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PDE, HW 2 solutions

1. For brevity, let a± = a(x±, t),u± = u(x±, t), so that u± = (x−a±)/t. We
also have G(x, a−, t) = G(x, a+, t) which may be rewritten as the equation

∫ a+

a−

u0(y) dy =
(x− a−)2 − (x− a+)2

2t

= (a+ − a−)
2x− a+ − a−

2t
= (a+ − a−)

u− + u+

2
.

2. Let U0(y) =
∫ y

−∞ u0(y)dy, and M =
∫

R
u0(y)dy. Observe that

√
tu(x

√
t, t) = x− a(x

√
t, t)√
t

:= x− â(x, t),

where â(x, t) is the argmin of the functional

Ĝ(x, y, t) =
(x− y)2

2
+ U0(

√
ty).

The rescaled functions U0(
√
ty) → {0,M} pointwise for y < 0 and y > 0

respectively. This suggests that there may be a limiting Cole-Hopf functional
as t → ∞. However, some care is needed with the value at zero. The
Cole-Hopf procedure requires only that U0 is lower semicontinuous, and
graphically (see Figure 0.1) it is clear that the limiting functional should be

U∞(y) =







0, y < 0
N, y = 0
M, y > 0,

whereN = miny U0(y) ≤ min(0,M). If we consider the associated Hamilton-
Jacobi equation for U(x, t) =

∫ x

−∞ u(y, t)dy, then it is easy to see from the
Hopf-Lax formula that N = minx U(x, t) for every t ≥ 0.

Recall that we may solve for a(x, t) graphically by moving a parabola
centered at x upwards until it touches U0. It is then clear that â(x, t)
converges pointwise to a∞(x), the argmin of (x− y)2/2 + U∞(y). Here, we
have x = a∞(x) except for points where the parabola may touch (0, N) first.
This occurs in the range x ∈ [x1, x2] where

x1 = −
√
−2N, x2 =

√

2(M −N), a(x) = 0.
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Figure 0.1: The effect of rescaling U0

Thus, the limiting solution is

lim
t→∞

√
tu(x

√
t, t) =







0, x < x1,
x, x ∈ (x1, x2),
0, x > x2.

3. A viscous shock is a traveling wave connecting the end states u±. That
is, a solution uε(x− ct) = v((x− ct)/ε) where

−c(v − u−) + f(v) − f(u−) = v′, v(±∞) = u±.

The dissipation is

lim
ε→0

d

dt

∫

R

(uε)2 dx = − lim
ε→0

2ε

∫

R

(uε
x)2 dx = −2

∫

R

(v′)2 dx

= −2

∫ u+

u−

v′ dv = −2

∫ u+

u−

(−c(v − u−) + f(v) − f(u−)) dv.

In general, one cannot integrate this without further assumptions. One such
assumption is that of a weak shock , ie. u+ ≈ u−. By Taylor’s theorem

2

∫ u+

u−

v′ dv ≈ 2

∫ u−

u+

(v − u−)

[

f ′(u−) − c+
1

2
f ′′(u−)(v − u−)2

]

dv

= (f ′(u−) − c)2(u+ − u−)2 + f ′′(u−)
(u+ − u−)3

3
≈ f ′′(u−)

6
(u− − u+)3.
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4. Let M = ‖u‖L∞(Q). Choose k = ±M in Kružkov’s definition to obtain
∫ ∞

0

∫

Rn

[uϕt + f(u) ·Dxϕ] dx dt = 0, (0.1)

for every ϕ ∈ C∞
c (Q) with ϕ ≥ 0. Any ϕ ∈ C∞

c (Q) can be written as
ϕ = ϕ+ − ϕ−, however ϕ± are not C∞ in general. Pick a positive mollifier
ψ and consider ϕε = ϕε

+ − ϕε
−, where ϕε

± = ψε ? ϕ±. Then ϕε
± are C∞

c and
non-negative, so that we have

∫ ∞

0

∫

Rn

[uϕε
t + f(u) ·Dxϕ

ε] dx dt = 0,

for every ε > 0. Since ϕε converges uniformly to ϕ along with all deriva-
tives, and ‖u‖∞, ‖f(u)‖ < ∞ we may pass to the limit by the dominated
convergence theorem.

5. An apology: what I had in mind was that u− > u+ holds for shocks when
there is a well-defined normal. This requires that u be BV, which was not
mentioned in the hypotheses. We also need strict convexity of f . More to
the point, what I had in mind was only the simple computation below that
shows that Kružkov’s condition implies Oleinik’s condition. Proceeding as in
Evans, p. 139, if ν = (νt, νx) is the normal to the shock curve in space-time
with νt > 0 we find

|u+ − k|νt + sgn(u+ − k) (f(u+) − f(k)) νx ≤ (0.2)

|u− − k|νt + sgn(u+ − k) (f(u−) − f(k)) νx, k ∈ R.

Choosing k > max(u−, u+) we find

0 ≤ (u+ − u−)νt + (f(u+) − f(u−))νx.

Similarly, k < min(u−, u+) yields the opposite inequality, and we have

(f(u−) − f(u+))νt + (u− − u+)νx = 0.

Now suppose u− < u+. We choose u− < k < u+ to obtain

(u+ − k)νt + (f(u+) − f(k))νx ≤ (k − u−)νt + (f(k) − f(u−))νx,

which may be simplified to the inequality

2νt

(

k − u−
u+ − u−

f(u+) +
u+ − k

u+ − u−
f(u−) − f(k)

)

≤ 0.

Since νt > 0, the left hand side is positive by the strict convexity of f ,
contradicting the inequality. The only other possibility is u− > u+.
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6. Let us denote mean values by (f)x,r = −
∫

B(x,r) f(y) dy. A standard molli-

fier has compact support, so without loss we may assume that f ∈ L1(Rn) (as
opposed to L1

loc(R
n)). By Lebesgue’s differentiation theorem, limr→0(f)x,r =

f(x) for a.e x ∈ R
n. Since

|f(x) − fε(x)| ≤ |f(x) − (f)x,ε| + |(f)x,ε − fε(x)|,

it will suffice to show that the second term goes to zero at all Lebesgue
points x. This term may be rewritten as

|(f)x,ε − fε(x)| =

∣

∣

∣

∣

∣

1

εn

∫

B(x,ε)
(f(y) − (f)x,ε)ψ

(

x− y

ε

)

dy

∣

∣

∣

∣

∣

≤ ωn‖ψ‖∞
nεn

−
∫

B(x,ε)
|f(y) − (f)x,ε| dy → 0,

as ε→ since x is a Lebesgue point.

7. Change coordinates via the transformation

a =
1

2
(x− y), b =

1

2
(x+ y), x = a+ b, y = b− a.

We may then write Vε as the integral

Vε =
1

2n

∫

|b|≤ρ

∫

|a|≤ε

|v(b+ a) − v(b− a)| da db.

The proof of problem (6) shows that Lebesgue’s differentiation theorem also
applies to averages over concentric cubes, thus

lim
ε→0

1

2n

∫

|a|≤ε

|v(b+ a) − v(b− a)| da = 0,

for a.e b ∈ R
n. Moreover, for any ε > 0 we have the uniform bound,

∣

∣

∣

∣

∣

1

2n

∫

|a|≤ε

|v(b+ a) − v(b− a)| da
∣

∣

∣

∣

∣

≤ 2‖v‖∞.

We apply the dominated convergence theorem to obtain limε→0 Vε = 0.


