
.

Linear algebra

Matlab

Team:



.



Problem I: Solving linear systems

Code: I_solving_poisson.m

1. Getting started.
Run the provided code. Observe that it has the following form:

• A square matrix A ∈ R
N×N , N = n2, with a special structure is formed (so-called Poisson matrix).

• A right-hand-side b with a special structure is formed (so-called forcing).

• There are several different ways to solve the system Ax = b with built-in MATLAB routines which can
be uncommented.

• The solution x is a vector containing the solution to the so-called (discrete) Poisson equation. Reshaping
x into a matrix XX ∈ R

n×n and plotting the enries of XX as a surface gives (an approximation) to the
Poisson equation.

• NOTE: You do not have to know anything about physics to be able to work on this exercise. You will
learn a bit about the equation by playing with the system parameters, though.

2. Matrix Structure.

• Look up what the commands eye,diag,spy do by typing help eye , etc. into the command window.

• Change the parameter n to 23, 24 and use spy(A) to understand the structure of A.

Sketch it here:

3. Solving via rref.

• Uncomment the part where Ax = b is solved by row reduction and uncomment the plotting part at the
very bottom. Comment the spy(A) command.

• Notice that increasing the parameter n makes the execution time longer (see what the commands tic,toc
display in the command window). Report them here for n= 22, 23, 24:

• Change the plot style from surf into mesh into contour into imagesc. Attach your favorite plot.

4. Manipulating the right-hand-side b.
Change b to understand its effect on the solution.

• Change the sign of force. What happens?

• Change the magnitude of force (from −1 to −10 to −100). What happens?

• Try the following combinations with fixed n= 24:

force point_force describe its effect

0 -100

10 -100

0 0



• What everyday phenomenon do the plots remind you of?

5. Solving via inversion: Fill-in for sparse matrices.
Fix force=0 and point_force=-10. Comment the part where the system is solved by row reduction and
uncomment the part where it is solved by inversion. Run the program again for n= 22, 23, 24 and record the
times here:

Using spy , try to find out if A−1 is sparse. Google what fill-in for matrices means. How is it related to the
problem here?

6. Speed up through sparsity of A.
Uncomment the line A=sparse(A) and notice the speed up for n= 23 and n= 24. Try to understand what this
command does and describe the cause of the speed up briefly:

7. Solving linear systems through factorization: The command x=A\b.
Comment the part where the system is solved by inversion and uncomment the part where x=A\b is used. Run
the program again for n= 22, 23, 24, and notice the speed up by recording the times

and comparing to the previous times. Lookup in the online documentation of MATLAB what the command
x=A\b does and give a brief explanation. Did we discuss anything related in this course?

8. Testing the limits.
Try to crank up n to test the limits of your computer (careful, it might crash at some point). How high did
you get? n =

9. Result gallery.
Play around with the parameters as you wish and attach your 3 favorite plots with information on all the
parameters you chose and the solution method.



Problem II: Span of vectors, solution set of linear systems and orthogonality

Code: II_span.m

1. Getting started.
Run the program and try to understand what it does. Change the vectors v_1,v_2,p, change the limits and
step size of the weight vectors c_1,c_2. Change the color and style of the plot. Rotate the plot.

• Attach your favorite plot specifying the v_1,v_2,p you used.

2. Span and solution set of linear systems.

• Solve 2x1 + 2x2 − 4x3 = 0 by hand an write the solution set in parametric form. Use the provided code
to plot the solution set.

xh =

• Solve 2x1 + 2x2 − 4x3 = 16 by hand an write the solution set in parametric form. Use the provided code
to plot the solution set.

x =

3. Orthogonality and inner product uT v.
Two vectors u, v ∈ R

n are orthogonal if

u
T
v = u1v1 + . . .+ unvn = 0.

This type of product is so important, it has a name: uT v is called the inner product of u and v . Try the
following example:

• Compute the inner product of u =

[

1
1

]

and v =

[

−1
1

]

.

u
T
v = .

• What does this tell you about the angle between them? Sketch u and v.

4. Orthogonality, inner product, cross product and normal vector of a plane.
Take a look at the equation you just solved, namely, 2x1 + 2x2 − 4x3 = 0. It can be written as

n
T
x = 0, n =





2
2
−4



 , x =





x1

x2

x3



 .

The vector n is called normal vector of the plane that is the solution set of this equation. Include n in the
previous plot and attach it. For v1, v2 a basis of the solution set, compute the inner products

n
T
v1 = ,

n
T
v2 = .

• What is the angle between n and any vector in the plane?

• Use the command cross(v_1,v_2) . What does this command? How is the result related to the plane?



Problem III: Fitting data, least-squares and the space of polynomials

Code: III_fitting_data.m

1. Getting started.
Run the program and try to understand what it does.

2. Fitting data.
Assume you are given data points as, for instance, t_k,b_k in the code. By mere inspection of the graph of
the data you might have a first idea of what the curve b that fits these data points is. You might guess, for
instance,

b(t) = x3t
2 + x2t+ x1, x1, x2, x3 ∈ R unknown coefficients,

so b is in the space of polynomials of degree 2 or less. One can use linear algebra techniques to determine
x1, x2, x3.

• Uncomment the fitting part of the code and run it. Try to understand what it does.

• Try to extract from the provided code the procedure and briefly describe it here.

3. Modifying the first guess.
Assume you guess instead that

b(t) = x4t
3 + x3t

2 + x2t+ x1, x1, x2, x3, x4 ∈ R unknown coefficients.

Modify the code to determine the unknown coefficients.

x1 = , x2 = , x3 = , x4 = .

4. Changing the data.
Change some numbers in the data and see how the fitting is adjusting. Attach your 2 favorite plots.

5. Improving the guess.
Did our second guess really improve anything? What would have been a smarter improvement?



Problem IV: Eigenvalues and parameters

Code: IV_eigenvalues_and_parameters.m

1. Getting started.
Run the program and try to understand what it does.

2. Parameters and diagonalization.
Find a ∈ R such that A is diagonalizable.

a = .

Explain how diagonalization could fail.

3. Parameters and diagonalization in 3 dimensions.
Modify the code for the matrix

A =





−1 1 1
0 cos(a) 1
0 0 sin(a)



 .

Plot all eigenvalue curves into the same plot with different styles and attach the plot.



Problem V: Difference equations and how eigenvalues predict the future

Code: V_difference_equations.m

1. Getting started.
Run the program and try to understand what it does.

2. Eigenvalues and long-term behavior of the sequence xk+1 = Axk.
Try the following values for the parameter m. Report what you see by sketching the plots qualitatively.

m eigenvalues of A describe what you observe

-0.5

-0.4375

-0.4

0.1

Make a conjecture about the relation between the behavior of the sequence and the eigenvalues of A.

3. Designing a difference equation with prescribed behavior.
Design a matrix A such that it has the following eigenvalues and eigenvectors.

λ1 = −0.5, v1 =

[

1
1

]

, λ2 = 2, v2 =

[

−1
2

]

.

Hint: Use the diagonalization formula!

A = .

Sketch what you expect for the initial values

[17, 17, [−0.25, 0.5], [1,−2], [17, 18],

and confirm your sketch by modifying and running the code. Attach the corresponding plot.


