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PDE, Final exam solutions and scores

The exam scores in increasing order were: 37, 40, 47, 48, 53, 51, 55, 57, 57,
59, 71, 76.

Problem 2, Weyl’s lemma. 1. We must establish that L is equivalent to a
harmonic function. We will use mollification, and the fact that a uniform
limit of harmonic functions is harmonic. Fix η ∈ D with

∫

Rn η(x) dx = 1
and η(x) = η(−x) (for convenience). Let ηm(x) = mnη(mx). We know that
L?ηm → L in D′. We will show that L?ηm converges uniformly on compact
sets to a harmonic function f .

2. Fix m. Note that 4(L ? ηm) = (4L) ? ηm = 0. Thus, we have the
mean value property

L ? ηm(x) = 〈L, τxηm〉 = −
∫

S(x,r)
〈L, τyηm〉 dSy =

〈

L,−
∫

S(x,r)
τyηmdSy

〉

.

(0.1)
The test function in the last equality is defined by

(

−
∫

S(x,r)
τyηmdSy

)

(z) = −
∫

S(x,r)
ηm(z − y)dSy.

The last equality in (0.1) involves an interchange of limits justified by using
Riemman sums that approximate the integral and converge in D.

3. We cannot pass to the limit m → ∞ yet. The key point is to smear
the integral over the shell S(x, r) into one over an annulus, so that we can
pass to the limit. This is done as follows. Let ψ be a radial test function
such that ψ = 0 for r < 1 and r > 2 and

∫∞
0 ψ(r)dr = 1. Since (0.1) holds

for every r > 0, we integrate in r to obtain

L ? ηm(x) =

〈

L,

∫ r

0
ψ(r) −

∫

S(x,r)
τyηmdSydr

〉

.

The test function on the right hand side is defined by

(

∫ r

0
ψ(r) −

∫

S(x,r)
τyηmdSydr

)

(z) =

∫ ∞

0
ψ(r) −

∫

S(x,r)
ηm(z − y)dSydr

=
1

ωn

∫ ∞

0

∫

|ω|=1
ηm(z − rω)ψ(r)dωdr =

1

ωn

∫

Rn

ηm(z − y)
ψ(|y|)
|y|n−1

dy.
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This is simply the convolution of ηm with the test function ψ̃(y) := ψ(|y|)|y|1−n.
As m→ ∞ we have ηm ? ψ̃ → ψ̃ in the space of test functions. Thus,

lim
m→∞

L ? ηm(x) =
〈

L, τxψ̃
〉

:= f(x),

with uniform convergence on compact sets. Since L ? ηm is harmonic, so is
f . On the other hand, L ? ηm → L in D′. If ϕ ∈ D we now obtain

〈L,ϕ〉 =

∫

Rn

f(x)ϕ(x) dx.

Thus, f defines the same distribution as L.

Problem 3. (a). 1. Here is a probabilistic proof for ut = 1
24u. Fix x ∈ U ,

t > 0. If Wt is a Brownian motion, let Tx = inft>0{x+Wt ∈ ∂U}. We then
have the probabilistic representation

u(x, t) = E(1Tx<t) = P (Tx < t) ≤ 1.

Suppose 0 < t1 < t2. Since {Tx < t1} ⊂ {Tx < t2}, we have P (Tx < t1) ≤
P (Tx < t2). Thus, u(x, t) is an increasing function and limt→∞ u(x, t) :=
v(x) exists. Observe that v(x) = P (Tx <∞). We must show that v = pF (x).

2. Consider a sequence of times 0 < Tk → ∞ and the shifted solutions
uk(x, t) = u(x, t + Tk), t ≥ −Tk. Fix 0 < r < T1 and a heat ball E(x, 0; r)
in U × (−∞, 0). We then have the mean value property

u(x, Tk) = uk(x, 0) = −
∫

E(x,0;r)
uk(y, s)

|x− y|2
(t− s)2

dy ds.

Let k → ∞ and use the monotone convergence theorem to find

v(x) = −
∫

E(x,0;r)
v(y)

|x− y|2
(t− s)2

dy ds.

Thus, v is a solution to the heat equation that does not depend on t. That
is, 4v = 0. We also have v = 1 on ∂U and v → 0 as x → ∞ since
v = P (Tx <∞). By the uniqueness of the potential, we must have v = pF .

(b). First solve the problem for the unit ball

ut = urr +
(n− 1)

r
ur, r > 1
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subject to u(1, t) = 1, t > 0, and u(r, 0) = 0. In such problems, one may
reduce to homogeneous boundary conditions by subtracting the steady state
solution u∗ = r2−n. Let v(r, t) = u∗(r) − u(r, t). We then have

vt = vrr +
(n− 1)

r
vr, v(1, t) = 0, v(r, 0) = r2−n.

The solution is simplest when n = 3. In this case, we set V = rv and obtain

Vrr = rvrr + 2vr = rvt = Vt.

Thus, we obtain the 1-D heat equation. This is, of course, the method used
for the wave equation. The boundary condition is V (1, t) = 0, t > 0 and the
initial condition is V (r, 0) = 1, r > 0. For convenience, let s = r− 1 so that
we have

Vt = Vss, s, t > 0, V (0, t) = 0, t > 0 V (s, 0) = 1, s > 0. (0.2)

The Green’s function for the heat equation on the half line with zero bound-
ary condition is obtained by reflection. Let k(s, y, t) denote the usual fun-
damental solution for the heat equation

k(s, y, t) =
1√
4πt

exp(−(s− y)2

4t
).

Then the fundamental solution with absorbing boundary conditions satisfies

gt = gss, g(s, y, 0) = δy(s), g(0, y, t) = 0,

and is given by reflection

g(s, y, t) = k(s, y, t) − k(s,−y, t), s, y, t > 0.

The solution to (0.2) is given by

V (s, t) =

∫ ∞

0
g(s, y, t) dy =

∫ s

−s
k(s, y, t) dy =

1√
4πt

∫ s

−s
e−y2/4t dy.

Since
∫

R
k(s, y, t)dy = 1 we have

1 − V (s, t) =
2√
4πt

∫ ∞

s
e−y2/4t dy.

Therefore, the solution to the problem is

u(r, t) =
1

r
(1 − V (r − 1, t)) =

2

r
√

4πt

∫ ∞

r−1
e−y2/4t dy.
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Finally, the heat flow upto time t is

E(t) =

∫

R3\B(0,1)
u(|x|, t) dx = 4π

∫ ∞

1
r2u(r, t) dr = 4π

∫ ∞

0
(s+1)(1−V (s, t)) ds.

We use the solution for V (s, t) and integrate by parts to obtain
∫ ∞

0
s(1 − V (s, t)) ds =

2√
4πt

∫ ∞

0

s2

2
e−s2/4t ds = t,

similarly,
∫∞
0 (1 − V (s, t)) ds = 1. To summarize, we have

E(t) = 4π(t+ 1).

If the radius of the ball is R, after a change of scale we have

E(t) = 4πR(t+ 1).

(c). Given a general compact set F , we enclose it within a ball B(0, R).
Let uF and uB denote the solutions to the heat equations on the respective
domains with initial and boundary conditions of the kind we have considered.
Since uF (x, t) < uB(x, t) = 1 for x ∈ S(0, R), t > 0, uF (x, 0) = uB(x, 0) = 0
for |x| > R and we have the uniform bound 0 ≤ uF ≤ 1, 0 ≤ uB ≤ 1 we
apply the maximum principle to conclude uF (x, t) < uB(x, t), |x| > R. It is
then clear that

EF (t) =

∫

Rn\F
uF (x, t) dx =

∫

B(0,R)\F
uF (x, t)dx+

∫

|x|>R
uF (x, t) dx

≤ |B(0, R)| + EB(t) = |B(0, R)| + 4πR(t+ 1).

Thus, lim supt→∞ t−1EF (t) ≤ 4πR <∞.

Problem 4, Radon transform. (a). I will use the notation G(ω, p) for the
Radon transform, reserving the letter ξ for the Fourier transform. In all that
follows g ∈ S(Rn), |ω| = 1, dω is the surface measure on the unit sphere,
and dn−1y denotes the n−1 dimensional Lebesgue measure on hyperplanes.
To prove the first identity, after a suitable translation and rotation we may
suppose that x = 0 and ω = (1, 0, . . . , 0). We then have

∫

Rn

|y1|4yg(y) , dy =

∫

Rn

|y1|
(

∂2
y1
g +

n
∑

k=2

∂2
yk

)

g(y) dy

= −
∫

Rn

sgn(y1)∂y1
g dy =

∫

y1<0
∂y1

g dy −
∫

y1>0
∂y1

g dy

= 2

∫

y1=0
g(0, y2, . . . , yn) dn−1y = 2G(ω, x · ω). (0.3)
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(b). We use (2.82) and integrate by parts to obtain

g(x) =

∫

Rn

k(x, y)4
n+1

2
y g(y) dy =

∫

Rn

4
n−1

2
y k(x, y)4yg(y) dy

=

∫

Rn

4
n−1

2
x k(x, y)4yg(y) dy = 4

n−1

2
x

∫

Rn

k(x, y)4yg(y) dy. (0.4)

We then combine (2.81), (0.3) and (0.4) to obtain

g(x) =
dn

cn
4

n−1

2
x

∫

|ω|=1

∫

Rn

|(x− y) · ω|4yg(y) dy

=
2dn

cn
4

n−1

2
x

∫

|ω|=1
G(ω, x · ω) dω.

(c) Let ĝ(ξ), ξ ∈ R
n denote the Fourier transform of g as usual. Let ξ = ωq.

ĝ (ωq) =
1

(2π)n/2

∫

Rn

e−ix·ωqg(x)dx =
1

(2π)n/2

∫

R

e−isq

∫

x·ω=s
g(x)dn−1x ds

=
1

(2π)n/2

∫

R

e−isqG(ω, s) ds =
1

(2π)
n−1

2

Ĝ(ω, q).

Therefore, using the Fourier inversion formula

g(x) = (2π)−n/2

∫

Rn

eix·ξĝ(ξ)dξ = (2π)−n/2

∫ ∞

0
qn−1 dq

∫

|ω|=1
eiqx·ωĝ(qω)dω

= (2π)
1−2n

2

∫ ∞

0
qn−1 dq

∫

|ω|=1
eiqx·ωĜ(ω, q) dω.

(d) To obtain (2.90) from (2.89) we substitute the inversion formula

G(ω, x · ω) =
1√
2π

∫

R

eix·ωq Ĝ(ω, q) dq

in (2.89) to find

g(x) =
2dn

cn
√

2π

∫

R

∫

|ω|=1
4

n−1

2
x eix·ωq Ĝ(ω, q) dq dω

=
2dn

cn
√

2π

∫ ∞

0

∫

|ω|=1
(−|q|)n−1 eix·ωq Ĝ(ω, q) dω dq,

using the symmetry of (2.92). Finally, plug in constants as in (2.91) to
obtain (2.90).
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(e) We switch to polar coordinates x = r cosϕ, y = r sinϕ. Then p2 + t2 =
r2 and for fixed p, t = ±

√

r2 − p2. Therefore, taking into account both
branches we have

G(θ, p) =

∫ ∞

p
g(p cos θ +

√

r2 − p2 sin θ, p sin θ −
√

r2 − p2 cos θ)
dt

√

r2 − p2

+

∫ ∞

p
g(p cos θ −

√

r2 − p2 sin θ, p sin θ +
√

r2 − p2 cos θ)
dt

√

r2 − p2
,

which may be integrated in θ to yield

∫ 2π

0
G(θ, p) dθ = 4π

∫ ∞

p

r
√

r2 − p2
I(r) dr,

where I(r) = (2πr)−1
∫

S(0,r) gdS. If we multiply this equation by p/
√

p2 − s2

and integrate from s to ∞ we have the integral

∫ ∞

s
rI(r) dr

(

∫ r

s

p dp
√

p2 − s2
√

r2 − p2

)

.

Observe that the inner integral is simply a constant. Indeed, we have

∫ r

s

p dp
√

p2 − s2
√

r2 − p2
=

1

2

∫ r2

s2

dx√
x− s2

√
r2 − x

=
1

2

∫ 1

0

dx
√

x(1 − x)
=
π

2
.

Thus, we have the expression

∫ ∞

s
rI(r) dr =

1

2π2

∫ ∞

s

∫ 2π

0

p
√

p2 − s2
G(θ, p) dθ dp.

Problem 5, Discrete vortex. Since u is piecewise constant, it will suffice to
study the jumps. The crux of the problem is that the normal component of
u is continuous. For the geometry at hand, a simple proof goes as follows.
Let ϕ be a test function with compact support in the first quadrant (0, 1)2.
Let V± be as shown in Figure 0.1. By definition,

〈∂x1
u1 + ∂x2

u2, ϕ〉 = −〈u1, ϕx1
〉 − 〈u2, ϕx2

〉 = −
∫

V
−

ϕx1
dx+

∫

V+

ϕx2
dx,
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(ϕ)

V

V +

−

supp

Figure 0.1: Discrete vortex

because u = (1, 0) in V− and u = (0,−1) in V+. We now compute

∫

V
−

ϕx1
dx =

∫ 1

0

∫ x2

0
ϕx1

dx1 dx2 =

∫ 1

0
ϕ(x2, x2) dx2,

∫

V+

ϕx2
dx =

∫ 1

0

∫ x1

0
ϕx2

dx2 dx1 =

∫ 1

0
ϕ(x1, x1) dx1.

Thus, 〈∂x1
u1 + ∂x2

u2, ϕ〉 = 0 for ϕ with support in the first quadrant. A
similar argument works for each quadrant, and also for a test function with
support in a neighborhood of the origin. An arbitrary test function can be
separated into such pieces by a partition of unity.

Problem 6. 1. Suppose g ∈ S(Rn). The solution formula may be written
as an integral over the unit sphere as

u(x, t) = γ−1
n

(

t−1∂t

)
n−3

2

(

tn−2 −
∫

S(0,1)
g(x+ tω)dω

)

, (0.5)

with γn = (n− 2)(n − 4) . . . 5 · 3. Take the Fourier transform of both sides,
and switch the order of integrals using Fubini’s theorem to find

û(ξ, t) = ĝ(ξ)

(

γ−1
n

(

t−1∂t

)
n−3

2

(

tn−2 −
∫

S(0,1)
eiξ·tω dω

))

.

The task is to show that the term in brackets is the multiplier |ξ|−1 sin |ξ|t.
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2. First compute the integral. Let ξ = |ξ|ξ̂ and let θ be the polar angle
from the unit vector ξ̂. Then ξ · tω = |ξ|tξ̂ · ω and we have

−
∫

S(0,1)
eiξ·tω dω =

ωn−1

ωn

∫ π

0
e−i|ξ|t cos θ sinn−1 θ dθ

=
ωn−1

ωn

∫ 1

−1
cos(p|ξ|t)(1 − p2)k−1 dp. (0.6)

In the last step we have substituted p = cos θ, and n = 2k + 1. If n = 3 (or
k = 1) this is simply

2π

4π

2 sin |ξ|t
|ξt =

sin |ξ|t
|ξ|t .

We substitute in (0.5) and use γ3 = 1 to obtain the desired multiplier.
3. For general n, one could use a table of mathematical functions. For

example, the integral can be expressed in terms of Bessel functions as 1

∫ 1

−1
cos(p|ξ|t)(1 − p2)k−1 dp =

π1/2Γ(k)
(

1
2 |ξ|t

)k−1/2
Jk−1/2 (|ξ|t) .

After collecting constants (using for example, ωn = 2πn/2/Γ(n/2)) and a
change of scale z = |ξ|t it turns out that one has to verify the identity

cn
(

z−1∂z

)l
[

zl+1/2Jl+1/2(z)
]

= sin z,

where

n = 2l + 3, cn =
2n/2−1Γ

(

n
2

)

γn
.

I had assumed that this would be easy to find in a table of special functions,
but surprisingly didn’t find it. This may be restated using ‘spherical Bessel
functions’ 2

jl(z) =

√

π
2

z
Jl+1/2(z),

as the identity

cn

√

π

2

(

z−1∂z

)l
[

zl+1jl(z)
]

= sin z.

By a direct calculation I worked this out for

j0(z) =
sin z

z
, j1(z) =

sin z

z2
− cos z

z
.

1M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, p. 360
2op. cit. , p. 437
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There is an identity for jl that goes the wrong way:

jl(z) = zl
(

−z−1∂z

)l sin z

z
.

At the end of the day we must then verify that

cn

√

π

2

(

z−1∂z

)l
[

z2l+1
(

−z−1∂z

)l sin z

z

]

= sin z,

which seems surprising.

Problem 7, Oseen tensor. (a) Fix a unit vector ω, and consider the equation

4u−Dp = ωδ0, D · u = 0.

Take the Fourier transform on both sides to obtain

−|ξ|2û− iξp̂ =
1

(2π)n/2
ω, ξ · û = 0.

Take the dot product of the first equation with ξ to eliminate û, and find
−i|ξ|2p̂ = (2π)−n/2ω · ξ. We then have

û = Â(ξ)ω, Â(ξ) =
|ξ|−2

(2π)n/2

(

Id− ξ ⊗ ξ

|ξ|2
)

.

(Here ξ ⊗ ξ is the rank one matrix with components ξiξj.
(b) |ξ|−2 is a tempered distribution. For any 0 < α < n let

cn−α =
2−α/2

Γ
(

α
2

) .

We then have the symmetric identity (I am not sure the constants were
correct when I stated this in lecture)

F
(

cα|x|−α
)

= cn−α|ξ|α−n, 0 < α < n. (0.7)

Of particular importance is the case when we wish to invert (2π)−n/2|ξ|−2.
This yields the fundamental solution of the Laplacian, and so we have

F
( |x|2−n

ωn(n− 2)

)

=
|ξ|−2

(2π)n/2
, and

cn−2

c2
=

(2π)n/2

ωn(n − 2)
. (0.8)
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The second term in Â(ξ) is a little more tricky. One approach is to guess

F−1
(

Â(ξ)
)

= A(x) = |x|2−n

(

a1Id+ a2
x⊗ x

|x|2
)

,

for suitable constants ai based on the symmetry of Â(ξ). Here is another
proof based on a calculation of interest in itself.

F (log |x|) = −(n− 2)
cn−2

c2
|ξ|−n. (0.9)

This is an example of an ‘endpoint’ calculation (compare with (0.7)) We
will use this calculation with the roles of x and ξ interchanged, but for
future reference it seems better to state it in this form. There is a symmetry
between x and ξ in transforms of power laws and one may use the notation
interchangeably.

Proof. We have F(1) = (2π)n/2δ0. Therefore, Fxi = −i(2π)n/2∂ξi
δ0 and by

convolution (see eg. Rauch, p.83)

F
(

xi

|x|2
)

= −i∂ξi
δ0 ?

cn−2

c2|ξ|n−2

= −iδ0 ? ∂ξi

cn−2

c2|ξ|n−2
= i(n − 2)

cn−2

c2

ξi
|ξ|n .

(A factor of (2π)n/2 is absorbed in the convolution). On the other hand,
we also have ∂xi

log(|x|) = xi|x|−2 so that −iξiF log |x| = Fxi|x|−2. Now
compare terms to obtain (0.9).

We use (0.9) as follows. We differentiate twice to find

∂ξi
∂ξj

log(|ξ|) = −2
ξiξj
|ξ|4 +

δij
|ξ|2 .

Now combine the various calculations so far to find

F−1

(

ξiξj
|ξ|4

)

=
1

2

cn−2

c2|x|n−2

(

δij − (n− 2)
xixj

|x|2
)

.

This may be combined with (0.8) to yield the fundamental matrix solution

A(x) =
|x|2−n

2ωn(n − 2)

(

Id+ (n− 2)
x⊗ x

|x|2
)

.

(c) A is called the Oseen tensor. If fi ∈ S(Rn) we have u(x) = (A?f)(x).
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Problem 8, Kuran’s theorem. The following elegant proof is due to Kuran
(Bull. London. Math. Soc., 4, p.311-312, 1972 ).

Let B := B(0, r) ⊂ U be the largest ball contained in U . Then there
exists a point x0 ∈ U\B(0, r) such that |x− x0| = r. Consider the function

h(x) =
|x|2 − r2

|x− x0|n
+ r2−n.

h is harmonic in R
n\{x0} because the first term is a constant multiple of

the Poisson kernel (see Thm. 1.13 in the notes). By assumption,

0 = h(0) =
1

|U |

∫

U
h(y) dy,

and since h is harmonic, we also have the mean value property

0 = h(0) =
1

|B|

∫

B
h(y) dy.

We combine these equalities with h ≥ r2−n on U\B to obtain

0 =

∫

U\B
h(y) dy ≥ r2−n

∫

U\B
dy = r2−n |U\B| ≥ r2−n

∣

∣U\B
∣

∣ .

Since U is open, this implies U = B. Observe that the assumptions of
convexity and smoothness of the boundary are not needed.

Remark 0.1. I apologize for the hint which can be described as misleading
(if one is charitable), or wrong (if one is accurate). What I had in mind
was an argument of the following kind. Suppose n = 2. Let U be a domain
containing the origin with the mean value property. We then have the
identity

|U | =

∫

U
eξz dxdy, ξ ∈ C.

This is equivalent to an infinite set of ‘moment equations’

|U | =

∫

U
dxdy, 0 =

∫

U
zk dxdy, k ≥ 1.

obtained by differentiation with respect to ξ, and evaluating at ξ = 0. The
idea roughly is the following: if the domain has the property that it is anni-
hilated by a rich enough class of functions (eg. exponentials, polynomials),
is this enough to determine it is a ball? We used such a uniqueness principle
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to prove the potential of a measure is unique. If the domain is convex and we
write its boundary as two graphs a±(y), y ∈ [ymin, ymax] by testing against
eξx sin ξy with ξ ∈ R, ξ 6= 0 we have

0 =

∫ ymax

ymin

sin ξy

ξ

(

eξa+(y) − eξa
−

(y)
)

.

The flawed argument was to conclude that eξa+(y)−eξa
−

(y) is even, and thus
deduce some symmetry of U . But this is not true.


