Team:

LINEAR ALGEBRA

MATLAB







Problem I: Solving linear systems

Code: I_solving_poisson.m

1. Getting started.
Run the provided code. Observe that it has the following form:

A square matrix A € RV*N N =n? with a special structure is formed (so-called Poisson matriz).
A right-hand-side b with a special structure is formed (so-called forcing).

There are several different ways to solve the system Az = b with built-in MATLAB routines which can
be uncommented.

The solution z is a vector containing the solution to the so-called (discrete) Poisson equation. Reshaping
x into a matrix XX € R™ " and plotting the enries of X X as a surface gives (an approximation) to the
Poisson equation.

NOTE: You do not have to know anything about physics to be able to work on this exercise. You will
learn a bit about the equation by playing with the system parameters, though.

2. Matrix Structure.

Look up what the commands eye,diag,spy do by typing help eye , etc. into the command window.
Change the parameter n to 2°,2* and use spy(A) to understand the structure of A.

Sketch it here:

3. Solving via rref.

Uncomment the part where Az = b is solved by row reduction and uncomment the plotting part at the
very bottom. Comment the spy(A) command.

Notice that increasing the parameter n makes the execution time longer (see what the commands tic,toc
display in the command window). Report them here for n= 22,23, 2%

Change the plot style from surf into mesh into contour into imagesc. Attach your favorite plot.

4. Manipulating the right-hand-side b.
Change b to understand its effect on the solution.

Change the sign of force. What happens?

Change the magnitude of force (from —1 to —10 to —100). What happens?

Try the following combinations with fixed n= 2*:

force | point_force describe its effect
0 -100
10 -100

0 0




e What everyday phenomenon do the plots remind you of?

. Solving via inversion: Fill-in for sparse matrices.

Fix force=0 and point_force=-10. Comment the part where the system is solved by row reduction and
uncomment the part where it is solved by inversion. Run the program again for n= 2%,2% 2* and record the
times here:

Using spy , try to find out if A~! is sparse. Google what fill-in for matrices means. How is it related to the
problem here?

. Speed up through sparsity of A.
Uncomment the line A=sparse(A) and notice the speed up for n= 2* and n= 2*. Try to understand what this
command does and describe the cause of the speed up briefly:

. Solving linear systems through factorization: The command x=A\b.
Comment the part where the system is solved by inversion and uncomment the part where x=A\b is used. Run
the program again for n= 22,23 2 and notice the speed up by recording the times

and comparing to the previous times. Lookup in the online documentation of MATLAB what the command
x=A\b does and give a brief explanation. Did we discuss anything related in this course?

. Testing the limits.
Try to crank up n to test the limits of your computer (careful, it might crash at some point). How high did
you get? n =

. Result gallery.
Play around with the parameters as you wish and attach your 3 favorite plots with information on all the
parameters you chose and the solution method.



Problem II: Span of vectors, solution set of linear systems and orthogonality

Code: II_span.m

1. Getting started.
Run the program and try to understand what it does. Change the vectors v_1,v_2,p, change the limits and

step size of the weight vectors c_1,c_2. Change the color and style of the plot. Rotate the plot.
e Attach your favorite plot specifying the v_1,v_2,p you used.

2. Span and solution set of linear systems.

e Solve 2x1 + 2x2 — 4x3 = 0 by hand an write the solution set in parametric form. Use the provided code

to plot the solution set.

Th =

e Solve 2z1 4 2x2 — 4x3 = 16 by hand an write the solution set in parametric form. Use the provided code

to plot the solution set.

xr =

3. Orthogonality and inner product u7v.
Two vectors u,v € R™ are orthogonal if
T
uwv=uv1 + ...+ upv, = 0.
This type of product is so important, it has a name: u”v is called the inner product of u and v . Try the

following example:

e Compute the inner product of u = { i ] and v = { _11 }

u v=

e What does this tell you about the angle between them? Sketch u and v.

4. Orthogonality, inner product, cross product and normal vector of a plane.
Take a look at the equation you just solved, namely, 221 + 222 — 423 = 0. It can be written as

2 X1
T
n x =0, n= 2 , T = | X2
—4 X3

The vector n is called normal vector of the plane that is the solution set of this equation. Include n in the
previous plot and attach it. For v1,v2 a basis of the solution set, compute the inner products

T
n vy = )

T
n vy —

e What is the angle between n and any vector in the plane?

e Use the command cross(v_1,v_2) . What does this command? How is the result related to the plane?




Problem III: Fitting data, least-squares and the space of polynomials

Code: III_fitting_data.m

1. Getting started.
Run the program and try to understand what it does.

2. Fitting data.
Assume you are given data points as, for instance, t_k,b_k in the code. By mere inspection of the graph of
the data you might have a first idea of what the curve b that fits these data points is. You might guess, for
instance,

b(t) = x3t” + w2t + 1, 1,72,73 € R unknown coefficients,

so b is in the space of polynomials of degree 2 or less. One can use linear algebra techniques to determine
L1,22,T3.

e Uncomment the fitting part of the code and run it. Try to understand what it does.

e Try to extract from the provided code the procedure and briefly describe it here.

3. Modifying the first guess.
Assume you guess instead that

b(t) = 2at® + 23t 4+ 2ot + r1, T1,T2,T3,24 € R unknown coefficients.
Modify the code to determine the unknown coefficients.

xry = y L2 = , L3 = yLa =

4. Changing the data.
Change some numbers in the data and see how the fitting is adjusting. Attach your 2 favorite plots.

5. Improving the guess.
Did our second guess really improve anything? What would have been a smarter improvement?



Problem IV: Eigenvalues and parameters

Code: IV_eigenvalues_and_parameters.m

1. Getting started.
Run the program and try to understand what it does.

2. Parameters and diagonalization.
Find a € R such that A is diagonalizable.

Explain how diagonalization could fail.

3. Parameters and diagonalization in 3 dimensions.
Modify the code for the matrix
-1 1
A= 0 cos(a)
0 0 sin(a)

Plot all eigenvalue curves into the same plot with different styles and attach the plot.

1
1



Problem V: Difference equations and how eigenvalues predict the future

Code: V_difference_equations.m

1. Getting started.
Run the program and try to understand what it does.

2. Eigenvalues and long-term behavior of the sequence xy41 = Axy.
Try the following values for the parameter m. Report what you see by sketching the plots qualitatively.

m eigenvalues of A describe what you observe
-0.5

-0.4375

0.1

Make a conjecture about the relation between the behavior of the sequence and the eigenvalues of A.

3. Designing a difference equation with prescribed behavior.
Design a matrix A such that it has the following eigenvalues and eigenvectors.

)\1:70.5,1)1:|:i:|, )\2:2,U2:|:_21:|.

Hint: Use the diagonalization formula!

A=

Sketch what you expect for the initial values

[17,17,[=0.25,0.5], [1, 2], [17, 18],

and confirm your sketch by modifying and running the code. Attach the corresponding plot.




