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PDE, HW 1 solutions

1. Fix x ∈ Ω such that B(x,R) ⊂ Ω. Let M = max
y∈B(x,R)

|f(y)|. Suppose

0 < r < R and ω ∈ Sn−1. By convexity, we have

f(x + rω) ≤ (1 −
r

R
)f(x) +

r

R
f(x + Rω),

which implies the upper bound

f(x + rω) − f(x)

r
≤

f(x + Rω) − f(x)

R
≤

2M

R
. (0.1)

Similarly, convexity implies

f(x) ≤

(

1 −
r

r + R

)

f(x + rω) +
r

r + R
f(x − Rω),

which implies the lower bound

f(x + rω) − f(x)

r
≥

f(x + rω) − f(x − Rω)

r + R
≥ −

2M

R
.

2. First assume that f = supk Lk. Suppose x = θy +(1− θ)z, θ ∈ [0, 1]. Let
ε > 0, and choose k such that f(x) ≤ Lk(x) + ε. But then

f(x) − ε ≤ Lk(x) = θLk(y) + (1 − θ)Lk(z)

≤ θ sup
m

Lm(y) + (1 − θ) sup
n

Ln(z) = θf(y) + (1 − θ)f(z).

The other direction requires more work. The first inequality in (0.1)
shows that the difference quotient (f(x + rω) − f(x))/r is an increasing
function on (0,∞) for every direction ω ∈ Sn−1. Thus, it has a limit as
r → 0, and we may use linearity to deduce that

lim
t→0+

f(x + tz) − f(x)

t
= A(x,

z

|z|
)|z|, z ∈ R

n.

One may now use the standard basis of R
n and the fact that (f(x + rω) −

f(x))/r is increasing to deduce that for every x ∈ Ω there is at least one
a(x) ∈ R

n such that

f(y) − f(x) ≥ a(x) · (y − x), y ∈ R
n.
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The set of such a(x) is the subdifferential of f at x. We construct Lk as
follows. Let xk be a countable dense subset of R

n, and choose ak from the
subdifferential of f at x. Let Lk(x) = ak · (x − xk) + f(xk). The choice of
ak ensures f(x) ≥ Lk(x) for every k, thus f(x) ≥ supk Lk(x). The opposite
inequality is proven as follows. Fix x ∈ R

n and a subsequence xkl
→ x.

Observe that akl
are uniformly bounded by Problem 1. Thus, we have

Lkl
(x) = f(xkl

) + akl
(x − xkl

) → f(x).

3. We may suppose |Ω| = 1. Let ū =
∫

u dx. It is clear that

Lk(ū) =

∫

Lk(u(x)) dx ≤

∫

f(u(x)) dx.

Choose a sequence Lkl
such that f(ū) = liml→∞ Lkl

(ū). Since the bound
above is uniform, f(ū) ≤

∫

f(u(x)) dx.

4. For smooth solutions u(x, t) = u0(x0) = u0(x − tu(x, t)) and

∂xu(x, t) =
1

1 + tu′
0(x0)

.

Thus the maximal time of existence is T = −1/min(u′
0).

5. The traveling wave ansatz u(x, t) = uε(x − ct) := uε(ξ) yields

−c(uε)′ + f(uε)′ = ε(uε)′′. (0.2)

If we rescale ζ = ξ/ε and set v(ζ) = uε(ξ) we have

−cv′ + f(v)′ = v′′. (0.3)

For any ε > 0 we see that (0.2) has a solution with the right conditions at
±∞ if and only (0.3) does.
(b) The basic observation is that traveling wave profiles correspond to hete-

roclinic orbits of the ODE obtained by integrating (0.3). The conditions at
±∞ imply that u± are equilibria and that

v′ = −c(v − u−) + f(v) − f(u−), c =
f(u+) − f(u−)

u+ − u−

. (0.4)

The speed of a traveling wave (if it exists) is determined by the jump condi-
tion alone. Since we have a flow on the line, orbits connecting u± exist if and
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only if there are no equilibria in between these points. Suppose first that
u− < u+. Then we require v′ > 0 for v ∈ (u−, u+). However, by convexity

f(v) ≤
v − u−

u+ − u−

f(u+) +
u+ − v

u+ − u−

f(u−),

which when substituted in (0.4) yields v′ ≤ 0. Thus, traveling waves cannot
exist in this case. On the other hand, if u− > u+ we observe that for
v ∈ (u+, u−)

f(v) ≤
v − u+

u− − u+
f(u−) +

u− − v

u− − u+
f(u+),

and we have v′ ≤ 0. In this case, one does need strict convexity even if this
wasn’t stated as such in the problem.
(c) The assumption of convexity is not necessary to ensure the existence of
traveling waves. All that is a required of f is that sgn(v′) = sgn(u+ − u−)
for v between u±. To be concrete, suppose u− > u+. We may weaken the
assumption of convexity to a chord condition: the graph of f lies below
the chord connecting (u+, f(u+)) and (u−, f(u−)). This is necessary and
sufficient.

7. This may be checked by differentiation if u is differentiable, but let us
work directly with the Cole-Hopf functional. Denote the inverse Lagrangian
functionals by a and a(b) so that

u(x, t) =
x − a(x, t)

t
, u(b)(x, t) =

x − a(b)(x, t)

t
.

We then see that

u(b)(x, t) =
1

1 + bt
u(

x

1 + bt
,

t

1 + bt
) +

bx

1 + bt
,

if and only if

ab(x, t) = a(
x

1 + bt
,

t

1 + bt
). (0.5)

By definition, a(x/1+bt, t/(1+bt)) is the argmin of the Cole-Hopf functional

(x/(1 + bt) − y)2

2t/(1 + bt)
+ U0(y) =

(x − y)2

2t
+ U0(y) +

by2

2
+

btx2

2t(1 + bt)
,

after some algebra. On the other hand, a(b)(x, t) is the argmin of

(x − y)2

2t
+ U0(y) +

by2

2
.

The two functionals differ only by the term btx2/(2t(1 + bt)). Since we are
minimizing in y, this term cannot change the argmin, and (0.5) holds.
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8. We have shown that if u0 = −∆1x>0, ∆ > 0 then

u(x, t) = −∆1x>x(t), x(t) = −
∆

2
t.

That is, shock paths are lines if the end states are constant. An intuitive
picture is to think of the shock as a particle with mass m traveling at velocity
−∆/2. This basic solution is enough to understand the problem.

First suppose b = 0. We then have N downward jumps, and for a short
time, each of these moves on a straight line path

xk(t) = yk + vkt, vk = −
k−1
∑

j=1

∆j −
∆k

2
.

Clearly vk+1 < vk, k = 1, . . . , N−1, and collisions between nearest neighbors
are inevitable. The shocks at xk and xk+1 meet at time

tk =
yk+1 − yk

vk+1 − vk

, k = 1, . . . , N − 1.

Let t∗ = mink tk = tk∗
. Immediately after this collision, the left and right

states are

u− = −

k∗−1
∑

j=1

∆j, u+ = −

k∗+1
∑

j=1

∆j.

Thus, the velocity of the new shock is simply

vk∗
= −

k∗−1
∑

j=1

∆j −
∆k∗

+ ∆k∗+1

2
.

But now we are back to a system of the kind we started with, and the process
may be repeated. An efficient way of keeping track of the system is as follows.
At any time t we have N(t) shocks, at locations xk(t), k = 1 . . . N(t), of
magnitude ∆k(t). The solution is then

u(x, t) = −

N(t)
∑

k=1

∆k(t)1x>xk(t), (0.6)

where

dxk

dt
= vk(t) = −

k−1
∑

j=1

∆j(t) −
∆k(t)

2
, (0.7)
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in between collisions. If a collision occurs at time t then ∆j(t+) = ∆j(t−)+
∆j+1(t−). This corresponds to a physical picture of sticky particles or bal-

listic aggregation. If we set mk = ∆k, and vk as above, then the rule of
evolution is that the particles move linearly until they meet, and when they
meet they conserve mass and momentum, ie.

mk(t+) = mk(t−)+mk+1(t−), vk(t+) =
mk(t−)vk(t−) + mk+1(t−)vk+1(t−)

mk(t−) + mk+1(t−)
.

If b 6= 0 we simply apply Problem 7 to (0.6).


