PDE, HW 5, due Monday 11/14/05

1. Here and in all that follows, $k(x,t) = (4\pi t)^{-n/2} \exp(-|x|^2/4t)$ is the fundamental solution of the heat equation on \mathbb{R}^n . Verify that the fundamental solutions of the heat equation and Laplace's equation are related by

$$\int_0^\infty k(x,t) \, dt = \frac{1}{\omega_n(n-2)} |x|^{2-n}, \quad n \ge 3.$$

2. Prove the following 'semigroup' property of the fundamental solution of the heat equation: if \star denotes convolution

$$k(x,t) = \left(k(\cdot,\frac{t}{m}) \star k(\cdot,\frac{t}{m}) \star \dots \star k(\cdot,\frac{t}{m})\right)(x), \quad m \in \mathbb{Z}_+.$$

3. The heat equation and convexity:

- (a) Suppose $f : \mathbb{R} \to \mathbb{R}$ is convex and satisfies the growth assumption $f \leq Me^{ax^2}$, M, a > 0. Show that the solution to the heat equation $u(x,t) = \int_{\mathbb{R}} k(x-y,t)f(y) \, dy, t > 0$ with u(x,0) = f is a convex function in x for every t > 0.
- (b) Show that $u(x, t_2) \ge u(x, t_1)$ for every $t_2 \ge t_1 \ge 0$ for which u(x, t) is defined.

4. Show that there is a domain $V \subset \mathbb{R}^n \times (0, \infty)$ for which Dirichlet problem for the heat equation does not have a solution.

5. Appell's transformation: Let u(x,t) be a solution to the heat equation for $x \in \mathbb{R}, t < 0$. Let v(x,t) = k(x,t)u(x/t, -1/t) for $x \in \mathbb{R}, t > 0$. Show that v solves the heat equation for $x \in \mathbb{R}, t > 0$. This is the analogue of inversion for harmonic functions.

6. Let $E[\mu] = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |x-y|^{2-n} \mu(dx) \mu(dy)$ denote the Coulomb energy of a finite signed measure. Prove that the Coulomb energy has the properties mentioned in Lecture notes (Thm. 1.56, p. 39, in the current version posted online) by the following method.

- (a) Assume part (1), and prove parts (2) and (3) of Thm 1.56.
- (b) Use problems (1) and (2) to obtain the identity

$$|x-y|^{2-n} = \omega_n(n-2) \int_0^\infty \int_{\mathbb{R}^n} k(z-x,\frac{t}{2})k(z-y,\frac{t}{2}) \, dz \, dt.$$

(c) Substitute this identity in the definition of $E[\mu]$ to show that $E[\mu] \ge 0$.

(d) Show that $E[\mu] = 0$ if and only if $\mu \equiv 0$.