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PDE, HW 5 solutions

Problem 1. Change variables to p = |x|2/4t. Then

∫ ∞

0

1

(4πt)n/2
e−|x|2/4t dt =

1

4πn/2
|x|2−n

∫ ∞

0

e−pp
n

2
−2 dp

=
1

4πn/2
|x|2−nΓ

(n

2
− 1

)

=
1

4πn/2
|x|2−n 2

n − 2
=

|x|2−n

ωn(n − 2)
.

Here the Γ-function identity Γ(z + 1) = zΓ(z) has been used, along with
ωn = 2πn/2/Γ(n/2) (see HW 1).

Problem 2. There are two standard proofs. First, we may use uniqueness of
solutions to the heat equation. Fix t > 0. Consider the solution of the heat
equation us = 4u with initial data u(x, 0) = k(x, t/2). Then we have

u(x,
t

2
) =

∫

Rn

k(x − y,
t

2
)k(y,

t

2
) dy.

On the other hand, k(x, s + t/2) also solves ks = 4k with the same initial
data at s = 0. Therefore, u(x, t/2) = k(x, t) and we obtain the convolution
identity for m = 2. Now use induction. Suppose m > 2. The uniqueness
argument above yields

k(x, t) =

∫

Rn

k(y,
m − 1

m
t)k(x − y,

t

m
) dy,

and we may write the first term as a convolution of m − 1 terms by the
induction hypothesis.

One may also use the Fourier transform f̂(ξ) =
∫

Rn
e−iξ·xf(x) dx. The

Fourier transform of a Gaussian is Gaussian

k̂(ξ, t) = e−t|ξ|2 = e−t|ξ|2/m . . . e−t|ξ|2/m.

Now use the convolution property of Fourier transforms.

Problem 3. (a) This is an advertisement for the probabilistic approach. We
have u(x, t) = E(f(x + Wt)) where Wt is a Brownian motion started at 0.
Fix x, y ∈ R

n and θ ∈ (0, 1), then by the definition of convexity

u(θx + (1 − θ)y, t) = E (f(θ(x + Wt) + (1 − θ)(y + Wt)))

≤ E (θf(x + Wt) + (1 − θ)f(y + Wt)) = θu(x, t) + (1 − θ)u(y, t).
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(b) For any t > 0 we have

u(x, t) = Ef(x + Wt) ≥ f(E(x + Wt)) = f(x),

using Jensen’s inequality and EWt = 0. More generally, for any t2 ≥ t1, we
may use the semigroup property, part (a) and Jensen’s inequality to obtain

u(x, t2) = E(u(x + Wt2−t1 , t1)) ≥ u (E(x + Wt2−t1), t1) = u(x, t1).

Problem 4. Let V be the cylinder U×(0, T ). Consider continuous boundary
data f : ∂V → R and suppose u ∈ C2

1
(V )

⋂

C(V̄ ) solves the Dirichlet
problem ∂tu = 4u in V and u = f on ∂V . The weak maximum principle
implies maxV u(x, t) ≤ max∂1V f(x, t). In particular, f(x, T ) ≤ max∂1V f
for every x ∈ U . Thus, f cannot be arbitrary.

Problem 5. Appell’s transformation. This is a computation:

vt = ktu −
xk

t
ux +

k

t2
ut,

vx = kxu +
k

t
ux, vxx = kxxu +

2kxux

t2
+

k

t2
uxx.

Since kt = kxx and ut = uxx, we see that

vt − vxx = −
ux

t

(

xk

t
+ 2kx

)

= 0,

as may be verified by a computation, or by noting that this is the ODE used
to define k.

Problem 6. (a). Let us assume that E[µ] ≥ 0 with equality if and only if
µ = 0. For any c 6= 0, since 0 ≤ E[µ − cν] we have

2E[µ, ν] ≤
1

c
E[µ] + cE[ν].

The bound is best when we choose c =
√

E[µ]/E[ν] to obtain

E[µ, ν] ≤
√

E[µ]E[ν].
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Since the right hand side is unchanged under µ → −µ, we have |E[µ, ν]| ≤
√

E[µ]E[ν] as desired. The inequality is sharp unless µ = cν for some c ∈ R.
Part (2) of Thm. 1.56 is similar. If µ 6= ν

E[tµ + (1 − t)ν] = t2E[µ] + (1 − t)2E[ν] + 2t(1 − t)E[µ, ν]

< t2E[µ] + (1 − t)2E[ν] + 2t(1 − t)
√

E[µ]E[ν]

≤ t2E[µ] + (1 − t)2E[ν] + t(1 − t) (E[µ] + E[ν]) = tE[µ] + (1 − t)E[ν].

(b) Problem (2) yields

k(x − y, t) =

∫

Rn

k(x − y − z′,
t

2
)k(z′,

t

2
) dz′

=

∫

Rn

k(x − z,
t

2
)k(z − y,

t

2
) dz =

∫

Rn

k(z − x,
t

2
)k(z − y,

t

2
) dz,

changing variables z = z′+y, and using the symmetry k(x−z, t) = k(z−x, t).
Now integrate in time, and use problem (1) to obtain the desired identity

|x − y|2−n = ωn(n − 2)

∫ ∞

0

∫

Rn

k(z − x,
t

2
)k(z − y,

t

2
) dz dt.

(c) Let u(z, t) =
∫

Rn
k(z − x, t)µ(dx). Observe that u is a solution to the

heat equation with the measure µ as initial data. The identity (b) implies

1

ωn(n − 2)
E[µ] =

∫

Rn

∫

Rn

∫ ∞

0

∫

Rn

k(z − x,
t

2
)k(z − y,

t

2
) dz dt µ(dx)µ(dy)

=

∫ ∞

0

∫

Rn

∣

∣

∣

∣

u(z,
t

2
)

∣

∣

∣

∣

2

dz dt ≥ 0.

The interchange of limits is justified by Fubini’s theorem. The assumption
E[|µ|] < ∞ is used here.

(d) One approach to the uniqueness question is the following. If E[µ] = 0
we must have u(x, t) = 0 a.e. Therefore, one may integrate and use Fubini’s
theorem to obtain that for a.e x ∈ R

n

0 =

∫ ∞

0

u(x, t) dt =

∫ ∞

0

∫

Rn

k(x−y, t)µ(dy) dt = ωn(n−2)

∫

Rn

|x−y|2−nµ(dy).

Therefore, the potential of the measure µ vanishes a.e, and uniqueness of
potentials (Thm 1.48) implies µ ≡ 0.


