PDE, HW 3 solutions

Problem 1. No. If a sequence of harmonic polynomials on [—1, 1] converges
uniformly to a limit f then f is harmonic. U

Problem 2. By definition U, C U for every r > 0. Suppose w is a barrier at
y for U. Then the restriction of w to U, is also a barrier. Therefore, if y is
regular for U, it is also regular for OU...

Conversely, if w is a barrier at y for OU, it may be extended to a barrier
on U, as follows. Let A, = {x € U.r/2 < |z —y| < r}, and let M =
maxgea, w(z). By the definition of a barrier, M < 0. For x € U, let
w(x) = max{w(x), M }. This is the maximum of two subharmonic functions,
and is therefore subharmonic. Moreover, since w < M on A, it also follows
that w(x) = M for every x € A,. We extend @ to U by setting w = M < 0
for all x € U, |x — y| > r. This extension is a barrier at y for U. O

First proof for Problem 3. 1 hope you did not struggle too much with the
calculation. After some experimentation, I realized that the calculation is
simpler if one works with £ = x,,/|z| rather than 6 as defined in the problem
statement. Assume u = |z|*h(€). Then DE is given in coordinates by

£ = _Ta®i | Oni
= .
’ lz> |zl
A nice cancellation is
TnliX; T
T - Dé’ — xig,i — n<by n 0.

Pl
The derivatives of u are obtained by the chain rule
Du = Nz|*2zh + |z| W DE,
or in coordinates
u; = x|z} (AN — 1) + 2[R 8 o= (a) + (D).
Evaluate each term in turn. By using the cancellation above we have

(a); = 2]} 2(A = 2+ n)(\h — ER'),



and
(0) = (A= D[z} 2eh + [zP72(1 - )N’

Summing up, we have the differential equation
(1—&)n" + (1 —n)eW + XA —2+n)h =0. (0.1)
If we change variables according to cos = £ and g(f) = h(&) we have
g+ (n—2)cot g + A\(A+n—2)g =0.

The analysis is simplest (and unecessary) when n = 2. However, this is a
good check that the calculation is OK. Here we have

g"+ g =0,

with an even solution g = cos(Ag). This solution is positive for |§] < a if
we choose Ao < 7/2. More generally, our task is to find a positive solution
to (0.1) on any interval (—a,a) for 0 < a = cosa < 1. One way to do
this is to look at a classical reference on Legendre’s differential equation
or hypergeometric functions (Abramowitz and Stegun for example), but a
crude analysis will also suffice. Fix cosa < 1. Observe that ¢ = 1 is an
even positive solution on (—a,a) when A = 0. Now consider solutions with
g(0) =1 and ¢'(0) = 0 for small A > 0. The only problem is at 0, but here
limg_gg"+(n—2)cot g’ = (n—1)g"(0) = —A(A+n—2)g(0) = —A(A+n—2).
Therefore, for sufficiently small § > 0 one may use a series expansion to
construct an analytic solution g, convergent in the neighborhood (-4, §) for
all 0 < A < 1. In particular,

92
an=1=-XA+n-— 2)3 + 0(6?),

and the perturbation is continuous in A. For fixed § > 0, the equation for g
is regular on [d,a] and one may use continuous dependence of the solution
of an ODE on parameters to say that for sufficiently small A > 0 there is a
solution g that is positive such that gy(z) — 1 as A — 0. O

Second proof of Problem 3. 1 can see why the proof above may be unpalat-

able. Here is a classical argument that avoids the ODE, and relies only on a

direct construction of a barrier. Let U denote the domain U = B(0,1)( C.

Consider the Perron function for boundary data v = |z| on OU. Then every

point of U is regular except the origin. Since u(z) > 0,z € U we also have
lim inf u(z) > 0.

z—0



We only need show ¢ = limsup,_,qu(z) = 0. It is clear that ¢ > 0. We use
the scaling invariance of the cone: for any k& > 1 consider the scaled function
v(x) = u(kz). Then on all boundary points |z| # 0 we have

v(z) = klz| > u(x), and v(0) =u(0).
Thus, there is a constant a < 1 such that

u(z) < av(z), z¢€dU,x#0.

We claim that this inequality also holds at all points in the interior. If so,
by taking x — 0 we obtain,
limsupu(z) = ¢ < ac = alimsup u(kz) < c.
z—0 z—0
Thus, ¢ = 0 and u is a barrier.

It remains to show v < v for all x in the interior. We cannot use the
maximum principle directly since we do not know a priori that v and v
are continuous on the boundary. However, this is an easy problem to fix.
For any 1 > ¢ > 0 consider the domain U. = U[\{|z| > ¢}. Consider
a harmonic function on the annulus {¢ < |z| < 1} with boundary values
we =0 on [z| =1 and w: = supgepy|z)>-(u — av) < 0 on |z| = e. By the
maximum principle, we then have u —av < w, < 0forall x € U.. Let e — 0
to find u < av, x € U as desired. ]

Problem 4. Let v denote the given measure pl,.,dy. The potential is

w(@) = [ o=l vldy).

Since v is invariant under rotations, we may evaluate the integral by assum-
ing z is along the xq-axis. If @ is the polar angle measured from the axis,
and we denote |x| = p and |y| = r we have

|z —y|? = p* — 2prcos 6 + r.

First consider the case where |z| > a. In this case,
a s
uy(z) = ,u/ / (p> — 2prcos 0 + 12)~V2 (27 sin 0)r d6 dr-.
o Jo

Evaluate the inner integral via the substitution p = p? — 2pr cos 8 + r2:

(p+r)
—27r,u/ / _1/2 dp rdr

2 2 a
— “ (|p+r|—|p—r|)7“dr:—7w/ 2r2dr =
0 P Jo

A pa®
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If |x| < a, then we may use the same calculation to evaluate the integral on
the shell 0 < r < p to obtain a contribution 4mup?/3. However, on the shell
p <r < awehave |p+r|—|p—r| =2p and we have the integral

2 a
ﬂ/ 201 dr = 2wp(a® — p?).
P Jp

Summing these two contributions we have
2

_ P
w, () = 2mp(a® = ).

The attraction FF = Du is found by differentiating u (with left and right
derivatives at p = a that are equal). We have

—Amr gl <a
F(x) = 3 .3 ’
) {—4’;@‘7;& o] >

If we define F' as Du this calculation is entirely legitimate. On the other
hand, if we define F' as the integral

F(z) = 2—n) /R T y),

n |z —y|™

we must show this equals Du. This can be done using finite differences. To
clarify ideas, let us do this in generality. Fix w with |w| = 1. Let
u(z + hw) — u(x)

Dyou = . =p! / (|ac + hw — y|2_" — |z — y|2_") v(dy).

If we know a priori that u is differentiable (for example, as in this problem)
we may use the mean value theorem to obtain a number 7 € (0, 1) such that

T+ Thw —Yy) - w
Dpou = (2 —n)/n (|x+7hw—;|” v(dy).

We use the definition of F' to obtain

thu—F(x)'w:(Q—n)/Rn<

(x+thw—y) z-y
v+ Thw —y|™ |z —y|?

> - wu(dy).

As h — 0, the integrand converges to 0 pointwise. All that is needed is to
justify the interchange of limits. This is best done through the dominated
convergence theorem. For any h # 0, the integrand is bounded by

(0=2) [ (o4 rho — g+ fo =y lay)



If this term is finite, we are done. We only need consider the case |z| <
a. Since v is absolutely continuous with respect to Lebesgue measure, the
singularity is integrable. Indeed,

/ |z —y|' " (dy) = u/ |z —y|'"dy < u/ ly[' " dy = 2apw,.
" B(0,a) B(0,2a)

O

Problem 5. First suppose x € R. Fix p > 0 and let g(z) = e * ", 2 > 0 and
g =0,z < 0. As you have shown, g is C*°. To construct a bump function,
choose f(x) = g(1/2+ z)g(1/2 — x). Then supp(f) CC (—1,1). In R™ one
may choose the product

P(x) = f(

1 o T,
%)f(%) o f==),

and obtain a normalized bump function by defining

@)
o) = Ty

The support of ¢ is compactly contained within (—n_l/ 2 1/ 2)n which is
contained within B(0, 1).

Now consider g5 as defined in the problem. Suppose dist(xz,dU) > 4.
Let V = R™U. We then have either B(x,8) C U or B(z,§) C V. To
see this, suppose z is not in U. Observe that dist(z,U) = dist(x,dU)
since OU = U\U and inf, 7 |z — y| cannot be attained in U. Therefore,

dist(z,U) > & which implies B(x,d) C V. All we have used here is that U
is open. Since V is also open, if x € U we have similarly B(z,0) C U. In

either case, 1y(x —y) = 1y (x) if |y| < 0. O

Problem 6. Let U; and U,, be two sequences of increasing, bounded domains
used in the definition of pp. That is, U; C Uiy CC U and |J;2,U; = U,
and similarly for U,,. We define a sequence of Perron functions p; by solving
the Dirichlet problem with boundary data p; = 1,2 € F, p; = 0 on the
‘outer boundary’ of U; (and similarly for p,,). We have shown that p; and
Pm converge to functions harmonic on U = R™\ F'. Denote these by pr and
pr respectively. We must show that pr = pp.

Fix [. Since U; is a bounded domain, we must have U; C f]ml for suffi-
ciently large m;. By the maximum principle 1 > p,,, > p; on U;. Passing to
the limit, we find pp > pp, € U. A similar argument with U; replaced by

U,, yields pr > pp,x € U. O



Problem 7. pp is generated by a charge pupr with support in OF

- / &~y (dy).
F

If x € U, we have r(z) < |z —y| < R(z), and we have the desired estimate
R(x)* "cap(F) < pp(x) < r(z)* "cap(F).
U

Remark 0.1. The virtue of the above estimate is that it gives us the leading
order asymptotics of pr as x — oo. Conversely, if we are able to determine
pr(z,) along some sequence z,, — 0o, we may determine the capacity. For
example, to compute the capacity of a planar disc in R? we can use symmetry
to determine pr exactly along the axis of the disk, and let z — oo to find
the capacity (one needs elliptic integrals away from the axis).

Problem 8. First suppose OF is smooth. In this case, observe that pg(z) =
pr(fz) is the potential associated to Fz (use uniqueness of potentials here).
Now change variable to say that cap(Fjs) = 3" 2cap(F) in this case. If OF
is not smooth, use the approximation theorem.

I apologize for an error in equation (1.62), p.38 of the notes. I hope you
were able to fix this. It should read

Z AR cap(F,) =

k=0

The proof of the exterior cone condition using Wiener’s criterion goes as
follows. Suppose y € OU satisfies an exterior cone condition. Let A = 1/2
and let F}, be the compact sets in Theorem 1.50. Observe that F} contains
a ball of radius c\* for some ¢ > 0 (independent of k). Therefore, using
the scaling property just proved, and the fact that balls of radius R have
capacity R" 2 we find

cap(F) > (cAF)"2

Therefore, the sum in Wiener’s criterion

Z}\kQ nC&ka n2z

k=0



Problem 9. In case, you were confused about the notation for |Df|, what
was intended was the following uniform Lipschitz estimate

[f(z+y) = fl@)] <yl (0.2)

which is all that is needed in this problem. If f is C'! this bound is derived
as follows. By the fundamental theorem of calculus

1
f(a:—l—y)—f(:z:):/o if(aH—ty dt = /Df x + ty)y dt.

If |Df| denotes the (Euclidean) norm of the matrix D f we obtain (0.2).
The estimate cap(f(F)) < cap(F) is intuitively believable, but quite
subtle to prove. It is easy to fall into the following trap: Since f contracts
distances, f(F) C F and therefore cap(f(F)) < cap(#). The inclusion
f(F) C F works for balls (after a suitable translation), but not in general.
The key property of capacity needed here is the following. Consider a
finite collection of balls B(ag,rt),k = 1,... N . If we move the centers of all
balls further apart, then the capacity increases. Precisely, if ax, by are such
that |ap — a;| < |by — bl| for every k,l, k # [, then
N
cap U (ak,mx)) < cap U B(bg,1k)). (0.3)
k=1 k=1
Let us first show how (0.3) implies cap(f(F)) < cap(F). We use the
approximation theorem to say that for any £ > 0 there is a finite cover
]kvzl B(xg,rr) D F such that

B(xy,ry)) < cap(F) +e.

C=

cap(F) < cap(
1

B(zg,rr)) C B(f(zk), ) which implies

—~

By the contraction property, f

N N
F(U Blaw, ) = | f(Bay, i) UB
K1

k=1

The centers of all the balls have moved closer together since | f(z)— f(z;)] <
|z — x;]. It now follows from (0.3) that

cap(f(F)) < cap(f U B(zg, 1))

B(f(xr), 1)) < cap({ ) B(xk, 1)) < cap(F) + .

1 k

< cap(

=
i =

k 1



Let us now prove (0.3). To fix intuition, consider the situation where we
have two balls with centers at a; and as. Suppose the ball at as is moved
to by as shown in Figure 0.1. Observe that translated points y; satisfy
|x —yo| > |z — y1] (if the balls intersect, this only applies to points y; not in
the intersection, which is all we need). Recall that for any compact F'

cap(F) = sup{p(F)|p >0, wu, <1, supp(u)C F} (0.4)

Let u be the charge that achieves this supremum for the balls centered at
a1 and as. Now move the ball centered at as to by. Consider the measure
v obtained from p as follows: on S(aq,r1) it agrees with p and on S(by, r2)
it is obtained by translating the restriction of p on S(agz,72) to S(ba,r2).
The claim is that v is admissible for the balls centered at a; and by. If
so, criterion (0.4) shows that the capacity can only increase. We only need
check that u, < 1. By definition

2
“”<"’“"):kzzl/3(

If z € B(ay,m) since p = v on S(ay,r1) we have

/ o~y "w(dy) = / @ — P " u(dy).
S(a1,r1) S(a1,r1)

On the other hand, since the distance |z —yo| > |x —y1]| for all yo € B(az,12)
in the support of v, we have

z —y[* v (dy).

|
ak,T‘k)

/ & — o> " (dys) < / & — 1> (g ).
S(bQ,T‘Q) 5(04277'2)

A similar calculation holds for x € B(ba,r2). Thus, u,(z) < uy,(r) < 1.
This analysis applies with little change to N balls. If u is the charge on
S(ag, ) we construct v by translating p to S(bg,rx). As before,

N
wlo) =3 /

Without loss of generality, suppose x € B(bj,7;). Then,

/ @ — yl> " (dy) = / @ — > " u(dy),
S(bj,rj) S(ag,rs)

|z — y|* " v(dy).
(kaTIC)



Figure 0.1: Distance estimate for two balls

and on every other ball, k # j, by the argument for two balls

/ |z —y|*"v(dy) < / |z — y[* " u(dy).
S(bg,rk) S(ak,r)

This shows that u,(z) <1 on B(bj,r;). This proves (0.3).



