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PDE, HW 5 solutions

1. Define the logarithm in C with a branch cut along the negative real axis.
In polar coordinates, we then have

u = Re

(

z

log z

)

=
r(cos θ log r + θ sin θ)

(log r)2 + θ2
.

The boundary ∂Ω = {u = 0} is given parametrically by,

x(θ) = r(θ) cos θ, y(θ) = r(θ) sin θ, r(θ) = e−θ tan(θ), θ ∈ (−π/2, π/2).

As θ → ±π/2, r(θ) → 0, thus ∂Ω is a closed curve defined on [−π/2, π/2].
Observe also that the tangent vector is continuous at ±π/2 since

dx

dy
=

dx/dθ

dy/dθ
=

cos θ dr
dθ − r sin θ

sin θ dr
dθ + r cos θ

=
−2 tan θ − θ sec2 θ

− tan2 θ − θ tan θ sec2 θ + 1
→ 0, as θ → ±π

2
.

Finally, since u is harmonic in the interior, we have

u(x, 0) =
x

log x
, and ux(0, 0) = 0.

2. Let us denote the linear operator by

L = 4 + b
xixj

|x|2 Diju, b = −1 +
n − 1

1 − λ
.

First check that L is uniformly elliptic. For any ξ ∈ R
n we have

ξtA(x)ξ = |ξ|2 + b
x · ξ
|x|2 ≥ |ξ|2,

since

b = −1 +
n − 1

1 − λ
=

n + λ

1 − λ
≥ 0,

provided λ < 1 as assumed. This may also be written as the condition
2(2 − λ) > 2. Now verify that u2 is a solution. Differentiate to find

Diju2 = λ(λ − 2)|x|λ−4xixj + λ|x|λ−2δij , 4u = λ(λ − 2 + n)|x|λ−2,

and substitute to see that Lu2 = 0. In order that u2 ∈ W 2,2 we require (see
HW 4, #3) λ − 2 > −n/2 or n > 2(2 − λ).

This does not contradict the uniqueness theorem, because the equation
Lu = 0 is not in divergence form with L∞ coefficients.
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6, Evans, 1 ed., p. 346. A warning: Evan’s definition of L is really −L in
Gilbarg and Trudinger’s definition.

Some smoothness assumption on ∂Ω is necessary to make sense of terms
such as ∂u/∂ν. It will suffice to assume ∂Ω is C1 (C2 would imply an interior
ball condition, which is too strong). The main observation is that a barrier
yields both a sub and supersolution. Let M = ‖f‖∞ and consider v± =
u±Mw. We then have Lv+ ≥ 0 in Ω, and v+ ≥ 0 on ∂Ω. Similarly Lv− ≤ 0,
and v− ≤ 0 on ∂Ω. By the weak maximum and minimum principles, this
implies v+ ≥ 0, and v− ≤ 0 in Ω. Since the maximum and minimum are
attained at x0, we also have the inequalities

∂v+

∂ν
≤ 0,

∂v−
∂ν

≥ 0, or M
∂w

∂ν
≤ ∂u

∂ν
≤ −M

∂w

∂ν
.

We may also apply the weak minimum principle to w to obtain w ≥ 0 in
Ω and ∂w/∂ν ≤ 0. Finally, since ∂Ω is C1 and u = 0 on ∂Ω we have
|Du| = |∂u/∂ν|.

7, Evans, 1ed, p. 346. This is routine. A proof may be found in the notes
on Laplace equation from last semester.

4. Here is the proof of (c), which is the most interesting. Without loss of
generality, suppose |Ω| = 1 and

∫

Ω |u|p0 dx < ∞, some p0 > 0. The function

p 7→
∫

Ω
|u|p dx =

∫

Ω
ep log |u|

is then an analytic function of p on (−∞, p0) (the convention is e−∞ = 0).
It is only necessary to justify the first derivative but this follows by taking
finite differences and the dominated converegence theorem. We have

d
∫

Ω |u|p dx

dp
=

1
∫

Ω |u|p dx

∫

Ω
|u|p log |u| dx.

We now consider Φp(u) as a function of p defined on the interval (−∞, p0].
We write

Φp(u) = exp

(

1

p
log

∫

Ω
|u|p dx

)

,

and observe that the limit p → 0 is the same as evaluating the derivative at
p = 0.
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5. Fix r > 0. The oscillation ω(r) = maxθ1,θ2
u(r, θ1) − u(r, θ2). As always

the basic inequality uses the fundamental theorem of calculus,

|u(r, θ1) − u(r, θ2)| ≤
∫ θ2

θ1

∣

∣

∣

∣

∂u

∂θ

∣

∣

∣

∣

dθ.

Since the maximum distance between two points on the circle is π, we have

ω(r) ≤ sup
θ1

∫ θ1+π

θ1

∣

∣

∣

∣

∂u

∂θ

∣

∣

∣

∣

dθ ≤
√

π

(

∫ 2π

0

∣

∣

∣

∣

∂u

∂θ

∣

∣

∣

∣

2

dθ

)1/2

.

This inequality holds for every 0 < r < R and may be integrated to yield

∫ R

r

ω(r′)2

r′
dr′ ≤ π

∫ R

r

∫ 2π

0

1

r′

∣

∣

∣

∣

∂u

∂θ

∣

∣

∣

∣

2

dθdr′ ≤ π

∫

BR

|Du|2 dx := πD(R).

If we further assume that ω(r) is non-decreasing, the left-hand side is no
greater than ω(r)2 log(R/r) and we obtain the desired inequality.
(b) Let a(r) = minθ u(r, θ), b(r) = maxθ u(r, θ). By the maximum principle
b(r) is non-decreasing, and a(r) is non-increasing so that ω(r) = b(r)− a(r)
is non-decreasing. Suppose M(R) :=

∫

BR
|D log u|2 dx < ∞ (redefine R as

R/2 if necessary) . Then

M(R) =

∫

BR

|Du|2
u2

dx ≥ D(R)

b(R)2
≥ ω(r) log(R/r)

πb(R)
,

for any 0 < r < R by part(a). Since ω(r) = b(r) − a(r) we obtain after
simplifying and using 0 < a(R) < a(r)

b(r)

a(r)
≤ 1 +

πM(R)

log(R/r)

b(R)

a(R)
, 0 < r < R

which implies the Harnack inequality. The bound on M(R) is obtained by
Moser’s method, and I refer to equation (8.53) in Gilbarg and Trudinger.


