PDE, HW 2, due Wednesday 2/22/06

In problems 1 and 2, u(x,t) denotes the Cole-Hopf solution to Burgers equation with initial data u_0 . In problems 4 and 5, u(x,t) is the entropy solution (in the sense of Kružkov) to

$$u_t + D_x \cdot (f(u)) = 0, \quad x \in \mathbb{R}^n, t > 0, \quad u(x,0) = u_0(x).$$
 (0.1)

Problems 6 and 7 are technical steps in Kružkov's proof, best resolved with Lebesgue's differentiation theorem.

1. Suppose there is a shock at (x, t). Show that we have conservation of momentum in the sense that

$$\frac{1}{2}\left(u(x_{-},t)+u(x_{+},t)\right) = \frac{1}{a_{+}(x,t)-a_{-}(x,t)} \int_{a_{-}(x,t)}^{a_{+}(x,t)} u_{0}(y) \, dy.$$

2. The N-wave: Suppose $u_0 \in L^1(\mathbb{R})$. For fixed $x \in \mathbb{R}$ show that $\bar{u}(x) = \lim_{t\to\infty} \sqrt{t}u(x\sqrt{t},t)$ exists. Determine \bar{u} explicitly.

3. Suppose $u^{\varepsilon}(x,t)$ is a viscous shock connecting the states $u_{-} > u_{+}$ for a scalar conservation law with convex flux f, ie.

$$u_t^{\varepsilon} + (f(u^{\varepsilon}))_x = \varepsilon u_{xx}^{\varepsilon}.$$

Compute the energy dissipation at shocks, that is $\lim_{\varepsilon \to 0} \varepsilon \int_{\mathbb{R}} (\partial_x u^{\varepsilon})^2 dx$.

4. Show that an entropy solution to (0.1) is a weak solution.

5. Let n = 1, and suppose $f : \mathbb{R} \to \mathbb{R}$ is convex. Show that a piecewise continuous entropy solution with left and right limits satisfies $u(x_{-},t) > u(x_{+},t)$ at points of discontinuity.

6. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is locally integrable. Let ψ be a standard mollifier, $\psi_{\varepsilon}(x) = \varepsilon^{-n} \psi(x/\varepsilon)$, and $f_{\varepsilon} = \psi_{\varepsilon} \star f$. Show that $\lim_{\varepsilon \to 0} f_{\varepsilon} = f$ a.e.

7. Suppose $v \in L^{\infty}(\mathbb{R}^n)$, and $\rho, \varepsilon > 0$. Let

$$\Omega = \left\{ (x,y) \left| \frac{|x+y|}{2} \le \rho, \frac{|x-y|}{2} \le \varepsilon. \right\},\right.$$

and consider the integral

$$V_{\varepsilon} = \varepsilon^{-n} \int_{\Omega} |v(x) - v(y)| \, dx \, dy.$$

Show that $\lim_{\varepsilon \to 0} V_{\varepsilon} = 0$.