PDE, HW 5 solutions

Problem 1. Change variables to p = |z|?/4t. Then
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Here the I'-function identity I'(z + 1) = 2I'(z) has been used, along with
wp = 21"/2T(n)2) (see HW 1). O

Problem 2. There are two standard proofs. First, we may use uniqueness of
solutions to the heat equation. Fix ¢ > 0. Consider the solution of the heat
equation us; = Au with initial data u(z,0) = k(z,¢/2). Then we have

u(e.g) = [ b=y Dk 5) dy.

On the other hand, k(x,s + t/2) also solves ks = Ak with the same initial
data at s = 0. Therefore, u(x,t/2) = k(z,t) and we obtain the convolution
identity for m = 2. Now use induction. Suppose m > 2. The uniqueness
argument above yields

m—1 t
) = [kl ™SOk 5. ),

and we may write the first term as a convolution of m — 1 terms by the
induction hypothesis.

One may also use the Fourier transform f(¢) = Jan €7 f(x) dx. The
Fourier transform of a Gaussian is Gaussian

f(g,t) = e P = o tleP/m ot /m.

Now use the convolution property of Fourier transforms. O

Problem 3. (a) This is an advertisement for the probabilistic approach. We
have u(z,t) = E(f(x + W;)) where W; is a Brownian motion started at 0.
Fix z,y € R™ and 0 € (0, 1), then by the definition of convexity

u(fz + (1 —0)y,t) =E(f(0(z+ W) + (1 = 0)(y + Wi)))
<E@f(x+Wy)+ 1 —-0)f(y+Wy)) =0u(z,t) + (1 — 0)u(y,t).



(b) For any t > 0 we have
u(z,t) = Ef(x + W) = f(E(z + Wy)) = f(x),

using Jensen’s inequality and EW; = 0. More generally, for any to > t1, we
may use the semigroup property, part (a) and Jensen’s inequality to obtain

u(z, te) = Blu(z + Wiy—t,, t1)) > u (E(x + Wiy—t,), t1) = u(z, t1).
O

Problem 4. Let V be the cylinder U x (0,T"). Consider continuous boundary
data f : OV — R and suppose u € C%(V)(C(V) solves the Dirichlet
problem d;u = Aw in V and u = f on 0V. The weak maximum principle
implies maxy u(z,t) < maxg,v f(z,t). In particular, f(z,T) < maxg,v f
for every x € U. Thus, f cannot be arbitrary. O

Problem 5. Appell’s transformation. This is a computation:

zk k
vy = kyu — Tum + t—QUt,

2k, u k
Vg = kpu + ?uma Vgz = kgpu + % + t_2umm

Since k; = kg, and uy = ug,, we see that

Uy [ xk
UVt — VUgg = _7 <T +2kz> =0,

as may be verified by a computation, or by noting that this is the ODE used
to define k. O

Problem 6. (a). Let us assume that E[u] > 0 with equality if and only if
= 0. For any ¢ # 0, since 0 < E[u — cv] we have

—_

2F[u,v] < EE[,u] + cE[v].

The bound is best when we choose ¢ = \/E[u]/E[v] to obtain

Elp,v] < v E[pE[v].



Since the right hand side is unchanged under y — —pu, we have |E[u,v]| <
E[u]Elv] as desired. The inequality is sharp unless y = cv for some ¢ € R.
Part (2) of Thm. 1.56 is similar. If p # v

Eltu+ (1 —t)v] = t*Elu] + (1 — t)*E]
< t*Elu] + (1 —t)’E[v] +2t(1 — ¢
<t?Elu] + (1 — t)’E[v] + t(1 — t)

v+ 2t(1 — t)Elu, V]
)V E[p E[v
(

Elu] + Ev]) = tE[p] + (1 - t)E[v].

.

(b) Problem (2) yields
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changing variables z = 2z’'+y, and using the symmetry k(z—2z,t) = k(z—=x, t).
Now integrate in time, and use problem (1) to obtain the desired identity

o0 t
& — PP = waln — 2) / [ k=G =g 'y dzat.

(c) Let u(z,t) = [gn k(z — 2,t)u(dx). Observe that u is a solution to the
heat equatlon with the measure p as initial data. The identity (b) implies

wnn—Z /n/n/ /n z—x,=)k(z—y, = )dzdtu(d:r) (dy)
//n

The interchange of limits is justified by Fubini’s theorem. The assumption
E[|u|] < oo is used here.

dzdt > 0.

Z_

(d) One approach to the uniqueness question is the following. If E[u] = 0
we must have u(z,t) = 0 a.e. Therefore, one may integrate and use Fubini’s
theorem to obtain that for a.e x € R”

0= [Tutwtyie= [T [ Ha-ptiutndt = onln-2) [ o=y uldy)

Therefore, the potential of the measure p vanishes a.e, and uniqueness of
potentials (Thm 1.48) implies p = 0. O



