
1

PDE, Final exam. Due by 5 pm, Monday, May 15, 2006

Notes

1. You may use any reference sources (books, notes, internet), provided you
cite these sources appropriately.
2. Do not discuss the exam with anyone.
3. If stuck, try to formulate a partial answer for special cases. Do not be
discouraged if you cannot solve all problems.
4. Please inform me of any errors you find in the exam, I will post them
immediately.
5. Ω is always an open subset of R

n. If x ∈ R
n, |x| always denotes the Eu-

clidean norm
√

x2
1 + . . . + x2

n. If A ∈ M
m×n, then |A| denotes the Euclidean

norm supx∈Rn\{0} |Ax|/|x|. B(x, r) denotes an open ball of radius r. S(x, r)
denotes its boundary.

Problems

1. Consider the following discrete approximation to a scalar conservation
law

un+1
k =

(

un
k−1 + un

k+1

)

2
−

(

f(un
k+1) − f(un

k−1)
) ∆t

2∆x
. (0.1)

Here un
k is the discrete approximation to the value of u at the point (x, t) =

(k∆x, n∆t) in space-time R× [0,∞). Focus on the case f(u) = log(a + beu)
where a and b are fixed.

(a) Show that (0.1) can be solved explicitly by a discrete version of the
Cole-Hopf transformation that yields a linear difference equation.

(b) Analyze the limit ∆x,∆t → 0 and show that the limit yields the Hopf-
Lax formula for solutions to ut + f(u)x = 0.

2. Let A denote the closure of divergence-free u ∈ C∞
c (Ω; Rn) in the L2

norm (
∫

Ω |u|2 dx)1/2. Show that there is a set of divergence-free C∞
c (Ω; Rn)

vector fields {aν}∞ν=1 that forms an orthonormal basis for A.

3. Consider the Hamilton-Jacobi equation ut +
√

1 + u2
x = 0 modeling evo-

lution of a curve. Show explicitly that the viscosity solution is not reversible.
That is, find initial data u0 such that the equations ut +

√

1 + u2
x = 0 and

ut −
√

1 + u2
x = 0 have distinct solutions. Here x ∈ R, t ≥ 0.
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4. This is from Evans (problem 6, p.488, 1st ed.) Let Σ ⊂ R
3 denote the

graph of a smooth function u : Ω → R, Ω ⊂ R
2. Then

I[u] =

∫

Ω
(1 + |Du|2)−3/2 det (D2u) dx

is the integral of the Gauss curvature over Σ. Prove that this expression
depends only on Du restricted to ∂Ω. You may assume ∂Ω is C∞.

5. Also from the same page on Evans. Give an example of a nonconvex
function F : M

m×n → R that satisfies the Legendre-Hadamard condition

n
∑

i,j=1

m
∑

k,l=1

∂2F (B)

∂AkiAlj
ηkηlξiξj ≥ 0,

for every B ∈ M
m×n, ξ ∈ R

n, η ∈ R
m.

6. Rigidity of rotations. You are led through the proof of the following
‘rigidity’ theorem. If u : Ω → R

n is a Lipschitz map such that Du is a
rotation a.e (that is Du ∈ SO(n) a.e) then Du is a constant and u = Qx+ b
for some fixed rotation Q ∈ SO(n) and translation b ∈ R

n.

(a) Use the fact that div(cofDu) = 0 in D′ to deduce that u is harmonic
(ie. ui is harmonic, i = 1, . . . , n).

(b) Show that D2u ≡ 0 (i.e Djkui = 0 for every i, j, k = 1, . . . , n).

7. Rotations are important as they are the simplest examples of isometries
(maps that preserve length). An interesting generalization of isometry is the
following. A map u : Ω → R

n has bounded distortion if:

1. u is continuous.

2. u ∈ W 1,p(Ω; Rn) for some p ≥ 1.

3. det(Du) ≥ 0 and there is κ ≥ 1 such that |Du|n ≤ κdet(Du).

In what follows, you are led through a proof of the following surprising fact.
Suppose u ∈ W 1,n(Ω, Rn) is of bounded distortion, then u is C0,1/κ. More
precisely, there is a constant C > 0 such that

|u(x2) − u(x1)| ≤ C‖Du‖Ln |x2 − x1|
1/κ, x1, x2 ∈ Ω.

You may assume u is smooth while deriving the following estimates. The
final assertion then follows by mollification.



3

(a) Use the isoperimetric inequality to prove that

∫

B(x,r)
det(Du) dy ≤

r

n

∫

S(x,r)
|Du|ndSy, B(x, r) ⊂ Ω.

(b) Use (c) in the definition of bounded distortion and step (a) to show

∫

B(x,r)
|Du|n dy ≤

κr

n

∫

S(x,r)
|Du|n dSy B(x, r) ⊂ Ω.

(c) Integrate step (b) to obtain the bound

∫

B(x,r)
|Du|n dy ≤

( r

R

)n/κ
∫

B(x,R)
|Du|n dy, r ∈ (0, R), B(x,R) ⊂ Ω.

(d) Deduce Hölder continuity from Morrey’s inequality.


