PDE, HW 2 solutions

1. For brevity, let ax = a(z4,t),usr = u(x4,t), so that ux = (r—ax)/t. We
also have G(z,a_,t) = G(x,ay,t) which may be rewritten as the equation
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2. Let Up(y) = [ uo(y)dy, and M = [ uo(y)dy. Observe that

Viu(zVit) =z — L\\//;’t) =x — a(x,t),

where a(z,t) is the argmin of the functional

2
Gyt = 4 vy (iy).
The rescaled functions Uy(v/ty) — {0, M} pointwise for y < 0 and y > 0
respectively. This suggests that there may be a limiting Cole-Hopf functional
as t — oo. However, some care is needed with the value at zero. The
Cole-Hopf procedure requires only that Uy is lower semicontinuous, and
graphically (see Figure 0.1) it is clear that the limiting functional should be

0, y<0
M, y>0,

where N = min, Up(y) < min(0, M). If we consider the associated Hamilton-
Jacobi equation for U(z,t) = ffoo u(y,t)dy, then it is easy to see from the
Hopf-Lax formula that N = min, U(z,t) for every ¢ > 0.

Recall that we may solve for a(x,t) graphically by moving a parabola
centered at z upwards until it touches Up. It is then clear that a(x,t)
converges pointwise to as(z), the argmin of (x — y)2/2 + Uso(y). Here, we
have z = ax () except for points where the parabola may touch (0, N) first.
This occurs in the range = € [z1, x2] where

x1=—V—-2N, x9=+/2(M—N), a(x)=0.
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Figure 0.1: The effect of rescaling Uy

Thus, the limiting solution is

0, =<,
tlim Viu(zvi,t) = x, x € (x1,29),
o 0, x> xo.

O

3. A viscous shock is a traveling wave connecting the end states uy. That
is, a solution u®(x — ct) = v((z — ct)/e) where

—c(v—u_)+ f(v) = flu_) =7, v(£oo) = ux.

The dissipation is

d
lim — /(u8)2 dxr = — lim 25/(u‘§)2 dr = —2/(1}’)2 dx
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_ /f o dv = —2/:+ (—e(v—u_) + f(v) = f(u_)) dv.

In general, one cannot integrate this without further assumptions. One such
assumption is that of a weak shock, ie. u; ~ u_. By Taylor’s theorem
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4. Let M = ||ul|po(g). Choose k = £M in Kruzkov’s definition to obtain

| [ et s) Dugl dzdt o (0.1)

for every ¢ € C°(Q) with ¢ > 0. Any ¢ € C(Q) can be written as
¢ = ¢4+ — p_, however ¢y are not C'™ in general. Pick a positive mollifier
1 and consider ¢ = 5 — ¢° , where 5 = 1), x 4. Then ¢ are CZ° and
non-negative, so that we have

/OO/ (gt + f(u) - Dais®] dadt = 0,
0 n

for every € > 0. Since ¢° converges uniformly to ¢ along with all deriva-
tives, and ||ul/oo, || f(u)|| < oo we may pass to the limit by the dominated
convergence theorem. O

5. An apology: what I had in mind was that u_ > uy holds for shocks when
there is a well-defined normal. This requires that © be BV, which was not
mentioned in the hypotheses. We also need strict convexity of f. More to
the point, what I had in mind was only the simple computation below that
shows that Kruzkov’s condition implies Oleinik’s condition. Proceeding as in
Evans, p. 139, if v = (v, v;) is the normal to the shock curve in space-time
with v > 0 we find

s — ko + sgnus — ) (Fuy) — F(8) v < (0.2
lu— — klvy +sgn(ug — k) (f(um) — f(k)) vy, keR.

Choosing k > max(u_,u4) we find
0< (ug —u)ve+ (fug) = flu))va.
Similarly, k¥ < min(u_,u4 ) yields the opposite inequality, and we have
(Flu) = Flus))ve + (u = s )y = 0.
Now suppose u_ < uy. We choose u_ < k < uy to obtain
(uy = Ry + (f(ug) = fF(R))ve < (K —uvp + (F(k) = f(u-))va,
which may be simplified to the inequality
v (S ) + 2 ) = () ) <o

Since v, > 0, the left hand side is positive by the strict convexity of f,
contradicting the inequality. The only other possibility is u_ > wu.. O



6. Let us denote mean values by (f),, = fB(x ") fly)dy. A standard molli-
fier has compact support, so without loss we may assume that f € L'(R") (as
opposed to Li, (R™)). By Lebesgue’s differentiation theorem, lim, _o(f)z.» =

loc

f(z) for a.e x € R™. Since

[f (@) = fe(@)| < |f(2) = (Nael +1(ae = fo(2)],

it will suffice to show that the second term goes to zero at all Lebesgue
points x. This term may be rewritten as

o 0w ew (T2

< @nll¥lioe f FW) = (Pac] dy — 0,
B(z,e)

nen

|(f)ae — fe(x)| =

as € — since x is a Lebesgue point. O

7. Change coordinates via the transformation

a:%(m—y),b:%(l‘—ky), x:a—l—b,y:b—a.

We may then write V. as the integral

1
ng—/ / |v(b+a) —v(b—a)| dadb.
2% Jipl<p Jyal <=

The proof of problem (6) shows that Lebesgue’s differentiation theorem also
applies to averages over concentric cubes, thus

|lv(b+a) —v(b—a)| da=0,

02" Jjg<e
for a.e b € R™. Moreover, for any € > 0 we have the uniform bound,

1

—/ fo(b+ a) — o(b — )| da| < 2[jv]lec.
2" Jja|<e

We apply the dominated convergence theorem to obtain lim. .oV, =0. O



