Linear Algebra

MA 242 (Spring 2013)
Linear Algebra with Matlab
Instructor: M. Chirilus-Bruckner

- warm-up -

My teammate: \qquad

```
% MATLAB warm-up
%%%%%%% INSTRUCTIONs for warm-up:
% * Simply copy and paste line-by-line into command window, hit enter and observe what happens.
% * Leave out semicolons to display results.
% * Find the "workspace" and observe how it changes as you go through all the commands.
% * Finally, execute the entire code by typing the file name "MATLAB_warmup" into the command window and hitting enter.
% * At the end of the file you find a short warmup exercise.
% comments start with "%"
% clear the command window
clc;
% clear the workspace
clear all;
%%%% adding
17 + 3 % gives result
17 + 3; % semicolon supresses display of result
%%%% special numbers
sqrt(pi);
%%%% defining variables
x = 3;
y = -1/3;
%%%% multiplying variables
x*y;
%%%% vectors
v = [1,2]; % row vector
w}=[1;2]; % column vector
b = [17;-1;0.1]; % row vector
z = zeros(4,1); % all entries are zeros
x = ones(1,15); % all entries are ones (previously defined x is overwritten)
%%%% matrices
A = [1,2,3;4,5,6] % 2 x 3 matrix
B = ones (3,5); % 3 x 5 matrix
C = rand(5); % 5 x 5 matrix with pseudorandom entries
%%%% matrix-vector multiplication
A*b; % works fine
% uncomment to get an error since dimensions do not match
% A*v; % does not work
%%%% matrix-matrix multiplication
A*B; % works fine
B*C; % works fine
% uncomment to get an error since dimensions do not match
% B*A; % does not work
```

display('Reduced echelon form of A')
\% \% reducing to echelon form
rref(A)
\%\%\%\% determinant
$\mathrm{J}=[1,1,1,1 ; 1,2,2,2 ; 1,2,3,3 ; 1,2,3,4]$
display('determinant of J')
$\operatorname{det}(J)$
\%\%\%\% computing eigenvalues and eigenvectors
C = [-3,7;.1,6]
display('diagonalization of A')
[V,D] = eig(C) \% gives eigenvectors arranged into V , so that $\mathrm{A} * \mathrm{~V}=\mathrm{V} * \mathrm{D}$
$\operatorname{inv}(\mathrm{V}) * \mathrm{C} * \mathrm{~V} \%\left(\mathrm{~V}^{\wedge}(-1)\right) * \mathrm{~A} * \mathrm{~V}$ works too
\%\%\%\% plotting functions
$x=[-5: .05: 5] ;$
$y=\exp \left(-x .^{\wedge} 2\right)$;
plot($\left.x, y,{ }^{\prime} r^{\prime}\right)$;hold on;
plot(x,y,'b*');hold off;
pause(1) \% pauses 1 second before further execution
\%\%\%\% plotting surfaces
$[\mathrm{XX}, \mathrm{YY}]=$ meshgrid(-1:.2:1,-1:.2:1);
$Z Z=X X . * \exp \left(-2 * X X .^{\wedge} 2-2 * Y Y .^{\wedge} 2\right)$;
figure;
$\operatorname{surf}(X X, Y Y, Z Z)$;
\%\%\%\%\%\% INSTRUCTIONs for warm-up exercise:
\% * Define a vector x containing the numbers from -10 to 10 in steps of 0.1 .
$\% *$ Define the parameters sigma $=1$ and $\mathrm{mu}=0$
\% * Compute the function
$\% \quad \mathrm{f}=\left(1 / \operatorname{sqrt}(2 * \mathrm{pi} *\right.$ sigma^2)$) * \exp \left(-\left(1 /(2 *\right.\right.$ sigma^2)$\left.) *(\mathrm{x}-\mathrm{mu}) .{ }^{\wedge} 2\right)$;
\% * Have you ever encountered this function before?
$\%$ * Find out what the difference between the commands "x*x" and "x.*x" is.
$\%$ * Plot the function f.
\% * Type "help plot" into the MATLAB command window and try to find out what options the plot command has.
\% * Choose different values for sigma and mu.
\% * Try to plot the corresp. graphs into the same plot with different colors and/or symbols.
\% * Explain how sigma and mu change the function.

