PDE, HW 1, due Wednesday 2/8/06

In the following problems, you will need the following definitions. An open set \(\Omega \subset \mathbb{R}^n \) is convex if the line segment \((1 - t)x + ty, t \in [0, 1]\) is contained in \(\Omega \) when \(x, y \in \Omega \). A measurable function \(f : \Omega \to \mathbb{R} \) is convex if

\[
f((1 - t)x + ty) \leq (1 - t)f(x) + tf(y), \quad t \in [0, 1].
\] (0.1)

\(f \) is strictly convex, if the inequality in (0.1) is strict for \(t \in (0, 1) \). It is not necessary to assume that \(f \) is continuous, but you may do so for simplicity.

1. Suppose \(f : \Omega \to \mathbb{R} \) is convex. Show that \(f \) is locally Lipschitz.

2. Show that \(f : \mathbb{R}^n \to \mathbb{R} \) is convex if and only if there exists a countable family of affine maps \(L_k(x) = a_k \cdot x + b_k, \ a_k \in \mathbb{R}^n, \ b_k \in \mathbb{R} \) such that

\[
f(x) = \sup_k L_k(x).
\]

3. Jensen's inequality. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is convex and bounded below. Use problem 2 to prove Jensen's inequality. If \(\Omega \subset \mathbb{R}^n \) is bounded, and \(u \in L^1(\Omega) \) then

\[
f \left(\frac{1}{|\Omega|} \int_{\Omega} u(x) \, dx \right) \leq \frac{1}{|\Omega|} \int_{\Omega} f(u(x)) \, dx,
\] (0.2)

where \(|\Omega| \) is the \(n \)-dimensional volume of \(\Omega \).

4. Let \(u_0 \in C^\infty_c(\mathbb{R}) \) be smooth initial data for the inviscid Burgers that is not identically zero. In particular, \(u_0 \) is smooth and not monotone. Determine the maximal time of existence for classical solutions.

5. Oleinik's entropy condition. Consider the scalar conservation law with convex flux \(f : \mathbb{R} \to \mathbb{R} \)

\[
\frac{\partial u}{\partial t} + (f(u))_x = 0.
\] (0.3)

We are interested in the admissibility of shocks connecting the states \(u_- \) and \(u_+ \). To this end, we add a viscous term to (0.3)

\[
\frac{\partial u}{\partial t} + (f(u))_x = \varepsilon u_{xx},
\] (0.4)

and look for traveling waves \(u(x, t) = u^\varepsilon(x - ct) \) with \(\lim_{x \to \pm \infty} u^\varepsilon(x) = u_\pm \).

(a) Show that traveling waves exist for some \(\varepsilon > 0 \) if and only if they exist for every \(\varepsilon > 0 \).

(b) Traveling waves exist if and only if \(u_- > u_+ \).
(c) Is the assumption of convexity of f necessary? Yes, this is a little vague, but be creative.

6. **Nonuniqueness of weak solutions.** Consider the initial value problem for the inviscid Burgers equation

$$u_t + \left(\frac{u^2}{2}\right)_x = 0,$$

(0.5)

with initial data

$$u_0(x) = \begin{cases} -1, & x < 0 \\ 1, & x > 0. \end{cases}$$

(0.6)

Show that for any $\alpha \in [0,1]$ there is a weak solution

$$u_\alpha(x,t) = \begin{cases} -1, & -\infty < x \leq -t, \\ \frac{t}{\alpha}, & -t < x \leq -\alpha t, \\ -\alpha, & -\alpha t < x \leq 0, \\ \frac{x}{\alpha}, & 0 < x \leq \alpha t, \\ \alpha, & \alpha t < x \leq t, \\ x, & t < x < \infty. \end{cases}$$

7. **Removing the drift in Burgers equation.** Suppose $u(x,t)$ is the entropy (ie. Cole-Hopf) solution to (0.5) with initial data $u_0(x)$ where $u_0(x) = o(|x|)$ as $|x| \to \infty$. Suppose $b \neq 0$. Show that the entropy solution $u^{(b)}(x,t)$ for initial data $u_0^{(b)}(x) = u_0(x) + bx$ is given by

$$u^{(b)}(x,t) = \frac{1}{1 + bt} u \left(\frac{x}{1 + bt}, \frac{t}{1 + bt} \right) + \frac{bx}{1 + bt}, \quad t \in [0, T_b),$$

where $T_b = -b^{-1}$ if $b < 0$ and $T_b = \infty$ otherwise.

8. **Shock interaction in Burgers equation.** Fix $b > 0$, $\Delta_k > 0$, $k = 1, \ldots, N$ and $y_1 < \ldots < y_N$. Describe the entropy solution to (0.5) with 'sawtooth' initial data

$$u_0(x) = bx - \sum_{k=1}^{N} \Delta_k 1_{x \geq y_k}.$$

(The problem simplifies considerably if you use Problem 7 to get rid of the drift).