R) < a(r)

$$\frac{b(r)}{a(r)} \le 1 + \frac{\pi M(R)}{\log(R/r)} \frac{b(R)}{a(R)}, \quad 0 < r < R$$

which implies the Harnack inequality. The bound on M(R) is obtained by Moser's method, and I refer to equation (8.53) in Gilbarg and Trudinger. \Box