Linear Algebra

MA 242 (Spring 2513) Instructor: M. Chirilus-Bruckner

LINEAR ALGEBRA AND THE IMPORTANCE OF THINGS – PageRank –

*A baby internet for illustration .

Figure 1: Nodes represent website, directed arrows represent links

*Hyperlink matrix .

H =	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 - 0 0 0	=	$ \begin{bmatrix} 0 \\ 1/2 \\ 1/2 \\ 0 \\ 0 \end{bmatrix} $	0 0 1 0	$\begin{array}{c} 0 \\ 1/2 \\ 0 \\ 0 \\ 1/2 \end{array}$	$\begin{array}{c} 0 \\ 1/3 \\ 0 \\ 0 \\ 1/3 \end{array}$	0 0 0 0 0	0 0 0 0	$1/3 \\ 0 \\ 0 \\ 0 \\ 1/3$	0 0 0 0 0
			Ő	Õ	Õ	Ő	Ő	Ň			1	Õ	Õ	Õ	Õ	Õ	õ l
			0	0	0	0	0	0	=	0	1			0	0		0
		0	•	·	0	0	·	0		0	0	1/2	1/3	0	0	1/3	0
	0	0	0		•	0	0	•		0	0	0	1/3	1/3	0	0	1/2
	0	0	0	0		0	0			0	0	0	0	1/3	0	0	1/2
	LΟ	0	0	0		•		0 _		LΟ	0	0	0	1/3	1	1/3	0

- Begin row-wise: 1 gets a link from 7, so make a dot at h_{17} and fill the rest of the row with 0's, and so on
- Column-wise:

1 links to 2 pages, so it gives 1/2 of its importance to each

(Recall: When used for the real-world internet $H \in \mathbb{R}^{n \times n}$ where $n \approx 25$ billion.)

*A way to define importance (implicitly) .

"The importance of a page is defined by how much importance it gets from other pages."

One can destill this idea into an equation by defining an "importance vector" I (PageRank) whose *i*-th entry gives the importance of the *i*-th page. It has to satisfy

$$HI = I,$$

which can be interpreted as an eigenvalue problem: I is the eigenvector of I for the eigenvalue $\lambda = 1$. (How do we now that 1 is an eigenvalue?)

* Properties of the hyperlink matrix that faciliate the computation of I.

The matrix H has all non-negative entries and its column entries sum up to 1. It is a so-called stochastic matrix. Assume that from the theory provided for our matrix H you know that its eigenvalues fulfill

$$1 = \lambda_1 > |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_8|$$

and that ${\cal H}$ is diagonalizable. Then

$$H^{k}x = H^{k}(c_{1}I + c_{2}v_{2} + \ldots + c_{8}v_{8}) = c_{1}I + c_{2}(\lambda_{2})^{k}v_{2} + \ldots + c_{8}(\lambda_{8})^{k}v_{8}$$

approaches a multiple of I for large k. (Recall: When used for the real-world internet there are around 25 billion eigenvalues.)

* Computation of I by the power method .

Using this theoretical knowledge we can, hence, compute an approximation of ${\cal I}$ by executing the following loop:

```
Z = [1,0,0,0,0,0,0,0]';
for kk=1:number_of_iterations
  W = H*Z;
  m = 1/abs(sum(W));
  W = m*W; % the sum of all entries in the importance vector should be 1
  error(kk) = norm(H*W-W); % tracking the error
  Z = W;
end
```


Color illustration of importance (according to I) of each website (the lighter, the more important)

Error at each iteration step