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PDE, Final exam. Due by 5 pm, Wednesday, 14 Dec. 05

Instructions

1. You may use any reference sources (books, notes, internet), provided you
cite these sources appropriately.
2. Resist the temptation to discuss the exam with fellow students.
3. If stuck, try to formulate a partial answer for special cases. Do not be
discouraged if you cannot solve all problems.
4. Please inform me of any errors you find in the exam, I will post them
immediately.

Problems

1. (a) Suppose f ∈ D′(Rn) . Is it always possible to solve 4L = f in the
sense of distributions? (b) A distribution f has compact support if there is
a compact set F ⊂ R

n, such that < f,ϕ >= 0 for all test functions ϕ with
supp(ϕ)∩F = φ. Can one solve 4L = f for every f with compact support?

2. Weyl’s lemma: Suppose L is a harmonic distribution (4L = 0 in D′(Rn)).
Then L is a harmonic function.

3. Let F ⊂ R
n be compact, and suppose U = R

n\F has a C2 boundary.
Consider the positive solution to ut = 4u, x ∈ U , t > 0 with initial data
u(x, 0) = 0, x ∈ U and boundary data u(x, t) = 1, x ∈ ∂U , t > 0.

(a) Show that limt→∞ u(x, t) = pF (x), x ∈ U , where pF denotes the
potential of the set F .

(b) Use radial symmetry to find u when F is the closed ball B(0, R).

(c) Physically, this is a model for heat flow from a body held at unit
temperature. The energy lost upto time t is

E(t) =

∫

U

u(x, t) dx.

It turns out that limt→∞ t−1E(t) = cap(F ). This requires some work, so try
and prove the simpler estimate lim supt→∞

t−1E(t) < ∞ (do not assume F

is a ball here, but it may help to use F ⊂ B(0, R) for R large enough).

4. Problem 4, John p. 162. To simplify matters suppose g in S(Rn).

5. A discrete vortex. A piecewise constant vector field (u1, u2) takes the
values (0, 1), (1, 0), (0,−1), and (−1, 0) in the four symmetric parts of the
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Figure 0.1: Divergence free vector field

square shown in Figure 0.1. Show that ∂x1
u1 + ∂x2

u2 = 0 in the sense of
distributions.

6. Consider the solution operator for the wave equation utt − 4u = 0,
x ∈ R

n, t > 0 when n = 2k + 1, k ≥ 1 with initial data u(x, 0) = 0,
ut(x, 0) = g, g ∈ S(Rn):

u(x, t) = γ−1
n

(

t−1∂t

)
n−3

2

(

tn−2 −

∫

S(x,t)
g(y)dSy

)

,

where γn = (n − 2)(n − 4) . . . 5 · 3. Show that this solution formula agrees
with that obtained by Fourier analysis

û(ξ, t) =
sin |ξ|t

|ξ|
ĝ(ξ).

7. Oseen tensor. The Stokes system is the following set of equations

4u − Dp = f, D · u = 0.

Here u : R
n → R

n and p : R
n → R are unknown. f = (f1, . . . , fn) is a given

forcing, Dp denotes the gradient of p, and D ·u denotes the divergence of u.
Suppose n ≥ 3. Solve this problem for fi ∈ S(Rn), i = 1, . . . , n as follows.

(i) To obtain a fundamental solution, fix a unit vector ω, and consider the
Stokes system with f = δ0ω. Take the Fourier transform of both sides and
eliminate p̂ to obtain a linear equation û = A(ξ)ω with a matrix multiplier
A(ξ); (ii) Find the inverse Fourier transform of A(ξ); (iii) Write the solution
for f using the fundamental solution.
8. We have shown that harmonic functions are characterized by the mean
value property on balls. Prove the following characterization of balls by
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harmonic functions. Suppose U ⊂ R
n is open, convex, bounded, has a C2

boundary and contains the origin. If

1

|U |

∫

U

f(x) dx = f(0),

for every f harmonic in U , then U is a ball centered at the origin. This is
also true without assumptions of convexity, but you do not need to prove
this.


