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PDE, HW 3 solutions

Problem 1. No. If a sequence of harmonic polynomials on [−1, 1]n converges
uniformly to a limit f then f is harmonic.

Problem 2. By definition Ur ⊂ U for every r > 0. Suppose w is a barrier at
y for U . Then the restriction of w to Ur is also a barrier. Therefore, if y is
regular for ∂U , it is also regular for ∂Ur.

Conversely, if w is a barrier at y for ∂Ur it may be extended to a barrier
on Ur as follows. Let Ar = {x ∈ Ur|r/2 ≤ |x − y| ≤ r}, and let M =
maxx∈Ar w(x). By the definition of a barrier, M < 0. For x ∈ Ur let
w̃(x) = max{w(x),M}. This is the maximum of two subharmonic functions,
and is therefore subharmonic. Moreover, since w ≤M on Ar it also follows
that w̃(x) = M for every x ∈ Ar. We extend w̃ to U by setting w̃ = M < 0
for all x ∈ U, |x− y| ≥ r. This extension is a barrier at y for U .

First proof for Problem 3. I hope you did not struggle too much with the
calculation. After some experimentation, I realized that the calculation is
simpler if one works with ξ = xn/|x| rather than θ as defined in the problem
statement. Assume u = |x|λh(ξ). Then Dξ is given in coordinates by

ξ,i = −xnxi

|x|3 +
δni

|x| .

A nice cancellation is

x ·Dξ = xiξ,i = −xnxixi

|x|3 +
xn

|x| = 0.

The derivatives of u are obtained by the chain rule

Du = λ|x|λ−2xh+ |x|λh′Dξ,

or in coordinates

u,i = xi|x|λ−2
(

λh− ξh′
)

+ |x|λ−1h′δni := (a) + (b).

Evaluate each term in turn. By using the cancellation above we have

(a),i = |x|λ−2(λ− 2 + n)(λh− ξh′),
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and
(b),i = (λ− 1)|x|λ−2ξh′ + |x|λ−2(1 − ξ2)h′′.

Summing up, we have the differential equation

(1 − ξ2)h′′ + (1 − n)ξh′ + λ(λ− 2 + n)h = 0. (0.1)

If we change variables according to cos θ = ξ and g(θ) = h(ξ) we have

g′′ + (n− 2) cot θg′ + λ(λ+ n− 2)g = 0.

The analysis is simplest (and unecessary) when n = 2. However, this is a
good check that the calculation is OK. Here we have

g′′ + λ2g = 0,

with an even solution g = cos(λθ). This solution is positive for |θ| < α if
we choose λα < π/2. More generally, our task is to find a positive solution
to (0.1) on any interval (−a, a) for 0 < a = cosα < 1. One way to do
this is to look at a classical reference on Legendre’s differential equation
or hypergeometric functions (Abramowitz and Stegun for example), but a
crude analysis will also suffice. Fix cosα < 1. Observe that g ≡ 1 is an
even positive solution on (−a, a) when λ = 0. Now consider solutions with
g(0) = 1 and g′(0) = 0 for small λ > 0. The only problem is at 0, but here
limθ→0 g

′′+(n−2) cot θg′ = (n−1)g′′(0) = −λ(λ+n−2)g(0) = −λ(λ+n−2).
Therefore, for sufficiently small δ > 0 one may use a series expansion to
construct an analytic solution g, convergent in the neighborhood (−δ, δ) for
all 0 ≤ λ < 1. In particular,

gλ = 1 − λ(λ+ n− 2)
θ2

2
+ o(θ2),

and the perturbation is continuous in λ. For fixed δ > 0, the equation for g
is regular on [δ, a] and one may use continuous dependence of the solution
of an ODE on parameters to say that for sufficiently small λ > 0 there is a
solution gλ that is positive such that gλ(x) → 1 as λ→ 0.

Second proof of Problem 3. I can see why the proof above may be unpalat-
able. Here is a classical argument that avoids the ODE, and relies only on a
direct construction of a barrier. Let U denote the domain U = B(0, 1)

⋂

C.
Consider the Perron function for boundary data u = |x| on ∂U . Then every
point of ∂U is regular except the origin. Since u(x) ≥ 0, x ∈ U we also have

lim inf
x→0

u(x) ≥ 0.
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We only need show c = lim supx→0 u(x) = 0. It is clear that c ≥ 0. We use
the scaling invariance of the cone: for any k > 1 consider the scaled function
v(x) = u(kx). Then on all boundary points |x| 6= 0 we have

v(x) = k|x| > u(x), and v(0) = u(0).

Thus, there is a constant a < 1 such that

u(x) ≤ av(x), x ∈ ∂U, x 6= 0.

We claim that this inequality also holds at all points in the interior. If so,
by taking x→ 0 we obtain,

lim sup
x→0

u(x) = c ≤ ac = a lim sup
x→0

u(kx) < c.

Thus, c = 0 and u is a barrier.
It remains to show u ≤ av for all x in the interior. We cannot use the

maximum principle directly since we do not know a priori that u and v
are continuous on the boundary. However, this is an easy problem to fix.
For any 1 > ε > 0 consider the domain Uε = U

⋂{|x| > ε}. Consider
a harmonic function on the annulus {ε ≤ |x| ≤ 1} with boundary values
wε = 0 on |x| = 1 and wε = supx∈∂U,|x|≥ε(u − av) < 0 on |x| = ε. By the
maximum principle, we then have u−av ≤ wε ≤ 0 for all x ∈ Uε. Let ε→ 0
to find u ≤ av, x ∈ U as desired.

Problem 4. Let ν denote the given measure µ1|y|<ady. The potential is

uν(x) =

∫

R3

|x− y|−1ν(dy).

Since ν is invariant under rotations, we may evaluate the integral by assum-
ing x is along the x1-axis. If θ is the polar angle measured from the axis,
and we denote |x| = ρ and |y| = r we have

|x− y|2 = ρ2 − 2ρr cos θ + r2.

First consider the case where |x| > a. In this case,

uν(x) = µ

∫ a

0

∫ π

0
(ρ2 − 2ρr cos θ + r2)−1/2(2πr sin θ)r dθ dr.

Evaluate the inner integral via the substitution p = ρ2 − 2ρr cos θ + r2:

uν(x) = 2πµ

∫ a

0

∫ (ρ+r)2

(ρ−r)2
p−1/2 dp

2ρ
r dr

=
2πµ

ρ

∫ a

0
(|ρ+ r| − |ρ− r|) r dr =

2πµ

ρ

∫ a

0
2r2dr =

4πµa3

3ρ
.
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If |x| ≤ a, then we may use the same calculation to evaluate the integral on
the shell 0 < r < ρ to obtain a contribution 4πµρ2/3. However, on the shell
ρ < r < a we have |ρ+ r| − |ρ− r| = 2ρ and we have the integral

2πµ

ρ

∫ a

ρ
2ρr dr = 2πµ(a2 − ρ2).

Summing these two contributions we have

uν(x) = 2πµ(a2 − ρ2

3
).

The attraction F = Du is found by differentiating u (with left and right
derivatives at ρ = a that are equal). We have

F (x) =

{

−4πµx
3 , |x| < a,

−4πµa3x
3|x|3

, |x| ≥ a

If we define F as Du this calculation is entirely legitimate. On the other
hand, if we define F as the integral

F (x) = (2 − n)

∫

Rn

x− y

|x− y|n ν(dy),

we must show this equals Du. This can be done using finite differences. To
clarify ideas, let us do this in generality. Fix ω with |ω| = 1. Let

Dhωu =
u(x+ hω) − u(x)

h
= h−1

∫

Rn

(

|x+ hω − y|2−n − |x− y|2−n
)

ν(dy).

If we know a priori that u is differentiable (for example, as in this problem)
we may use the mean value theorem to obtain a number τ ∈ (0, 1) such that

Dhωu = (2 − n)

∫

Rn

(x+ τhω − y) · ω
|x+ τhω − y|n ν(dy).

We use the definition of F to obtain

Dhωu− F (x) · ω = (2 − n)

∫

Rn

(

(x+ τhω − y)

|x+ τhω − y|n − x− y

|x− y|n
)

· ω ν(dy).

As h → 0, the integrand converges to 0 pointwise. All that is needed is to
justify the interchange of limits. This is best done through the dominated
convergence theorem. For any h 6= 0, the integrand is bounded by

(n− 2)

∫

Rn

(|x+ τhω − y|1−n + |x− y|1−n)ν(dy).
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If this term is finite, we are done. We only need consider the case |x| ≤
a. Since ν is absolutely continuous with respect to Lebesgue measure, the
singularity is integrable. Indeed,
∫

Rn

|x− y|1−nν(dy) = µ

∫

B(0,a)
|x− y|1−ndy ≤ µ

∫

B(0,2a)
|y|1−ndy = 2aµωn.

Problem 5. First suppose x ∈ R. Fix p > 0 and let g(x) = e−x−p

, x > 0 and
g = 0, x ≤ 0. As you have shown, g is C∞. To construct a bump function,
choose f(x) = g(1/2 + x)g(1/2 − x). Then supp(f) ⊂⊂ (−1, 1). In R

n one
may choose the product

ψ(x) = f(
x1√
n

)f(
x2√
n

) . . . f(
xn√
n

),

and obtain a normalized bump function by defining

ϕ(x) =
ψ(x)

∫

Rn ψ(y)dy
.

The support of ϕ is compactly contained within (−n−1/2, n−1/2)n which is
contained within B(0, 1).

Now consider gδ as defined in the problem. Suppose dist(x, ∂U) > δ.
Let V = R

n\U . We then have either B(x, δ) ⊂ U or B(x, δ) ⊂ V . To
see this, suppose x is not in U . Observe that dist(x,U) = dist(x, ∂U)
since ∂U = U\U and infy∈U |x − y| cannot be attained in U . Therefore,

dist(x,U ) > δ which implies B(x, δ) ⊂ V . All we have used here is that U
is open. Since V is also open, if x ∈ U we have similarly B(x, δ) ⊂ U . In
either case, 1U (x− y) = 1U (x) if |y| < δ.

Problem 6. Let Ul and Ũm be two sequences of increasing, bounded domains
used in the definition of pF . That is, Ul ⊂ Ul+1 ⊂⊂ U and

⋃∞
l=1 Ul = U ,

and similarly for Ũm. We define a sequence of Perron functions pl by solving
the Dirichlet problem with boundary data pl = 1, x ∈ F , pl = 0 on the
‘outer boundary’ of Ul (and similarly for p̃m). We have shown that pl and
p̃m converge to functions harmonic on U = R

n\F . Denote these by pF and
p̃F respectively. We must show that pF = p̃F .

Fix l. Since Ul is a bounded domain, we must have Ul ⊂ Ũml
for suffi-

ciently large ml. By the maximum principle 1 > p̃ml
> pl on Ul. Passing to

the limit, we find p̃F ≥ pF , x ∈ U . A similar argument with Ul replaced by
Ũm yields pF ≥ p̃F , x ∈ U .
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Problem 7. pF is generated by a charge µF with support in ∂F

pF (x) =

∫

F
|x− y|2−nµF (dy).

If x ∈ U , we have r(x) ≤ |x− y| ≤ R(x), and we have the desired estimate

R(x)2−ncap(F ) ≤ pF (x) ≤ r(x)2−ncap(F ).

Remark 0.1. The virtue of the above estimate is that it gives us the leading
order asymptotics of pF as x→ ∞. Conversely, if we are able to determine
pF (xn) along some sequence xn → ∞, we may determine the capacity. For
example, to compute the capacity of a planar disc in R

3 we can use symmetry
to determine pF exactly along the axis of the disk, and let x → ∞ to find
the capacity (one needs elliptic integrals away from the axis).

Problem 8. First suppose ∂F is smooth. In this case, observe that pβ(x) =
pF (βx) is the potential associated to Fβ (use uniqueness of potentials here).
Now change variable to say that cap(Fβ) = βn−2cap(F ) in this case. If ∂F
is not smooth, use the approximation theorem.

I apologize for an error in equation (1.62), p.38 of the notes. I hope you
were able to fix this. It should read

∞
∑

k=0

λk(2−n)cap(Fk) = ∞.

The proof of the exterior cone condition using Wiener’s criterion goes as
follows. Suppose y ∈ ∂U satisfies an exterior cone condition. Let λ = 1/2
and let Fk be the compact sets in Theorem 1.50. Observe that Fk contains
a ball of radius cλk for some c > 0 (independent of k). Therefore, using
the scaling property just proved, and the fact that balls of radius R have
capacity Rn−2 we find

cap(Fk) ≥ (cλk)n−2.

Therefore, the sum in Wiener’s criterion

∞
∑

k=0

λk(2−n)cap(Fk) ≥ cn−2
∞
∑

k=0

1 = ∞.
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Problem 9. In case, you were confused about the notation for |Df |, what
was intended was the following uniform Lipschitz estimate

|f(x+ y) − f(x)| ≤ |y|, (0.2)

which is all that is needed in this problem. If f is C1 this bound is derived
as follows. By the fundamental theorem of calculus

f(x+ y) − f(x) =

∫ 1

0

d

dt
f(x+ ty) dt =

∫ 1

0
Df(x+ ty)y dt.

If |Df | denotes the (Euclidean) norm of the matrix Df we obtain (0.2).
The estimate cap(f(F )) ≤ cap(F ) is intuitively believable, but quite

subtle to prove. It is easy to fall into the following trap: Since f contracts
distances, f(F ) ⊂ F and therefore cap(f(F )) ≤ cap(F ). The inclusion
f(F ) ⊂ F works for balls (after a suitable translation), but not in general.

The key property of capacity needed here is the following. Consider a
finite collection of balls B(ak, rk), k = 1, . . . N . If we move the centers of all
balls further apart, then the capacity increases. Precisely, if ak, bk are such
that |ak − al| ≤ |bk − bl| for every k, l, k 6= l, then

cap(
N
⋃

k=1

B(ak, rk)) ≤ cap(
N
⋃

k=1

B(bk, rk)). (0.3)

Let us first show how (0.3) implies cap(f(F )) ≤ cap(F ). We use the
approximation theorem to say that for any ε > 0 there is a finite cover
⋃N

k=1B(xk, rk) ⊃ F such that

cap(F ) ≤ cap(

N
⋃

k=1

B(xk, rk)) ≤ cap(F ) + ε.

By the contraction property, f(B(xk, rk)) ⊂ B(f(xk), rk) which implies

f(
N
⋃

k=1

B(xk, rk)) =
N
⋃

k=1

f(B(xk, rk)) ⊂
N
⋃

k=1

B(f(xk), rk).

The centers of all the balls have moved closer together since |f(xk)−f(xl)| ≤
|xk − xl|. It now follows from (0.3) that

cap(f(F )) ≤ cap(f(

N
⋃

k=1

B(xk, rk)))

≤ cap(

N
⋃

k=1

B(f(xk), rk)) ≤ cap(

N
⋃

k=1

B(xk, rk)) ≤ cap(F ) + ε.
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Let us now prove (0.3). To fix intuition, consider the situation where we
have two balls with centers at a1 and a2. Suppose the ball at a2 is moved
to b2 as shown in Figure 0.1. Observe that translated points yi satisfy
|x− y2| ≥ |x− y1| (if the balls intersect, this only applies to points yi not in
the intersection, which is all we need). Recall that for any compact F

cap(F ) = sup{µ(F ) |µ ≥ 0, uµ ≤ 1, supp(µ) ⊂ F } (0.4)

Let µ be the charge that achieves this supremum for the balls centered at
a1 and a2. Now move the ball centered at a2 to b2. Consider the measure
ν obtained from µ as follows: on S(a1, r1) it agrees with µ and on S(b2, r2)
it is obtained by translating the restriction of µ on S(a2, r2) to S(b2, r2).
The claim is that ν is admissible for the balls centered at a1 and b2. If
so, criterion (0.4) shows that the capacity can only increase. We only need
check that uν ≤ 1. By definition

uν(x) =

2
∑

k=1

∫

S(ak,rk)
|x− y|2−nν(dy).

If x ∈ B(a1, r1) since µ = ν on S(a1, r1) we have

∫

S(a1,r1)
|x− y|2−nν(dy) =

∫

S(a1,r1)
|x− y|2−nµ(dy).

On the other hand, since the distance |x−y2| ≥ |x−y1| for all y2 ∈ B(a2, r2)
in the support of ν, we have

∫

S(b2,r2)
|x− y2|2−nν(dy2) ≤

∫

S(a2,r2)
|x− y1|2−nµ(dy1).

A similar calculation holds for x ∈ B(b2, r2). Thus, uν(x) ≤ uµ(x) ≤ 1.
This analysis applies with little change to N balls. If µ is the charge on

S(ak, rk) we construct ν by translating µ to S(bk, rk). As before,

uν(x) =
N

∑

k=1

∫

S(bk ,rk)
|x− y|2−nν(dy).

Without loss of generality, suppose x ∈ B(bj, rj). Then,

∫

S(bj ,rj)
|x− y|2−nν(dy) =

∫

S(aj ,rj)
|x− y|2−nµ(dy),
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Figure 0.1: Distance estimate for two balls
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and on every other ball, k 6= j, by the argument for two balls

∫

S(bk,rk)
|x− y|2−nν(dy) ≤

∫

S(ak,rk)
|x− y|2−nµ(dy).

This shows that uν(x) ≤ 1 on B(bj, rj). This proves (0.3).


